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Abstract We present an approach to the problem of real-time identification of vehi-
cle motion models based on fitting, on a continuous basis, parametrized slip mod-
els to observed behavior. Our approach is unique in that we generate parametric
models capturing the dynamics of systematic error (i.e. slip) and then predict tra-
jectories for arbitrary inputs on arbitrary terrain. The integrated error dynamics are
linearized with respect to the unknown parameters to produce an observer relating
errors in predicted slip to errors in the parameters. An Extended Kalman filter is
used to identify this model on-line. The filter forms innovations based on residual
differences between the motion originally predicted using the present model and the
motion ultimately experienced by the vehicle. Our results show that the models con-
verge in a few seconds and they reduce prediction error for even benign maneuvers
where errors might be expected to be small already. Results are presented for both a
skid-steered and an Ackerman steer vehicle.

1 Introduction

Autonomous vehicle research has continuously demonstrated that a platform’s pre-
cise understanding of its own mobility is a key ingredient of competent machines
that perform [4]. Since ground vehicles are propelled over the earth by the two
forces of gravity and traction, agile autonomous mobility relies fundamentally on
understanding and exploiting the interactions between the terrain and tractive de-
vices like wheels and tracks. Furthermore the propulsive forces depend critically on
the composition of the surface over which the vehicle moves. Therefore, unless the
terrain is homogeneous for the duration of an entire mission, and the vehicle models
are already well calibrated, we must conclude that a capacity to calibrate (i.e. iden-
tify) vehicle models in real-time is a core requirement of high performance ground
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robots. In principle, it should be possible to calibrate vehicle models in real-time
based on observing residual differences between the motion originally predicted by
the platform and the motion ultimately experienced. In a machine learning context,
this process would be called self-supervised learning whereas in the adaptive control
community it would be called on-line identification.

We concentrate on the problem of calibrating the faster-than-real-time models
which occur in mobile robotic predictive control and motion planning. Such cases
include obstacle avoidance and path following situations where the predicted motion
of the vehicle is the basis for decisions on where to go. Our models calibrate the
mapping between the control inputs and predicted state trajectory. Certainly this
mapping depends on terrain conditions, gravity, reaction and inertial forces but we
have found it unnecessary to express forces explicitly in the models. Our models
nonetheless provide a fairly accurate model of the underlying dynamics over the
regime of performance of present-day robots.

Motion models of ground robots have many uses. Model-based approaches have
been applied to estimate longitudinal wheel slip and to detect immobilization of
mobile robots [10]. Analytical models also exist for steering maneuvers of planetary
rovers on loose soil [3]. The aspects of wheel-terrain interaction that are needed for
accurate models are neither well known nor easily measurable in realistic situations.
Other researchers have addressed the problem of model identification for ground
robots. Algorithms have been developed to learn soil parameters given wheel-terrain
dynamic models [8].

Our colleagues have constructed an artificial neural network that was used to
learn a forward predictive model of the Crusher Unmanned Ground Vehicle [2]. This
model gave good results, with fast predictions, without making any assumptions
about the vehicle to ground interaction. It was trained off-line and does not attempt
to adapt to varying terrain properties.

Whereas published methods are designed to use measurements to estimate present
state for feedback controllers, our method learns a predictive model by capturing the
underlying dynamics as a function of all of input space. Some published methods
lump all of the unknown soil parameters into slip ratios and a slip angle and use
velocity measurements to aid in estimation. An Extended Kalman Filter (EKF) and
a Sliding Mode Observer (SMO) have been developed to estimate the slip ratio pa-
rameters by [11] and [5]. An EKF has also been used to estimate the slip angles and
longitudinal slippage for a wheeled mobile robot [6].

Our method also relies on more reliable pose residuals rather than measurements
of velocity. In our past work, we have developed off-line calibration techniques [1]
including techniques for learning vehicle slip rates [7]. In this paper, we extend
those techniques to work for real time calibration. We first develop a general land
vehicle model in Section 2. This model, along with the pose residual observations,
is integrated into the EKF in Section 3. Section 4 describes the experimental set-up,
and the results are presented in Section 5. We present our conclusions in Section 6.
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2 Vehicle Model

For any vehicle moving in contact with a surface, there are three degrees of freedom
of in-plane motion as long as the vehicle remains in contact with the terrain, (Figure
1). Errors in motion prediction can therefore be reduced, without loss of generality,
to instantaneous values of forward slip rate, δVx, side slip rate, δVy, and angular slip
rate, δω .

Fig. 1 Vehicle Dynamics.

Given these slip rates and the vehicle’s commanded linear and angular velocity,
we have the following kinematic differential equation for the time derivatives of the
vehicle’s 2D position and heading with respect to a ground fixed frame of reference,
known hereafter as the world frame. ẋ

ẏ
θ̇

=

cθ −sθ 0
sθ cθ 0
0 0 1


Vx

Vy
ω

+

δVx
δVy
δω

 (1)

cθ = cos(θ), sθ = sin(θ)

This model is the general case for a vehicle moving on a surface with three de-
grees of velocity freedom. We expressed the velocity in terms of a commanded
component and an error component. Both are expressed in body coordinates be-
cause slip is likely to be simpler to express in these coordinates. The model is also
relevant to rough terrain when expressed in body coordinates because the instan-
taneous linear velocity remains in the plane containing the wheel contact points.
Ignoring suspension deflections, this plane is fixed in body coordinates. No non-
holonomic constraints are present in the unperturbed model above, but they can be
easily added. The perturbations, of course, are elements that will not respect such
constraints even if they nominally exist. In plain terms, if the wheels are slipping
sideways, the perturbations will tell us that.

We elected to use a velocity driven model because these are natural inputs for
most of our robots. However, this is not a requirement of our approach. Any dif-
ferential equation, such as one driven by forces or fuel flow rates, could be used.
It is important to express the model in terms of control inputs rather than measure-
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ments since the model will be used to predict motion before the terrain is traversed.
Furthermore, the perturbation terms need not be in input space. They could be ex-
pressed as additive errors to the state δx or even the state derivatives δ ẋ. They need
only span the dimensions necessary to characterize the actual errors of interest.

The calibration question is how best to model the perturbations. They will de-
pend, in general, on terrain composition and vehicle state along with the applied,
constraint, and inertial forces that terrain and vehicle state imply. We can param-
eterize a 3 × 1 vector of the slip velocity δu, expressed as δu(u, p). These slip
velocities depend, in our model, on the commanded velocities u(Vx,Vy,ω) and on a
set of learned slip parameters, p. Accordingly, the perturbed system dynamics can
be written in general as:

ẋ = f (x,u, p) (2)

The use of wheel rotational velocities, or integrals involving them, to form ob-
servations is not desirable since such measurements cannot observe slip directly.
In addition, wheels may slip sideways and such motion would not be reflected in
measurements of wheel rotations, even though it is the dominant effect of interest in
many cases. Although many approaches to system identification are based on fitting
the data to the differential equation, we prefer to exploit the high relative accuracy
of position data (e.g. RTK GPS or visual odometry) by observing the effects of the
slip velocities on the integrated dynamics. This formulation also allows the position
measurements to be under-sampled relative to the command frequency; for exam-
ple, low-cost GPS may only provide an position update at 1 Hz while the vehicle
is commanded at 100 Hz. The vehicle path is found by integrating the equations of
motion.

x =

x
y
θ

= F(u(t), p) =
∫

f (x(t),u(t), p)dt (3)

In order to produce regular observations, we reset the integral to a local origin
before using the current estimate of slip parameters to produce the difference be-
tween measured and predicted changes in pose for a given path segment. To avoid
a double delta symbol in the notation, let us define the uppercase vector X to be the
difference between two states expressed in ground fixed coordinates:

X(k) = x(tk +n)− x(tk) (4)

This gives us an integrated observation.

∆X = Xmeasured−X predicted (5)
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3 Extended Kalman Filter

Any vehicle’s performance will depend on terrain characteristics which vary over
space and time due to such effects as weather and seasonal vegetation. Only an on-
line system can adapt to these changes as fast as the local environment changes dur-
ing the vehicle’s motion from place to place. In an operational setting, the trajectory
followed by the robot will not normally be chosen to simplify model identification.
In any case, there is no clear way to tell when the terrain is about to change so the
system must be able calibrate on any arbitrary trajectory.

An Extended Kalman Filter (EKF) is used whose state vector is composed en-
tirely of the parameters governing perturbative (i.e. slip) velocity. The vehicle pose
estimation system functions as a sensor for the identification filter. It may use its
own Kalman filter but in this paper the EKF will always mean the identification
EKF used to identify slip parameters. In the EKF, uncertainty in both states (pa-
rameters) and the measurements is correctly treated. The transition and observation
models below are used in the standard EKF algorithm.

3.1 Transition model

Our parameters are assumed to be constant over a short segment once the terrain and
the inputs are known. Therefore, the state transition model is adequately modeled
as static in (6). The process noise, ε t , of covariance Qt describes the parameter
uncertainty. The uncertainty models can be adaptive, allowing the noise amplitude
to be increased, for example, during terrain transitions that are detected (from rapid
changes in slip) or predicted (from perception). The transition matrix is simply the
identity matrix, (7), so it does not appear in the transition model.

pt = g(pt−1)+ ε t = pt−1 + ε t (6)

Gt =
∂g(pt−1)

∂ pt

= I5,5 (IdentityMatrix) (7)

3.2 Observation Model

Each computation of the motion prediction dynamics integral (3) is called a path
segment. The observation is the measured relative pose between the start and end
of the current path segment, Xmeasured , whereas the predictive measurement is the
same quantity as predicted by the current parameter estimates and the sequence of
commands issued over the segment, (8). The observation noise, δ t , is the expected
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noise of the difference between start and end poses, with covariance Rt . More detail
on the observation noise is presented in Section 3.3.

zt = h(u(t), pt)+δ t (8)

zt = Xmeasured (9)
h(u(t), pt) = X predicted = F(u(t), pt) (10)

Given an observed difference between the predicted and measured relative pose
of a path segment, the measurement Jacobian, H, allows us to find the changes
needed in the slip parameters to correct the relative pose residual. Since pose is only
3D in the plane and any sophisticated model will have many parameters, we have
an under determined system. Optimal estimation, via the Kalman gain, can compute
changes in n parameters to correspond to 3 pose residual errors, (11).

∆ p = K∆X = PHT [HPHT +R]−1
∆X (11)

The Jacobian, H, which linearizes the change in the integrand F due to the change
in parameters p, can be evaluated on an arbitrary trajectory in (12).

H =
∂F
∂ p

=
∂

∂ p

∫
f (x(t),u(t), p)dt =

∫
∂

∂ p
f (x(t),u(t), p)dt (12)

The last step in (12) uses Leibniz’s rule to convert the derivative of the integral to
the integral of the derivative. Numerical finite differences on the integral could also
be performed, but Leibniz’ rule gives a closed form solution for our formulation.
The chain rule is used for the inner derivative to simplify the analytical differentia-
tion, (13).

∂ f
∂ p

=
∂ f

∂δu
∂δu
∂ p

(13)

The first needed derivative, describing the change in predicted motion relative to
the change in slip rates, is simply the rotation matrix in the motion model.

∂ f
∂δu

=

cθ −sθ 0
sθ cθ 0
0 0 1

 (14)

Slip rate is represented as a second order polynomial surface over input space.
This approach allows us to learn, not only the present slip, but a model for how slip
depends on arbitrary inputs - even arbitrary functions of time. The polynomial terms
are formed over commanded speed V , and angular velocity is dropped from the
command vector in favor of curvature, κ . The result of these formulation decisions
is a slip surface that is a general paraboloid over this input space.
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δVx = α1,x κ +α2,xV +α3,x κV +α4,x κ
2 +α5,xV 2

δVy = α1,y κ +α2,yV +α3,y κV +α4,y κ
2 +α5,yV 2 (15)

δVω = α1,ω κ +α2,ωV +α3,ω κV +α4,ω κ
2 +α5,ωV 2

Constant terms were not used since they cause phantom drift when the vehicle is,
in fact, not moving. Commanded side velocity was not considered as our vehicles
(skid-steered and Ackerman-steered) have no commanded side velocity. Gravity,
expressed in the body frame, would likely be needed in the model for slopes, but we
have not performed such experiments yet. Additional terms may be added for other
relevant inputs, disturbances, or state variables.

Ideally, the inputs used should be whatever the system actually accepts as inputs
at the level of abstraction that is being calibrated. For example, one could calibrate
a decoupled model of a Mars rover which accepts 4 wheel velocities or a state space
model of the same system that presents a curvature-accelerator interface like an
automobile.

The slip rate surface parameters are grouped into a column vector to form the 21
state vector of the EKF. Equation (16) gives the second need derivative used in inner
derivative, (13).

p = [α1,x α2,x α3,x α4,x α5,x α1,y α2,y α3,y α4,y α5,yα1,ω α2,ω α3,ω α4,ω α5,ω ]>

∂δu
∂ p

= U =

C 01,5 01,5
01,5 C 01,5
01,5 01,5 C

 (16)

C =
[
κ, V, κV, κ2, V 2

]
3.3 Uncertainty

Given the EKF observation residual, (17), the observation uncertainty is a combi-
nation of the measurement uncertainties of the initial and final state plus the un-
certainty in the integrand, F, which depends on both the initial pose and parameter
uncertainties, (18). Equation (18) assumes that the two pose measurements are un-
correlated - which we find to be an adequate model for RTK GPS. For systems that
use WAAS, or lower grade GPS, a model of the correlation of the two relative pose
errors can be used. GPS errors are of course not white or Gaussian, but a simple
check such as a validation gate should be able to detect large GPS jumps and re-
ject any such measurements. Good inertial navigation systems or visual odometry
are likely to be better solutions than GPS since they exhibit excellent short term
accuracy that can observe wheel slip.

∆z = z−h(p) = x f − xi−F(xi, p,u f
i ) (17)

Rz = Rx f +Rxi +RF (18)
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RF = RFxi
+RFp = JxiRxiJ

>
xi

+ JpRpJ>p (19)

In estimating the uncertainty in X predicted , it is very important to correctly account
for the fact that the predicted relative pose error can be caused by a combination of
errors in the initial conditions and errors in the parameters used in the integral. That
is, a lateral pose error could be caused simply by an error in the yaw angle used as
initial conditions.

The second term in (19) describes the uncertainty in the predicted relative pose
due to errors in the slip parameters. We can take the parameter uncertainty and it’s
Jacobian straight from the EKF; thus Jp = H in (12) and Rp = P, the parameter
covariance, in (11).

The first term in (19) describes the uncertainty in the predicted relative pose due
to error in the measured initial pose. The pose measurement uncertainty provided
by the position estimation system is used for this. For the Jacobian, the partial inside
the integrand is taken with respect to the initial state rather than the current state at
each point in time as the integral in computed.

Jxi =
∂F
∂xi

=
∂

∂xi

∫
f (xi,x, p,u)dt =

∫
∂ f (xi,x, p,u)

∂xi
dt (20)

We can isolate the dependence on the initial angle by rewriting the world-relative
yaw angle, θ , as the sum of the constant initial angle, θi, and the time varying
deviation from the initial angle, ∆θ(t). This can be represented as a product of two
rotation matrices.

f (xi,x, p,u) =

 ẋ
ẏ
θ̇

=

cθi −sθi 0
sθi cθi 0
0 0 1

c∆θ −s∆θ 0
s∆θ c∆θ 0

0 0 1

Vx(p)
Vy(p)
ω(p)

 (21)

The Jacobian is now straightforward since the rotation through the constant initial
angle can be taken outside the integral. We define ∆xi

f as the state change expressed
in a coordinate system fixed to the initial pose.

∂F(xi, p,u f
i )

∂xi
=

∂

∂xi

cθi −sθi 0
sθi cθi 0
0 0 1

∫ f (x, p,u)dt =
∂

∂xi

cθi −sθi 0
sθi cθi 0
0 0 1

∗∆xi
f (22)

The derivative of a matrix with respect to a vector produces a third order tensor
(3x3x3) in general. We can simplify this complexity by taking the derivative of the
rotation matrix with respect to each element of the vector of initial conditions and
then multiplying by the relative pose change, ∆xi

f , to get a single column of the
Jacobian. First we take the derivative with respect to initial heading.

∂F(xi, p,u f
i )

∂θi
=

−sθi −cθi 0
cθi −sθi 0
0 0 1

∗∆xi
f =

−∆y
∆x
0

 (23)
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The changes in position produced, ∆x and ∆y, are expressed in world coordi-
nates. Because the rotation matrix is independent of the initial position, (xi,yi), the
other two columns of the Jacobian are zero. This gives us the final Jacobian:

Jxi =

0 0 −∆y
0 0 ∆x
0 0 0

 (24)

The result is intuitively correct since this is the Jacobian of a rotation of a dis-
placement vector rotated through an angle at the start. If we multiply out the whole
first uncertainty term, we get:

JxiRxiJ
>
xi

=

 ∆y2 −∆y∆x 0
−∆y∆x ∆x2 0

0 0 0

σθiθi (25)

The uncertainty propagation can be used to estimate the error in trajectory pre-
diction for planning purposes. Vehicle motion planners can improve performance
and better avoid obstacles if they know the likely regions occupied by the vehicle
after executing an arbitrary trajectory. The uncertainty in the integrand, RF , found
in Equation (19), gives the uncertainty in the predicted pose from the uncertainty in
the parameters and the uncertainty in the initial state.

Fig. 2 Path Uncertainty

Figure 2, shows a typical arbitrary vehicle path. The solid line shows the actual
vehicle path over 10 seconds. The dash-dot line shows the path generated with no
slip prediction. The dashed line is the path generated with the described slip predic-
tion along with 1-σ position uncertainty bounds every 2 seconds found via Equation
(19). The predicted path closely tracks the actual path while providing useful uncer-
tainty bounds for the trajectory planner.
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4 Experimental Set-Up

Data has been collected on an automated LandTamer, a six wheeled skid-steered
vehicle with a hydraulic/gear drive system, that has been retrofitted for autonomy,
Fig-3(a). Skid-steered vehicles are often used as outdoor mobile robots due to their
robust mechanical structure and high maneuverability. For such a vehicle, execution
of paths with any curvature will create wheel slip which makes both kinematic and
dynamic modeling difficult. The Land Tamer vehicle is retrofitted with a high end
Novetel SPAN Inertial Measurement Unit (IMU) unit and with Real-Time Kine-
matic Global Positioning System (RTK GPS). The RTK receiver reports the vehi-
cle’s position to centimeter accuracy.

(a) Land Tamer Vehicle (b) recBot eGator Vehicle

Fig. 3 Test Vehicles

In one experiment, data was collected on the Land Tamer vehicle in a gravel
lot after a heavy rain. Mud and wet gravel added to the terrain variability. Data
collection occurred as the vehicle was commanded to drive in circles at various
curvatures and speeds. Four speeds of {0.25,0.50,0.75,1.0}m/s and three curvatures
of {0.4,0.5,0.6} m−1 were used. The vehicle started at the smallest curvature and
smallest speed; it then was commanded the other speeds in increasing order. This
was repeated for the other two curvatures. The test was continuous, and data from
the transitions were included in the data set to assess the need to model transients
(i.e. times when the inputs are changing). These first data sets were collected on flat
ground to eliminate the need for perception of the ground slope used in prediction.
The EKF used the collected data, in temporal order, to optimize the slip model
parameters. The data collection time was just over nine minutes.

Data was also collected on our ”recBot” vehicle, a medium size drive-by-wire
UGV, Fig-3(b). The recBots are built based on the Deere eGator vehicle which is
well suited to operations on light off road terrain. The vehicle is Ackerman-steered
providing contrast to the previous skid-steered collected data. The skid rates depend,
in this case, on the turn angle of the front wheels. Curvature was calculated from
the turning angle, γ , and the wheelbase distance, a, κ = 1

a tanγ . The recBot was
retrofitted with a similar high-end INS system. Data was collected as the recBot
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was randomly driven around on a grass lawn for just over five and half minutes at
speeds up to 4.8 m/s. The grass was mostly level and flat, although tractor treads in
the ground provided additional variance in the skip rates.

5 Results

Overlapping half-second path segments were used for computing the path residuals.
It is significant that residuals were large enough over such a short time period to per-
mit identification of the model despite the sensor noise. Each iteration occurred with
pose measurement updates at 100 Hz; thus, the segment start points were separated
by 10 milliseconds. Keeping track of the past internal derivatives, ∂ f /∂ p, along the
length of the path segment made the on-line integration very efficient. The entire
EKF algorithm can easily run faster than real-time. As the EKF was run on the col-
lected Land Tamer circular data, a future path segment is generated from the current
pose with the current predicted slip parameters. The remaining pose residuals from
the measured end pose were minimal with a few exceptions during transients (per-
haps due to un-modeled actuation delays), Figure 4(b). For comparison, the relative
pose residuals computed without slip prediction are shown in Figure 4(a).

(a) Pose Residuals without Slip Prediction (b) Pose Residuals with Slip Prediction

Fig. 4 Predicted Pose Residuals, 1 second path segments

Parameter values converge in a few seconds once the vehicle enters a new
speed/curvature regime, and the models are formulated to be valid throughout in-
put space. The system cannot distinguish innovations caused by changes in terrain
from those caused by parameter errors so the net result is to adapt to terrain changes
in the same way at the same rate. Stochastic models have also been successfully
identified in an off-line setting [7] in order to quantify the remaining variation af-
ter the systematic model converges. Future work will integrate the stochastic model
into the EKF for on-line identification.
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It is significant that the slip rate surface parameters were all initialized to zero,
making no assumptions about the vehicle-ground interaction. This is more evidence
of rapid on-line adaptation to the terrain. The slip surface parameter variation over
the EKF run is shown in Figure 5 versus the algorithm iteration index. The parame-
ters are clearly adjusting to incorporate new knowledge when new operating regimes
are first encountered.

Fig. 5 Parameter Variation during EKF iterations

The final learned slip rate surfaces for the LandTamer are shown in Figure 6.
The surfaces are the final predicted mean slip rates over the observed commanded
curvatures and speeds. The surfaces themselves tell us that lateral slip is nearly
nonexistent for such a vehicle and the dominant slip directions are best characterized
as rotational and forward.

Even for the benign conditions in this dataset, the EKF relative position estima-
tion over 1 second path segments was two times better than the result obtained with
no slip prediction, Table 1. The EKF provides an improvement of ten times reduc-
tion in the predicted path residual orientation error over path prediction with no slip
rates.

Table 1 Relative Pose Error Comparison with Standard Deviation

Algorithm Position (m) Orientation (rad)
None .075± .058 .157± .084
EKF .034± .042 .014± .019

The improvements are more pronounced as the path segment length or predic-
tion time increases, Figure 7. While the position error for a path segment, with no
predicted slip, increases rapidly as the path time length increases, the EKF position
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(a) Forward Slip (b) Side Slip

(c) Angular Slip

Fig. 6 Slip Surfaces learned via EKF

error is increases at a much slower rate. With a path time length of six seconds, we
see a position error improvement from 1.6 meters to under 21 centimeters - an er-
ror reduction of over about 8 times. Clearly a motion model for this vehicle on this
terrain can be calibrated, and it can be calibrated well.

Fig. 7 Land Tamer Predicted Position Residual with regard to Path Length
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The EKF was also run on the collected RecBot data. Recall this test was per-
formed at speeds up to 4.8 m/s and steering inputs were arbitrary. The prediction
was more difficult due to less frequent (10 Hz) pose updates, which affects the path
integration, and an inaccurate steering wheel angle encoder. In addition, the vehicle
was driven at high speeds through more aggressive maneuvers. While the EKF error
residuals were not as small, the relative improvements, over not using slip in the
motion prediction, are similar to those of the Land Tamer data set. The position er-
ror grows rapidly as the path segment length is increased, Figure 8. At six seconds,
the position error decreases around 3 times. The other plots for the RecBot are not
shown here due to space considerations.

Fig. 8 RecBot Predicted Position Residual with regard to Path Length

6 Conclusion

A method has been developed for real-time identification of vehicle dynamic mod-
els. The method uses perturbative models to represent slip in all degrees of free-
dom, and the model relates slip velocities to arbitrary input signals. Our residuals
are based on pose predictions generated from integrating the model over a short pe-
riod of time. Though more complex than classical techniques, the approach permits
the direct use of high quality sensing like RTK GPS, or even under-sampled pose
measurements, as ground truth. This technique requires the linearization of an inte-
gral of the system dynamics with respect to the model parameters. The process is
clearly observable over all of input space for our vehicles and it converges in a few
seconds on the tested terrain.

The vehicle motion model is a general formulation that applies to any vehicle
type and any terrain. In this paper, we have applied it to both skid-steered and
Ackerman-steered vehicles on loose gravel and grass. Future work will expand the
EKF for rolling terrain, for a range of vehicle types, and for multiple terrain types.
Ultimately, perception based slip prediction will permit vehicle control and mo-
tion planning to predict the terrain characteristics based on its previewed geometry
and appearance. Our formulation also leads to an equivalent capacity to calibrate
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a stochastic dynamics model by using the integral of the associated linear variance
equation.

Our method improves prediction for a few seconds of trajectory prediction while
adapting rapidly to terrain. The improved models produced by this technique will
lead to significant improvements in the performance of model predictive controllers,
particularly in difficult terrains or during aggressive maneuvers.
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