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Abstract

The related fields of mobile robotics and ground vehicle localization
lack a linearized theory of odometry error propagation. By contrast,
the equivalent Schuler dynamics which apply to inertial guidance
have been known and exploited for decades. In this paper, the gen-
eral solution of linearized propagation dynamics of both systematic
and random errors for vehicle odometry is developed and validated.
The associated integral transforms are applied to the task of eliciting
the major dynamic behaviors of errors for several forms of odom-
etry. Interesting behaviors include path independence, response to
symmetric inputs, zeros, extrema, monotonicity and conservation.
Applications to systems theory, systems design, and calibration are
illustrated.
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1. Introduction

For the purpose of this paper, odometry will be defined as
dead reckoning from indications of linear velocity with re-
spect to the frame of reference of interest. Inertial navigation
differs from odometry slightly by its use of linear accelera-
tion indications, and more profoundly by its use of inertially
referenced indications.

Odometry is also materially distinct from triangulation
based position fixing. Triangulation errors are algebraic
expressions—exhibiting no dynamics. Odometry and its er-
rors evolve according to differential equations whose solu-
tions are integrals.

This essentially dynamic nature of odometry error propa-
gation is unavoidable, and a significant inconvenience. As a
result, the problem of analytically computing the navigational
error expected in odometry from a given set of sensor errors
on a given trajectory has remained both a fundamental and an
unsolved problem.
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This paper addresses the problem of understanding the
relationship between errors present in sensor indications in
odometry, and the resultant error in computed vehicle pose.
Analytical rather than numerical results are targeted. While a
numerical solution to the problem of computing the resultant
error is trivial, symbolic solutions yield dividends in the form
of understanding the general case that numerical ones cannot.

1.1. Motivation

This work is motivated by a recurrent set of questions which
arise for position estimation systems in mobile robots. His-
torically they have been answered numerically or in an ad hoc
manner. How good do the sensors need to be? What kind of
localization error can be expected if this particular sensor is
used? Under what conditions do errors cancel out? What is the
best way to calibrate the systematic or stochastic error model
of this sensor?

The integral transforms derived here encapsulate the path-
dependent dynamic effects once the character of the trajectory
is fixed. These moments thereby enable rapid analytical solu-
tions to many of the design questions posed above.

A personal motivation for this work relates to several
counter-intuitive phenomena which have been observed on
mobile robot odometry systems. For the robots shown in Fig-
ure 1, behaviors observed include:

• odometry error (using a good gyro) at the point of clo-
sure of a 1 kmtrajectory as low as 1/10% of distance
traveled;

• the ability to reverse the effect of some sources of error
by driving backward over the path which accumulated
them;

• the existence of an optimal update rate in an odometry
aided visual tracker.

1.2. Prior Work

The aerospace guidance community has enjoyed the bene-
fits of a theoretical understanding of error propagation for
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Fig. 1. Robots whose interesting odometry error behaviors
have motivated this work. The HMMWV odometry was
excellent on rough terrain on closed paths. The AGV had
errors whose effects could be reversed by driving backwards.

at least five decades (Pinson 1963). In inertial guidance, the
governing differential equations and their solutions have long
since been relegated to textbooks (Britting 1971; Brown and
Hwang 1996). It is well known that, in the presence of gravity,
most horizontal errors exhibit oscillation with the character-
istic Schuler period of 84 min while the vertical channel is
rendered unstable.

Likewise, the essentially geometric nature of satellite nav-
igation system error relationships has been known since be-
fore the GPS satellites were in operation (Milliken and Zoller
1978). Using the Kalman filter, applied earliest to shipborne
inertial systems (Bona and Smay 1966), the theoretical prop-
agation of error, at least in numerical form, has been an es-
sentially solved problem.

Robotics embraced these results several decades later
(Smith and Cheeseman 1986; Durrant-Whyte 1987). How-
ever, the guidance community seems not to have provided
the relevant analytical results for the land navigation systems
which are typical of mobile robots: assemblies of wheel en-
coders, compasses, gyros, etc.

Analytical study of error propagation in mobile robot
odometry appears only rarely in the literature. Early work in
Wang (1988) concentrates on improving estimates for a single
iteration of the estimation algorithm by incorporating knowl-
edge of the geometry of the path followed between odometry
updates. In Borenstein and Feng (1995), a geometric method
is presented for the calibration of certain systematic errors
on rectangular closed trajectories. In Chong and Kleeman
(1997), a recurrence equation solution is obtained for non-
systematic error on constant curvature trajectories. In Nettle-
ton, Gibbens, and Durrant-Whyte (2000), a closed-form so-
lution for a broader optimal estimation problem is presented.
This paper presents the general solution for linearized sys-
tematic and random error propagation in odometry for any
trajectory or error model.

θ

x

y

Fig. 2. Coordinates for odometry.

1.3. Problem Description

Odometry is a form of dead reckoning because the available
measurements must be integrated to provide a navigation solu-
tion. In the common “forced dynamics” formulation of odom-
etry, the measurements, normally denoted z(t), are identified
with the usual control inputs u(t)—the measurements act as
a forcing function.

If the state vector x(t) and input vector u(t) are chosen to
be

x(t) = [x(t) y(t) θ(t)
]T

u(t) = [V (t) ω(t)
]T

(1)

then, the associated odometry equations are those of the “ in-
tegrated heading” case:

d

dt


x(t)y(t)

θ(t)


 =


V (t) cos θ(t)
V (t) sin θ(t)

ω(t)


 . (2)

The x-axis has been implicitly chosen as the heading datum
as illustrated in Figure 2.

Many alternative formulations of odometry are possible.
This one and many others have the key properties of being
homogeneous in the inputs, nonlinear in the states, and re-
duced to echelon form. Due to the latter property, the solution
is immediate:

θ(t) = θ(0)+
t∫

0

ω(t)dt

x(t) = x(0)+
t∫

0

V (t) cos θ(t)dt

y(t) = y(0)+
t∫

0

V (t) sin θ(t)dt.

(3)

Closed-form solutions to these equations are nevertheless
available only for the simplest of inputs and nonlinear error
propagation is equally intractable.
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This paper addresses the following problem. Let the inputs
(or equivalently, the sensors) to the system be corrupted by
additive errors δu(t) as follows:

u′(t) = u(t)+ δu(t). (4)

Using these input errors and the system dynamics, deter-
mine the behavior of the associated errors in the computed
vehicle pose:

x ′(t) = x(t)+ δx(t)

y ′(t) = y(t)+ δy(t)

θ ′(t) = θ(t)+ δθ(t).

(5)

The errors can be systematic or random in nature, and so-
lutions for either case are sought.

1.4. Error Models

It must be emphasized at the outset that while the problem of
determining the form of error models which are representa-
tive of reality is a central and an important one, such is not the
purpose of this paper. Here, the quest is for the mathematical
expressions which map models of sensor errors onto values
for the generated vehicle pose errors. Only sufficiently cor-
rect sensor error models, however, will generate sufficiently
correct pose errors.

To the degree that the results derived here are used for the
purposes of calibration, the reader should be wary that any
model can be fit to any data, and the justification of the model
used is an important step in the calibration process.

1.5. Methodology

In broad terms, the approach employed, is as follows.

• Following common practice, convert the estimation
problem into an equivalent control problem by iden-
tifying the measurements z(t) with the system inputs
u(t).

• Linearize the system dynamics. Apply linear systems
theory to this equivalent linear control problem.

• Exploit a commutativity property of the associated sys-
tem Jacobian which provides an explicit expression for
the transition matrix, even when the linearized dynam-
ics are time-varying. Accordingly, write the transition
matrix in terms of the matrix exponential.

• Exploit the upper triangularity of the associated system
Jacobian (which results from the echelon form of the
original equations) to easily sum the more generally
infinite matrix series.

• Write the solution integrals for both deterministic and
stochastic cases to generate the general linearized so-
lutions.

• For concrete examples, substitute error models and tra-
jectories in order to generate specific solutions to spe-
cific cases; a straight line, a pure rotation, and a constant
curvature arc are illustrated.

• Demonstrate the use of the resulting theory in several
applications.

• Verify the resulting equations and the validity of lin-
earization through comparison with direct numerical
integration of the nonlinear equations on a trajectory of
general shape.

1.6. Notational Conventions

Most of the notation used in subsequent sections follows that
used in the classical texts such as Stengel (1994). In particular,
the operator δ will be used to signify perturbation (systematic
or random) and a fairly standard set of conventions of linear
systems theory and optimal estimation will be used. The tilde
diacritical mark “∼” above a symbol indicates that it is in
some way derived from the associated symbol which lacks
this mark.

Capital letters signify matrices, underlined lowercase in-
dicates a vector and other lowercase letters are scalars.

1.7. General Form

In the most general case, the odometry problem takes the
abstract form:

ẋ(t) = f [x(t), u(t), p] (6)

for some nonlinear function f (), state vector x(t), input vec-
tor u(t) and parameter vector p. It is also useful at times
to add an observer equation which permits the input to be
overdetermined:

z(t) = h[x(t), u(t), p]. (7)

This equation could be used to model, for example, a situa-
tion where encoders are provided on four wheels even though
two are enough to determine position and heading. the pa-
rameter vector would include, for example the positions of
the sensors with respect to the reference frame whose pose is
being computed.

Many texts use a separate symbol, such as w(t), to distin-
guish random inputs from deterministic ones. Here, the input
u(t) will refer to either as the case requires.
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1.8. Treatment of Parameters

Note that while the distinction between state x(t) and input
u(t) is fundamental, the distinction between input and param-
eter p is not. Parameters will henceforth be absorbed into the
input vector and the vector p will be dropped from lists of
function arguments. Parameters will be interpreted as inputs
which happen to be time invariant. This device simplifies nota-
tion and clarifies thinking. For while parameters are normally
considered time invariant, their errors may not be. Wheelbase,
for example, is nominally constant but tire deformations lead
to time-varying errors in wheelbase.

For later reference, the generic nonlinear system with ob-
server now takes the form:

ẋ(t) = f [x(t), u(t)]
z(t) = h[x(t), u(t)].

(8)

2. Relevant Properties of Nonlinear Systems

It is easy to see that substituting eq. (4) into eq. (3) generates
equations with little hope of solution, although the simple
cases of a zero curvature and constant curvature trajectory are
solvable. Nonetheless, some important properties of odome-
try can be discerned without solving the nonlinear equations.
These and many more can also be observed in the linearized
solution integrals.

This section outlines some important properties of both the
system dynamics and the reference trajectory which evoke
interesting behaviors in error propagation.

2.1. Implications of Homogeneity

When the nonlinear dynamics satisfy

f [x(t), k × u(t)] = kn × f [x(t), u(t)] (9)

for some constant k, the system is said to be homogeneous of
degree n with respect to u(t). Homogeneity implies that u(t)
must occur inside f () solely in the form of a factor of its nth
power:

f [x(t), u(t)] = un(t)g(x(t)). (10)

As a result, all terms of the Taylor series of f () over u(t)
of order less than n vanish. When they do it has important
implications.

Different forms of odometry are often homogeneous (ac-
tually linear) with respect to inputs. Based on the following
discussion, it can be shown that odometry itself is memo-
ryless, reversible, regular, and motion-dependent. Intuitively,
motion stops instantly when the velocity is zeroed, and driving
backwards causes the solution to play back in reverse.

Later analysis will uncover these and more interesting be-
haviors in the linearized solutions for error propagation. By

definition, a linearized error propagation solution is homo-
geneous to the first degree in its error inputs. The more in-
teresting questions are why is linearized random error never
reversible and when is systematic error reversible with respect
to input linear velocity as well as errors.

2.1.1. Memoryless

Systems which are homogeneous to any non-zero degree with
respect to their inputs are memoryless—their zero input re-
sponse is zero—so they can be stopped instantly by nulling the
inputs. It is not necessarily the case that f () is independent of
the states (i.e., the system has no dynamics) because the states
may be multiplied by the inputs (as they are in odometry) to
create homogeneity.

2.1.2. Reversibility and Monotonicity

Systems of odd degree homogeneity are odd with respect to
u(t) and hence reversible because they can be driven precisely
back over their original trajectory with little effort by simply
reversing the input signal u(t) in time. Systems of even degree
homogeneity are even with respect to u(t) and monotone be-
cause the sign of the state derivative is invariant under changes
in the inputs.

2.1.3. Regularity

If a system is homogeneous with respect to a particular input
ui(t) that can be written as the time rate of some other pa-
rameter such as s, it can also be divided by the input without
creating a singularity:

f [x(t), u(t)]
ui(t)

= f [x(t), u(t)]
(ds)/(dt)

= finite. (11)

Hence, a change of variable becomes possible and the sys-
tem can be written in the form:

d

ds
x(s) = f̃ [x(s), u(s)]. (12)

Borrowing (and slightly changing) a term from differential
geometry, such well-behaved systems can be referred to as
regular.

2.1.4. Motion Dependence

Regular systems are motion-dependent because the state ad-
vances only under non-zero velocity conditions. The distinc-
tion is important in odometry because the influence of iner-
tially derived sensor errors (inertial navigation) continues to
grow when motion stops, whereas that of sensor errors for
terrain relative indications (odometry) does not.
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2.2. Implications of Trajectory Closure

State space trajectories which close on themselves are of spe-
cial interest in error analysis. In general, a trajectory closes
on the interval [0, T ] when the closure condition is satisfied
by the state space trajectory:

x(T )− x(0) =
T∫

0

F [u(t)]dt = 0. (13)

In a general solution, the integrand F ( ) will depend on the
inputs but not the state. The closure condition places no other
constraints on the trajectory other than that it form a closed
loop; trajectories of arbitrary shape may satisfy it. Nonethe-
less, two special cases are important for error analysis.

2.2.1. Symmetry

Symmetry is the case where the integrand is symmetric (e.g.
periodic or aperiodic) in time or it can be converted to one
which is symmetric in space and the bounds of integration are
just right. If it is possible to partition the interval of integration
such that every time t1 can be paired one-to-one with another
time t2 such that

F [u(t1)]dt = −F [u(t2)]dt (14)

then the closure condition will be satisfied. Symmetry is a
property of the state derivative and indirectly a property of
the inputs because only certain inputs produce symmetric
state derivatives of the right period to generate trajectory clo-
sure. Such integrals are relevant here because they provide the
conditions for which odometry error must cancel on closed
trajectories of particular shape.

2.2.2. Path Independence

Whereas symmetry is a path property, path independence is
a system property. When the integrand can be cast as a po-
tential, (for example, over input space), then a closed path
(for example, in input space) generates a closed path in state
space.

The example case can be written in the form

F [u(t)]dt = ∂

∂u
ξ(u) · du = dξ(u) (15)

where the middle expression is a Jacobian matrix of some
potential ξ over the input. The resulting total differential can
be integrated in closed form to produce the solution:

x(t) = ξ [u(t)]. (16)

These systems are path-independent; the state is depen-
dent only on the present value of the input rather than its
history. Such integrals are relevant here because they provide
the conditions for which odometry error must cancel on closed
trajectories of any shape.

2.2.3. Path Independence of Velocity Scale Error

It is possible to show that odometry error due to velocity (e.g.,
encoder) scale errors is independent of path. This property
follows from odometry’s homogeneity in velocity. If linear
velocity is corrupted by additive scale errors (while angular
velocity is unchanged) as follows

V ′(t) = V (t)+ δV (t) = V (t)+ αV (t) θ ′(t) = θ(t)

then the perturbed position vector must vanish on a closed
path:

t∫
0

[
cθ ′

sθ ′

]
V ′(t)dt = (1 + α)

t∫
0

[
cθ

sθ

]
V (t)dt

∮ [
cθ ′

sθ ′

]
V ′(t)dt = (1 + α)

∮ [
dx

dy

]
= 0.

(17)

Intuitively, position coordinates are path-independent by
definition and any error which scales the path uniformly pre-
serves this property. Note that it was not necessary to solve
the nonlinear dynamics to reach this conclusion and that the
derivation fails when heading angle θ is also corrupted by a
time-varying error.

3. Linearized Error Dynamics

Here, the governing equations of odometry error dynamics
are developed and described.

3.1. Linearization

Perturbative techniques linearize nonlinear dynamical sys-
tems in order to study their first-order behavior. As long as
errors are small, the perturbative dynamics are a good ap-
proximation to the exact behavior, and they can be far more
illuminating.

With reference to eq. (8), several Jacobian matrices are
defined which may depend on the state and the input, and are
evaluated on some reference trajectory:

F(t) = ∂

∂x
f

∣∣∣∣
x,u

G(t) = L(t)
∂

∂u
f

∣∣∣∣
x,u

H(t) = ∂

∂x
h

∣∣∣∣
x,u

M(t) = N(t)
∂

∂u
h

∣∣∣∣
x,u

.

(18)

To be consistent with common notation,G(t) will be used
when discussing systematic error and L(t) will be used when
discussing random error.M(t) andN(t)will be used similarly.

Equation (8) is now linearized as follows:

δẋ(t) = F {x(t), u(t)}δx(t)+G{x(t), u(t)}δu(t)
δz(t) = H {x(t), u(t)}δx(t)+M{x(t), u(t)}δu(t).

(19)
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Subsequently, the notational dependence of the Jacobians
on the state and the input will be suppressed for brevity but
all of these matrices will generally depend on both. Although
eq. (19) may still be nonlinear in the state and the input, it is
linear in the perturbations. The first is the linear perturbation
equation and the second is the linearized observer. These pro-
vide a linear approximation to the propagation of systematic
error as well as a description for the propagation of the mean
of random error.

If the errors δu(t) are random in nature, eq. (19) is of-
ten used in a heuristic sense in stochastic calculus because
direct integration of random signals is beyond the scope of
traditional calculus (Maybeck 1982).

3.2. Deterministic Case

For deterministic error, the linearized dynamics take the form:

δẋ(t) = F(t)δx(t)+G(t)δu(t)

δz(t) = H(t)δx(t)+M(t)δu(t).
(20)

If δu(t) is not known directly but δz(t) is (for example,
when wheel velocities are measured but axle velocity is the
input), the linearized observer equation (20) can be solved for
δu(t) by first writing:

M(t)δu(t) = δz(t)−H(t)δx(t).

The case where the inputs are underdetermined is not use-
ful here. In the event that the measurements determine or
overdetermine the inputs, the left pseudo-inverse applies:

ML = [MT (t)M(t)
]−1
MT (t), (21)

solving

δu(t) = ML
[
δz(t)−H(t)δx(t)

]
. (22)

This is the input which minimizes the residual between the
actual observations and those that would be predicted from the
state and the inputs:

δz(t)− [H(t)δx(t)+M(t)δu(t)
]
.

Substituting this back into the state perturbation equation
gives

δẋ(t) = F(t)δx(t)+G(t)
{
ML[δz(t)−H(t)δx(t)]} ,

which reduces to

δẋ(t) = {F(t)−G(t)MLH(t)
}
δx(t)+G(t)MLδz(t).

(23)

This is of the same form as the original perturbation equa-
tion with modified matrices and the measurements acting as
the input:

δẋ(t) = F̃ (t)δx(t)+ G̃(t)δz(t). (24)

In this way, the observer equation can be substituted into
the dynamics to preserve the original forced dynamics form.
It can be dispensed with for the balance of the article and
the deterministic case can be considered to be defined by the
linear perturbation equation:

δẋ(t) = F(t)δx(t)+G(t)δu(t). (25)

Once the matrices are filled in, it is instructive to evaluate
the resulting equations for homogeneity with respect to both
the system inputs and the error inputs.

3.3. Stochastic Case

For practical treatment of random errors, the second moment
or “covariance” of the error is considered and the state covari-
ance and input spectral density matrices are defined:

P = Exp(δx(t)δx(t)T )

Q = Exp(δu(t)δu(t)T )δ(t − τ).
(26)

In the second case the Dirac delta δ(t − τ) signifies that
the random sequence δu(t) is white and that the units of Q
are the time rate of covariance. Covariance is the stochastic
equivalent of a linearized deterministic error description. To
express its propagation over time, an expression for P must
be differentiated, or the expectation and derivative of an ex-
pression for δx(t) must be performed. The result is derived
in several texts including Gelb (1974) and it is known as the
linear variance equation:

Ṗ (t) = F(t)P (t)+ P(t)F (t)T + L(t)Q(t)L(t)T

R(t) = H(t)P (t)H(t)T +M(t)Q(t)M(t)T .
(27)

Given a forced dynamics formulation it is consistent to
assume that the process noise is known, because the process
inputs are really the measurements, and known measurement
statistics are a fundamental assumption of this work. This
assumption is not the standard assumption of a state space
Kalman filter, so the following derivation is peculiar to the
forced dynamics formulation.

Define:

R = Exp
(
δz(t)δz(τ )T

)
δ(t − τ).

If the statistics of δu(t) are not known directly but those
of δz(t) are, the measurement (process) covariance Q can
be written in terms of the covariance in the observations R
and the state P . Taking the second moment of eq. (20) and
suppressing the time dependence notation temporarily:

R = Exp
{
δzδzT

}
= Exp

{[
Hδx +Nδu

] [
Hδx +Nδu

]T }
.
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If the process noises are (as commonly assumed) uncorre-
lated with the state noise, this is

R = HPHT + NQNT .

This matrix equation can be solved for Q to yield

Q =
[
NT
[
R − HPHT

]−1
N
]−1

.

Substituting this into the linear variance equation gives

Ṗ = FP + PFT + L
[
NT
[
R − HPHT

]−1
N
]−1

LT .

When N is square this becomes

Ṗ = FP + PFT + LN−1RN−T LT

− LN−1HPHT N−T LT

and when H is the zero matrix (measurements related to in-
puts, not states), this is

Ṗ = FP + PFT + LN−1RN−T LT .

This is of same form as the original variance equation with
modified matrices and the measurements acting as the input:

Ṗ (t) = F(t)P (t)+ P(t)F (t)T + L(t)Q̃(t)L(t)T

where

Q̃(t) = N−1RN−T . (28)

In this way, the observer equation can be substituted into
the dynamics to preserve the original forced dynamics form.
Again, it can be dispensed with; for the balance of the article
the stochastic case can be considered to be defined by the
linear variance equation:

Ṗ (t) = F(t)P (t)+ P(t)F (t)T + L(t)Q(t)L(t)T . (29)

4. Solution Basis of Linearized Systems

Linearized systems satisfy superposition by definition. Ac-
cordingly, linear error dynamics solutions can be profitably
described in terms of a sum of contributions—each of which
is traceable to a single input error source.

4.1. General Solutions

The equations to be solved are eqs. (25) and (29). It is well
known that the solution to these equations rests on the knowl-
edge of a very important matrix called the transition matrix,
denoted((t, τ ). One definition for this matrix is that it is the
solution to:

d

dt
((t, τ ) = F(t)((t, τ ). (30)

The general solutions for the propagation of systematic and
random error are respectively of the form of the vector and
matrix convolution integrals:

δx(t) = ((t, t0)δx(t0)+
t∫

t0

((t, τ )G(τ)δu(τ)dτ

P (t) = ((t, t0)P (t0)(
T (t, t0)

+
t∫

t0

((t, τ )L(τ)Q(τ)LT (τ )(T (t, τ )dτ.

(31)

The first also describes the evolution of bias δx(t) in the
state due to a biased random input of mean δu(t). Once a
trajectory and an error model are assumed, the only unknown
in both of these equations is the transition matrix.

4.1.1. Error Propagation Behavior

Some important behaviors of error propagation are evident
from the structure of these solutions. Both solutions consist
of a state (initial conditions x(t0) or P(t0)) response and an
input (δu(τ) orQ(τ)) response. The state response is always
path independent (because it is not an integral) and hence it
vanishes on any closed trajectory. Both general solutions can
exhibit extrema and even zeros.

Although the input response may be path-independent or
otherwise vanish under conditions of symmetry, it is in gen-
eral, path-dependent. In other words, error propagation is a
functional defined on the inputs and it can, in certain cases,
be expressed as a functional on the reference state space tra-
jectory.

4.1.2. Input Transition Matrix

It is useful to define the (potentially non-square) input transi-
tion matrix as

(̃(t, τ ) = ((t, τ )L(τ) = ((t, τ )G(τ). (32)

Based on the form of the above solutions, this matrix
clearly maps a given systematic or random error at time τ
onto its net effect on the state error occurring later at time
t . In effect, linearization for the purposes of studying error
propagation amounts to treating errors occurring at different
times independently of each other, their compounded effects
being second order. This matrix will shortly be exposed as the
essential matrix of odometry error propagation. For each form
of odometry, it captures the effects of both system dynamics
and input measurement errors.

4.2. Error Moment Matrices

It is instructive to isolate the components of output error which
can be traced to each individual source of input error. For
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linearized systems, the total solution can be expected to be
the superposition of all such components. Indeed, a set of
basis vectors and matrices can be derived for systematic and
random error, respectively, based only on the input transition
matrix.

4.2.1. Influence Matrices

Let (̃i denote the ith column of the input transition matrix.
It is easy to show (for example, by temporarily zeroing all
elements but one) that for a given element δui of δu, its con-
tribution to the solution integrands in eq. (31) is

d[δx(t, τ )] = (̃iδuidτ. (33)

Likewise, the individual covariance matrix element qij of
Q has the contribution:

dP (t, τ ) = qij

(
(̃i(̃

T

j

)
dτ. (34)

Hence, the influence vectors (̃i define the projection of
each individual element of the input (measurement) error
vector onto the entire output (state) error vector. Clearly, the
columns of the input transition matrix constitute a basis for
the time derivative of systematic error because the result for
any error source must reside in the column space of (̃(t, τ ).

Similarly, the outer product influence matrices (̃i(̃
T

j
are

unity rank projection matrices defining the projection of each
element of the input (measurement) covariance matrix onto
the entire output (state) covariance matrix. Likewise, the com-
plete set of influence matrices for all pairs (i, j) constitute a
basis for the time derivative of random error covariance.

Equation (31) can now be rewritten in terms of influence
matrices as

δx(t) = ((t, t0)δx(t0)+
t∫

t0

(∑
i

(̃iδui

)
dτ

P (t) = ((t, t0)P (t0)(
T (t, t0)+

t∫
t0

(∑
i

∑
j

qij

(
(̃i(̃

T

j

))
dτ.

(35)

For later convenience, the following notation for influence
matrices is defined:

(̃ij = (̃i(̃
T

j
. (36)

The uppercase letter symbolizes a matrix, unlike the use
of φ̃ij which would be natural notation for a single element of
the input transition matrix.

4.2.2. Error Moment Matrices

Note that the order of integration and summation can be re-
versed when convenient:

δx(t) = ((t, t0)δx(t0)+
∑
i


 t∫
t0

(̃iδuidτ




P(t) = ((t, t0)P (t0)(
T (t, t0)+

∑
i

∑
j


 t∫
t0

qij (̃i(̃
T

j
dτ


 .

(37)

This is the error moment form of the error propagation
equations. The two expressions in square brackets are the er-
ror moment vector and the error moment matrix, respectively.
Both express how input errors are projected onto output er-
rors by a convolution with the influence vector and matrix
respectively.

For brevity, the following error moment matrix notation is
defined:

u
i
=

t∫
t0

[
(̃iδui

]
dτ Qij =

t∫
t0

[
qij (̃i(̃

T

j

]
dτ.

These moments represent the total contribution of a given
individual error source onto the output error.

4.2.3. Trajectory Moment Matrices

When the errors are constant or can be rendered so under a
change of variable, they can be moved outside the integrals to
produce:

δx(t) = ((t, t0)δx(t0)+
∑
i


 t∫
t0

(̃idτ


 δui

P (t) = ((t, t0)P (t0)(
T (t, t0)+

∑
i

∑
j


 t∫
t0

(̃i(̃
T

j
dτ


 qij .

(38)

This is the trajectory moment form of the error propaga-
tion equations. The two expressions in square brackets are the
trajectory moment vector and the trajectory moment matrix,
respectively. Both are intrinsic properties of the trajectory,
independent of the form of the errors.

For brevity, the following trajectory moment matrix nota-
tion is defined:

f
i
=

t∫
t0

[
(̃i

]
dτ Fij =

t∫
t0

[
(̃i(̃

T

j

]
dτ.
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They usually take the form of collections of regular ar-
rangements of all orders of scalar moments taken from the
same family, where the family is spatial or Fourier as defined
later.

4.3. Properties of Error Moment Matrices

Certain properties of the solution basis are evident at the ma-
trix level. Error moment matrices are integrals of influence
matrices which themselves are unity rank outer products. This
section elicits some aspects of the behavior of such constructs.

4.3.1. Symmetry

Influence matrices occur in forms that are symmetric. Clearly:

(̃i(̃
T

i
= symmetric

(̃i(̃
T

j
+ (̃j (̃

T

i
= (̃i(̃

T

j
+
(
(̃i(̃

T

j

)T = symmetric.

The cross product matrices such as (̃i(̃
T

j
will occur only in

symmetric sums as shown; a consequence of their application
to an input covariance which is symmetric.

4.3.2. Positive Semidefiniteness of Influence Matrices

Since covariance is positive semidefinite (represented nota-
tionally as P,Q ≥ 0), it is to be expected that error mo-
ments and influence matrices will be positive semidefinite. It
is easy to show that since Q(τ) is positive semidefinite, so
is the quadratic form ((t, τ )Q(τ)((t, τ )T which represents
the total time derivative of the state response.

Individual contributions may not be ≥ 0 however. Note
that for an arbitrary vector x:

xT
(
(̃i(̃

T

i

)
x =

[
xT (̃i

] [
xT (̃i

]T ≥ 0

so the self outer product forms are ≥ 0. Little can be said
about the cross product forms. The input projection matrixG
may easily cause the sign of a diagonal element to be nega-
tive and positive semidefinite matrices cannot have negative
numbers on their diagonals. Hence while the total derivative
of state covariance is ≥ 0, it is the sum of several terms which
themselves may not be.

4.3.3. Positive Semidefiniteness of Error Moment Matrices

At issue here is the behavior of the associated error moment
matrix, the time integral of the influence matrix:

FFFuu(t) =
t∫

0

(̃uu(t, τ )dτ. (39)

In the case where d

dt
[FFFuu(t)] ≥ 0 thenFFFuu(t) ≥ 0 because

for an arbitrary time-invariant vector x:

xTFFFuu(t)x =
t∫

0

xT
{
d

dt
[FFFuu(τ )]

}
xdτ ≥ 0. (40)

The integrand is a non-negative scalar by assumption.
Therefore, xTFFFuu(t)x ≥ 0; the defining property of positive
semidefiniteness applies to FFFuu(t).

It follows that FFFuu(t) has all of these properties:

• all eigenvalues are non-negative;

• all diagonal elements are non-negative

• the determinants of all of its leading principle minors
are nonnegative. These are all the square submatrices
which contain the top left element.

4.3.4. Monotonicity

A more interesting question is: if the derivative is ≥ 0, is the
state covariance monotone in any sense? That is, does random
error always increase in odometry in some sense?

When d

dt
[FFFuu(t)] ≥ 0, by definition:

xT
{
d

dt
[FFFuu(t)]

}
x = d

dt

[
xTFFFuu(t)x

] ≥ 0.

Consider the case where the arbitrary vector x above is an
(normalized) eigenvector of FFFuu(t). Then, this becomes:

d

dt
[λi] ≥ 0. (41)

Hence, when the time derivative matrix is positive semidef-
inite, every eigenvalue ofFFFuu(t) is non-decreasing. Therefore,
also its trace, its determinant, its norm, and indeed its “mag-
nitude” in any direction x defined by the Rayleigh quotient:

mag(FFF uu(t)) =
∥∥xTFFFuu(t)x

∥∥∥∥xT x∥∥
are all non-decreasing functions of time. So FFFuu(t) is non-
decreasing in virtually every reasonable and practical sense.
In a movie showing error ellipses of this matrix in principle
coordinates, the entire ellipse at any point in time will always
be contained entirely outside the ellipse just slightly earlier in
time.

4.3.5. Positive Semidefiniteness of the Error Moment Time
Derivative

The question to be addressed next is when is d

dt
[FFFuu(t)] ≥ 0.

Using the Leibnitz rule:

d

dt
[FFFuu(t)] =

t∫
0

[
∂

∂t
(̃uu(t, τ )

]
dτ + (̃uu(t, t). (42)



188 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 2004

When the influence matrix does not depend on the limits
of integration,(uu(t, τ ) = (uu(τ ), the first term vanishes and
the derivative is ≥ 0. However, in the general case, the issue
rests on the character of ∂

∂t
(uu(t, τ ) because (uu ≥ 0. If this

partial derivative matrix is positive semidefinite, so is the time
derivative.

4.3.6. Conservation

A useful scalar representing the size of a covariance matrix is
the so-called “ total variance” given by the covariance matrix
trace. Taking the trace of eq. (42) and interchanging the order
of operations:

d

dt
[tr (FFF uu(t))] =

t∫
0

tr

[
∂

∂t
(̃uu(t, τ )

]
dτ

+
[
tr
(
(̃uu(t, t)

)]
.

(43)

Now the trace of the partial derivative matrix determines
when the time derivative of total variance is non-negative (a
less stringent condition than positive definiteness).

By definition:

tr (FFF uu(t)) =
t∫

0

d

dt
[tr (FFF uu(τ ))] dτ. (44)

When the time derivative of total variance is non-negative,
the total variance itself is monotone.

Again, when the influence matrix does not depend on the
limits of integration, tr((uu(t, t)) ≥ 0 which guarantees
monotonicity.

In either case, even when total variance is monotone, in-
deed even when every eigenvalue is monotone, there is no
guarantee that individual diagonal elements cannot decrease.
What can be said is that any decrease in one diagonal element
must be offset by at least as great an increase in the rest in or-
der for the sum to be conserved or increased. Intuitively, even
monotone uncertainty ellipses may rotate in space causing
momentary decreases in diagonal elements.

5. Scalar Moments of Error

It is useful to focus at times on the individual scalar elements of
the error moment matrices, called simply error moments. Rel-
atively few scalar functionals recur often and repopulate the
error moment matrices under various different circumstances.
These scalar functionals evaluated on trajectories encode the
path dependent nature of error in odometry.

5.1. Error Moments

Individual elements of the solution integrals of the last section
can be interpreted as line integrals in state space, evaluated

over the reference trajectory, where the integrand is some pro-
jection of input error onto the relevant differentials of the state
space error trajectory. Line integrals may already be present
and when they are not, they can often be generated by substi-
tuting error models. Consider a term of the form:

δx(t) =
t∫

0

f [x(τ)] δV (τ)dτ.

If the input error is motion-dependent, which is to say pro-
portional to a power of velocity (or some other position vari-
able derivative):

δV (τ) = α(τ)V n(τ )

then the integral becomes

δx(s) =
s∫

0

f [x(s)]α(s)V n−1(s)ds

which is a line integral where s is arc length (or some other
position variable) along the trajectory.

Such path functionals are equivalent to the moments of
mechanics evaluated on curves where the “mass” at a given
location is the error magnitude suffered at that location. They
can also be considered to be moments of error evaluated over
a curve in state space. Many moments that appear in odometry
problems take the form:

E(t) =
t∫

0

/xa(t, τ )/yb(t, τ ) cos θ(τ )c

sin θ(τ )dε(τ )dτ

(45)

where a, b, c, and d are non-negative integers ≤ 2. For con-
venience, the order of the moment is defined as the sum of
all of these exponents. In most cases, first-order moments de-
termine systematic error propagation whereas second-order
ones determine stochastic error propagation. The error mod-
els ε(τ ) consist respectively of either the deterministic error
δui(τ ) or the second-order statistics σij (τ ) of a random error
probability distribution. The resulting moment E(t) will cor-
respond to a systematic error in pose, the mean of a random
error, or a variance or covariance.

The following shorthand expressions for the coordinates
of the endpoint from the perspective of the point [x(τ), y(τ )]
are defined:

/x(t, τ ) = [x(t)− x(τ)]
/y(t, τ ) = [y(t)− y(τ)].

(46)

5.2. Trajectory Moments

When errors have particularly simple forms, they can be
moved outside the integral signs in the solution equations
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by changes of variable which render them constant. Under
these conditions, the associated component of the solution in-
tegral, the trajectory moment, becomes dependent solely on
the geometry of the trajectory followed.

5.2.1. Duration, Excursion, and Rotation Moments

Moments can be distinguished based on the essential variable
of integration. When the error model is proportional to time
(such as in a gyro):

ε(τ )dτ = k × dτ.

Ignoring the constant factor, the associated moment will
be called a duration moment and takes the form:

T (t) =
t∫

0

/xa(t, τ )/yb(t, τ )

cos θ(τ )c sin θ(τ )ddτ.

(47)

When the error model is proportional to linear velocity (as
in an encoder) dξ/dτ :

ε(τ )dτ = k × (dξ/dτ)× dτ = k × dξ.

Ignoring the constant factor, the associated moment will
be called an excursion moment and takes the form:

S(s) =
s∫

0

/xa(s, ξ)/yb(s, ξ) cos θ(ξ)c sin θ(ξ)ddξ. (48)

When the error model is proportional to angular velocity
dζ/dτ :

ε(τ )dτ = k × (dζ/dτ)× dτ = k × dζ.

Ignoring the constant factor, the associated moment will
be called a rotation moment and takes the form:

6(θ) =
θ∫

0

/xa(θ, ζ )/yb(θ, ζ ) cos ζ c sin ζ ddζ. (49)

5.2.2. Spatial, Fourier, and Hybrid Moments

Moments can also be distinguished based on the form of the
integrand. When c = d = 0 the moment is a spatial moment.
The spatial moments are equivalent to the moment of inertia
of curves, the moments of arc, and apply to angular velocity
errors. Likewise, the total variance is the analog of the polar
moment of inertia. The first spatial trajectory moments are:

Tx(t) =
t∫

0

[x(t)− x(τ)] dτ

Sx(s) =
s∫

0

[x(s)− x(ζ )] dζ

6x(θ) =
θ∫

0

[x(θ)− x(ξ)] dξ.

(50)

In order, these will be called the first spatial duration, first
spatial excursion, and first spatial rotation moments. Equiva-
lent moments for the y coordinate and for higher orders are
immediate.

When a = b = 0 the moment will be called a Fourier
moment because it is related to the Fourier sine and cosine
transforms. The Fourier moments apply to linear velocity er-
rors. The first Fourier trajectory moments are:

Tc(t) =
t∫

0

cos θ(τ )dτ

Sc(s) =
s∫

0

cos θ(ζ )dζ

6c(θ) =
θ∫

0

cos θ(ξ)dξ.

(51)

In order, these will be called the first Fourier cosine du-
ration, first Fourier cosine excursion, and first Fourier cosine
rotation moments. Equivalent moments for the sine function
and higher orders are immediate.

Moments that are not purely spatial or Fourier moments
(for example, when b = d = 0) will be called hybrid mo-
ments. These are responsible for the propagation of certain
correlated errors.

5.2.3. Moment Notation

Moments will be denoted in a manner similar to covariance
and the moments of inertia where repeated subscripts identify
the exponents and overall order of the moment. For second-
order moments, the principal moments are those whose sub-
scripts are equal and the cross moments are all the rest. For
example, a spatial, second-order, principal, excursion moment
and a hybrid, second-order, cross, duration trajectory moment
are
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Syy =
s∫

0

[y(s)− y(ξ)]2
dξ

Txc =
t∫

0

[x(t)− x(τ)] cos θ(τ )dτ.

(52)

5.2.4. Recursive Evaluation

The spatial moments can be difficult to evaluate numerically
due to the dependence of the integrand on the variable of in-
tegration. However, an expansion of the integrand generates a
set of component integrals which can be evaluated recursively.
For example:

Tyy(t) = ty2(t)− 2y(t)

t∫
0

y(τ)dτ +
t∫

0

y2(τ )dτ. (53)

This is essentially the derivation of the parallel axis theo-
rem of inertia. The two remaining integrals are the first and
second moments of arc along the trajectory.

For the second Fourier moments, note that

6cc(θ) =
θ∫

0

[cos θ(ξ)]2
dξ = θ

2
+

θ∫
0

[cos 2θ(ξ)] dξ.

So the first and second Fourier moments are determined
by the first and second coefficients in the Fourier series.

5.3. Properties of Trajectory Moments

Trajectory moments are responsible for many of the interest-
ing behaviors of error propagation. A few of the most impor-
tant are discussed here.

5.3.1. Path Independence

Certain moments are path-independent. For example, the first-
order Fourier excursion moments are just the coordinates of
the endpoints:

Sc =
s∫

0

cos θds = x(s) (54)

so they must vanish on closed trajectories. As a result, it can be
shown that scale errors in measurements of distance traveled
or velocity are not observable on closed trajectories because
they always vanish.

5.3.2. Motion Dependence

Excursion and rotation moments are motion-dependent by
definition because time has been eliminated as the variable of
integration and replaced by distance or angle.

5.3.3. Reversibility

While time advances monotonically, the differentials ds and
dθ get their signs from the signs of the associated linear and
angular velocities because

ds = V dt dθ = ωdt.

All motion-dependent (excursion and rotation) moments
are reversible in the independent variable because

s∫
0

F
[
u(s)

]
ds = −

0∫
s

F (u(s)]ds. (55)

A more important question is whether it is practically pos-
sible for the integrand to remain unchanged when the direction
of integration is reversed. If the integrand is an even function
of the inputs, then reversing the inputs (by switching the order
of the limits of integration) will change the sign of ds but not
that of the integrand and the system will be reversible. For
odometry, it is important that any of these equivalent condi-
tions be met:

• the integrand is an even function of velocity;

• the original system differential equation for dx/dt is
odd in velocity;

• the original distance differential equation for dx/ds is
even in velocity.

5.3.4. Irreversibility

While certain motion-dependent systematic errors (first-order
moments) are reversible, random errors (second-order mo-
ments) generally are not. In the case of second-order mo-
ments, it is usually appropriate to interpret the differentials
ds and dθ as unsigned quantities (unless the context is one of
running time backwards) in order to ensure that the associated
variance increases in both directions of motion. For principal
second-order moments, the integrand itself is always positive.
In these cases, this irreversibility of the input variances can
be accomplished as follows:

ds = |V |dt dθ = |ω|dt.

5.3.5. Symmetry, Centroids, and Zeros

First-order moments and second-order cross moments may
vanish at specific places whether or not the trajectory closes
there. For example, the first spatial moments can be written
in terms of the current position, the distance traveled and the
instantaneous centroid location:

Sx = sx(s)−
s∫

0

x(ξ)dξ = s[x(s)− x̄(s)]. (56)
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Hence, all first spatial excursion moments vanish at the
centroid of the associated coordinate. This observation sub-
sumes earlier comments on symmetry as a special case.

5.3.6. Interrelationships

Derivatives (integrals) of trajectory moments are often equal
to lower-order (higher-order) moments. For example, Leibnitz
rule when the integrand depends on the limits of integration
is:

d

ds

s∫
0

f (s, ξ)dξ =
s∫

0

∂

∂s
f (s, ξ)dξ + f (s, s). (57)

Applying this to a second-order spatial moment yields:

dSxx

ds
= d

ds




s∫
0

[x(s)− x(ξ)]2
dξ




dSxx

ds
=

s∫
0

2 [x(s)− x(ξ)] x ′(s)dξ = 2 cos θSx(s).

(58)

Thus, systematic and random error propagation are inex-
tricably related. Indeed, zeros of the first-order moments can
coincide with extrema of the second-order moments, etc.

5.3.7. Monotonicity

The previous example also illustrates the case where a second-
order moment, despite its squared integrand, is not monotone.
As mentioned earlier, the cause can be traced to the depen-
dence of the integrand on the integration limits.

In practical terms, the spatial moments such as Sxx are
associated with angular velocity indications. In this case, even
the total position variance of the associated error moment
matrix is not necessarily monotone.

On the other hand, the integrands of the Fourier moments
do not depend on the limits. Thus:

d

ds
(Scc) = d

ds


 s∫

0

[cos θ 2]ds

 = cos θ 2 ≥ 0

is monotone on any trajectory.

5.3.8. Conservation

The composite behavior of the gradient of the total transla-
tional variance for the Fourier moments is

d

ds
(Scc + Sss) = d

ds


 s∫

0

[cos θ 2 + sin2
θ ]ds


 = 1.

In the event that any one diagonal term momentarily stops
increasing, the other term compensates by increasing more
rapidly such that the total variance grows monotonically with
distance at a fixed rate regardless of the shape of the trajectory.

On a trajectory for which curvature is constant, for exam-
ple, this interplay is the second harmonic rotation of a mono-
tonically growing uncertainty ellipse.

6. Transition Matrix of Time-Varying Systems

Given that the system Jacobian of odometry is a time-varying
matrix, linear systems theory shows that the transition ma-
trix exists, but generally provides little guidance in finding it.
Luckily, odometry is a special case.

6.1. Transition Matrix

Consider the following particular matrix exponential of a def-
inite integral of the system Jacobian:

7(t, τ ) = exp


 t∫

τ

F (ζ )dζ


 = exp[R(t, τ )] (59)

where the matrix exponential is defined as usual by the infinite
matrix power series:

exp(A) = I + A+ A2

2! + A3

3! + . . . .

When this commutes (Brogan 1974) with the system dy-
namics matrix:

7(t, τ )F (t) = F(t)7(t, τ ) (60)

then every power ofR(t, τ ) also commutes with F(t) and the
derivative is

d

dt
7(t, τ ) = d

dt

{
I + R(t, τ )+ R(t, τ )2

2!

+R(t, τ )
3

3! + . . .

}

= F(t)7(t, τ ).

(61)

Thus, it satisfies eq. (30) and therefore it is the transition
matrix which solves the associated time-varying linear sys-
tem. This property of commutative dynamics is the key to gen-
erating a general solution to the error propagation equations
of odometry. Once a closed-form expression for the transi-
tion matrix is available, everything else follows from classical
theory.
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6.1.1. Strict Upper Triangularity

The echelon form common in odometry means that the system
Jacobian F(t) is strictly upper triangular:

F = {fij |fij = 0 when (j ≤ i)} (62)

and since7(t, τ ) is composed entirely of definite integrals of
F(t), it is also strictly upper triangular. It can be shown that
the nth power (and hence all subsequent powers) of an n× n

strictly upper triangular matrix vanishes. This means that the
matrix exponential can be easily written by summing the first
few non-zero terms. This property means that closed-form
expressions for the transition matrix are available because the
exponential series can be no longer than n terms.

6.2. Commutative Dynamics

It is easy to see that if

R(t, τ )F (t) = F(t)R(t, τ ) (63)

then eq. (60) is also satisfied (the converse was argued ear-
lier). Generally speaking, this means that the system Jacobian
must commute with its own definite integral (“commutative
dynamics” ). If both matrices share a complete set of distinct
eigenvectors, commutability is guaranteed, but odometry is a
different case.

6.3. Strict Upper Rectangularity

In fact, two-dimensional (2D) odometry has a slightly more
special structure than simple echelon form. The dynamic
equations (and system Jacobian) have the property that if one
state variable depends on another, the second does not depend
on a third. Pictorially, the system Jacobian has the structure
shown in Figure 3.

Here, this property will be called strict upper rectangularity

F = {fij |fij = 0 when (j ≤ k or i ≤ n− k − 1)}. (64)

Such a matrix is singular and indeed highly rank deficient
and its row and column spaces are orthogonal. The limit of
unity for state variable dependences implies that F 2(t) = 0.
The definition of R(t, τ ) (a definite integral of F(t)) implies
that it has the same structure. Therefore:

R2(t, τ ) = F(t)R(t, τ ) = R(t, τ )F (t) = 0. (65)

Such a system clearly satisfies eq. (63) and hence eq. (60).
Additionally, the series for the matrix exponential truncates
after just one term

7(t, τ ) = exp[R(t, τ )] = I + R(t, τ )

and eq. (60) takes the form:

7(t, τ )F (t) = F(t)7(t, τ ) = F(t). (66)

t2

F =

 = 0

diagonal

Fig. 3. Strict upper rectangularity; state variable dependences
are no more than one deep.

6.4. Derivation by Partial Differentiation

A second method of deriving the transition matrix is also im-
portant for the case of three-dimensional (3D) odometry. By
definition in the case of perturbative dynamics:

δx(t) = ((t, τ )δx(τ ). (67)

The dynamics are, by definition, linear. Hence any device
which generates a linear relationship between δx(t) and δx(τ )
will generate the transition matrix. Consider the Jacobian ma-
trix relating these two:

dx(t) =
[
∂x(t)

∂x(τ )

]
dx(τ). (68)

Normally a Jacobian is used to approximate a nonlinear
system locally; however, because the system is linear, the Ja-
cobian is the transition matrix in this case. One way to obtain
this Jacobian is to find a nonlinear relationship between x(t)
and x(τ) and take its Jacobian. Such relationships can often
be derived for odometry based on 2D and 3D kinematics.

7. Application To Odometry

This section will derive the error propagation equations for a
few common forms of odometry. Without loss of generality,
let the system start at time t0 = 0. Distance traveled will be
denoted by s.

7.1. Direct Heading Odometry

The term direct heading odometry will be used to refer to
the case where a direct measurement of heading is available
rather than its derivative. For example, a compass could be
used to measure heading directly and a transmission encoder
could be used to measure the linear velocity of the center of
an axle of the vehicle.

The heading and error in heading are respectively equal at
all times to the heading measurement and its error. Therefore,
considering the heading to be an input, the state equations are:

d

dt

[
x(t)

y(t)

]
=
[
V (t) cos θ(t)
V (t) sin θ(t)

]
(69)
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where

x(t) = [x(t) y(t)
]T

u(t) = [V (t) θ(t)
]T

δx(t) = [δx(t) δy(t)
]T

δu(t) = [δV (t) δθ(t)
]T

P (t) =
[
σxx σxy
σxy σyy

]
Q(t) =

[
σvv σvθ
σvθ σθθ

]
.

(70)

This system is homogeneous with respect to the velocity
input but not with respect to the heading input. The Jacobians
are:

F(t) =
[

0 0
0 0

]
G(t) =

[
cθ(t) −V (t)sθ(t)
sθ(t) V (t)cθ(t)

]
. (71)

So the linearized error dynamics are:

d

dt

[
δx(t)

δy(t)

]
=
[

0 0
0 0

] [
δx(t)

δy(t)

]
+
[
cθ −V sθ
sθ V cθ

] [
δV (t)

δθ(t)

]
.

(72)

In this general form, the error dynamics are not homoge-
neous with respect to the velocity input.

7.1.1. Transition Matrix

Noting that the Jacobian satisfies eq. (63) trivially, the rest
of the operations and matrices leading to the input transition
matrix are as follows:

R(t, τ ) =
t∫

τ

F (ζ )dζ =
t∫

τ

[
0 0
0 0

]
dζ =

[
0 0
0 0

]

((t, τ ) = 7(t, τ ) = exp[R(t, τ )] =
[

1 0
0 1

]

(̃(t, τ ) = ((t, τ )G(τ) =
[
cθ(τ ) −V (τ)sθ(τ )
sθ(τ ) V (τ)cθ(τ )

]
. (73)

Note thatV (t)cθ(t) = ẋ(t), etc., could be substituted here.

7.1.2. Solution in Matrix Form

Substituting into the general solution in eq. (31) gives

δx(t) = δx(0)+
t∫

0

[
cθ −V sθ
sθ V cθ

] [
δV (t)

δθ(t)

]
dτ (74)

P(t) = P(0)+
t∫

t0

[
cθ −V sθ
sθ V cθ

] [
σvv σvθ
σvθ σθθ

]

[
cθ −V sθ
sθ V cθ

]T
dτ.

This result is the general linearized solution for the prop-
agation of systematic and random error in 2D direct heading
odometry for any trajectory and any error model. When the
velocity error is a scale error (i.e., δV (t) ∝ V (t)), its effects
are path-independent.

7.1.3. Solution in Error Moment Form

The error moment form of the solution is

δx(t) = δx(0)+
t∫

0

(̃v(τ )δV dτ +
t∫

0

(̃θ (τ )δθdτ

P (t) = P(0)+
t∫

0

(̃vv(τ )σvvdτ (75)

+
t∫

0

(
(̃vθ (τ )+ (̃θv(τ )

)
σvθdτ +

t∫
0

(̃θθ (τ )σθθdτ.

The relevant influence matrices are

(̃v(τ ) = [cθ sθ
]T

(̃θ (τ ) = [−V sθ V cθ
]T

(̃vv(τ ) =
[
cθ

sθ

] [
cθ

sθ

]T
=
[
c2θ cθsθ

cθsθ s2θ

]

(̃vθ (τ ) = (̃T

θv
(τ ) =

[
cθ

sθ

] [−V sθ
V cθ

]T
= V

[−cθsθ c2θ

s2θ cθsθ

]

(̃θθ (τ ) =
[−V sθ
V cθ

] [−V sθ
V cθ

]T
= V 2

[
s2θ −cθsθ

−cθsθ c2θ

]
.

(76)

These appear in the error moment form of the general
solution:

δx(t) = δx(0)+
t∫

0

[
cθ

sθ

]
δV dτ +

t∫
0

V

[−sθ
cθ

]
δθdτ

P (t) = P(0)+
t∫

0

[
c2θ cθsθ

cθsθ s2θ

]
σvvdτ (77)

+
t∫

0

[−2cθsθ 1
1 2cθsθ

]
V σvθdτ

+
t∫

0

[
s2θ −cθsθ

−cθsθ c2θ

]
V 2σθθdτ.
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Note that V cθdτ = dx, etc., could be substituted here
to convert the second integral in the first equation to a line
integral.

7.2. Integrated Heading Odometry

In integrated heading odometry, an angular velocity indication
is available and a heading state is determined by integrating
it. For example, a gyro could be used to measure heading rate
and a transmission encoder, groundspeed radar, or fifth wheel
encoder could be used to measure the linear velocity of the
center of an axle of the vehicle. This is the case given in eq.
(2) repeated here for reference:

d

dt


x(t)y(t)

θ(t)


 =


V (t) cos θ(t)
V (t) sin θ(t)

ω(t)


 (78)

where

x(t) = [x(t) y(t) θ(t)
]T

u(t) = [V (t) ω(t)
]T (79)

δx(t) = [δx(t) δy(t) δθ(t)
]T

δu(t) = [δV (t) δω(t)
]T

P (t) =

σxx σxy σxθ
σxy σyy σyθ
σxθ σyθ σθθ


 Q(t) =

[
σvv σvω
σvω σωω

]
.

If κ(t) is the trajectory curvature, then

ω(t) = κ(t)V (t).

Under this substitution it is clear that this system is homo-
geneous to the first degree in the input velocity. The Jacobians
are

F(t) =

0 0 −V sθ

0 0 V cθ

0 0 0


 G(t) =


cθ(t) 0
sθ(t) 0

0 1


 . (80)

So the linearized error dynamics are

d

dt


δx(t)δy(t)

δθ(t)


 =


0 0 −V sθ

0 0 V cθ

0 0 0




δx(t)δy(t)

δθ(t)




+

cθ(t) 0
sθ(t) 0

0 1


[δV (t)

δω(t)

]
.

(81)

In this general form, the system is not homogeneous with
respect to the input velocity.

7.2.1. Transition Matrix

Noting the upper rectangular Jacobian, the rest of the opera-
tions and matrices leading to the input transition matrix are
as follows:

R(t, τ ) =
t∫

τ


0 0 −V sθ

0 0 V cθ

0 0 0


 dζ =


0 0 −/y(t, τ )

0 0 /x(t, τ )

0 0 0




7(t, τ ) = exp[R(t, τ )] = I + R =

1 0 −/y(t, τ )

0 1 /x(t, τ )

0 0 1




(̃(t, τ ) = ((t, τ )G(τ) =

cθ(τ ) −/y(t, τ )
sθ(τ ) /x(t, τ )

0 1


 .

(82)

The matrix exponential follows from the fact that
R2(t, τ ) = 0 in this case. The expressions /x(t, τ ) and
/y(t, τ ) are defined in eq. (46). Integrals involving these
quantities in particular must be manipulated with slightly
more care to preserve the distinction between t (the endpoint
of the trajectory) and τ (the variable of integration).

7.2.2. Solution in Matrix Form

Substituting into the general solution in eq. (31) gives

δx(t) = IC
d
+

t∫
0


cθ −/y(t, τ )
sθ /x(t, τ )

0 1


[δV (τ)

δω(τ)

]
dτ

P (t) = ICs +
t∫

0


cθ −/y(t, τ )
sθ /x(t, τ )

0 1


[σvv σvω

σvω σωω

]


cθ −/y(t, τ )
sθ /x(t, τ )

0 1



T

dτ

(83)

where the initial state response for this case is

IC
d

=

1 0 −y(t)

0 1 x(t)

0 0 1


 δx(0) =


δx(0)δy(0)

0




+

−y(t)δθ(0)
x(t)δθ(0)
δθ(0)




ICs =

1 0 −y(t)

0 1 x(t)

0 0 1




σxx(0) σxy(0) σxθ (0)
σxy(0) σyy(0) σyθ (0)
σxθ (0) σyθ (0) σθθ (0)





1 0 −y(t)

0 1 x(t)

0 0 1



T

.

(84)



Kelly / Linearized Error Propagation 195

This result is the general linearized solution for the propa-
gation of systematic and random error in 2D integrated head-
ing odometry for any trajectory and any error model.

7.2.3. Solution in Error Moment Form

The error moment form of the solution is

δx(t) = IC
d
+

t∫
t0

(̃v(τ )δV dτ +
t∫

0

(̃ω(τ )δωdτ

P (t) = ICs +
t∫

0

[
(̃vω(τ )+ (̃ωv(τ )

]
σvωdτ

+
t∫

0

(̃vv(τ )dτ +
t∫

0

(̃ωω(τ )σωωdτ.

(85)

The relevant influence matrices are

(̃v(τ ) = [cθ sθ 0
]T

(̃ω(τ ) = [−/y(t, τ ) /x(t, τ ) 1
]T

(̃vv(τ ) =

cθsθ

0




cθsθ

0



T

=

 c2θ cθsθ 0
cθsθ s2θ 0

0 0 0




(̃vω(τ ) = (̃T

ωv
(τ ) =


cθsθ

0




−/y
/x

1



T

=

−cθ/y cθ/x cθ

−sθ/y sθ/x sθ

0 0 0




(̃ωω(τ ) =

−/y
/x

1




−/y
/x

1



T

=

 /y2 −/x/y −/y

−/x/y /x2 /x

−/y /x 1


 .

(86)

These appear in the error moment form of the general
solution:

δx(t) = IC
d
+

t∫
0


cθsθ

0


 δV dτ +

t∫
0


−/y
/x

1


 δωdτ

P (t) = ICs (87)

+
t∫

0


 −2cθ/y cθ/x − sθ/y cθ

cθ/x − sθ/y 2sθ/x sθ

cθ sθ 0


 σvωdτ

x

y

δrω

δrV

δrV

∆x t τ,( )

∆y t τ,( )

Fig. 4. Convolution integral.

+
t∫

0


 c2θ cθsθ 0
cθsθ s2θ 0

0 0 0


 σvvdτ

+
t∫

0


 /y2 −/x/y −/y

−/x/y /x2 /x

−/y /x 1


 σωωdτ.

7.2.4. Intuitive Interpretation

It is clear now that the solution could have been written by
inspection. The initial conditions affect the endpoint error in
a predictable manner and the remaining terms amount to an
addition of the effects felt at the endpoint at time t of the linear
and angular errors occurring at each time τ between the start
and end as illustrated in Figure 4.

The matrix relating input systematic errors occurring at
time τ to their later effect at time t is:

d


δx(t)δy(t)

δθ(t)


 =


cθ −/y(t, τ )
sθ /x(t, τ )

0 1


[δV (τ)

δω(τ)

]
dτ. (88)

Therefore, the covariance relationship is

d


σxx(t) σxy(t) σxθ (t)

σxy(t) σyy(t) σyθ (t)

σxθ (t) σyθ (t) σθθ (t)




=

cθ −/y(t, τ )
sθ /x(t, τ )

0 1


[σvv σvω

σvω σωω

]


cθ −/y(t, τ )
sθ /x(t, τ )

0 1


 dτ.

(89)

These expressions are exactly what eq. (83) is integrating.
The key assumption required to produce the solution by in-
spection is the common assumption of dynamics linearization,



196 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 2004

that the reference trajectory need not be updated to reflect the
compounding effect of the input error histories over time.

This result is easy to derive using the technique of Section
6.4. Consider three frames of reference denoted 0 for the ori-
gin, τ for a running frame somewhere along the trajectory, and
t for the endpoint. The homogeneous transform for the end
pose can be determined as the product of the two intermediate
relationships, thus

T 0
t

= T 0
τ
T τ

t
.

Exposing the details of these matrices leads to

x0
t

= cθ 0
τ
xτ
t
− sθ 0

τ
yτ
t
+ x0

τ

y0
t

= sθ 0
τ
xτ
t
+ cθ 0

τ
yτ
t
+ y0

τ

θ 0
t

= θ 0
τ

+ θτ
t
.

(90)

So, the transition matrix is immediate

((t, τ ) = ∂x(t)

∂x(τ )
=

1 0 −/y(t, τ )

0 1 /x(t, τ )

0 0 1


 (91)

because

/x(t, τ ) = cθ 0
τ
xτ
t
− sθ 0

τ
yτ
t

/y(t, τ ) = sθ 0
τ
xτ
t
+ cθ 0

τ
yτ
t
.

(92)

7.3. Differential Heading Odometry

Differential heading odometry is a special case of integrated
heading odometry where angular velocity is derived from
the differential indications of wheel linear velocities and the
wheel treadW . Let there be a left wheel and a right wheel on
either side of the vehicle reference point as shown in Fig. 5.

While the solution can be formed using the wheel veloci-
ties as the inputs, this case will be formulated with an observer
in order to illustrate the more general case where the measure-
ments z(t) may depend nonlinearly on both the state and the
input. Let the measurement vector be the velocities of the two
wheels:

z(t) = [r(t) l(t)
]T
. (93)

7.3.1. Observer

The relationship between these and the equivalent integrated
heading inputs is

z(t) = Mu(t)

[
r(t)

l(t)

]
=
[

1 W/2
1 −W/2

] [
V (t)

ω(t)

]
. (94)

This is a particularly simple version of the more general
form of the observer in eq. (20). The inverse relationship is

W

rl
V

ω

Fig. 5. Differential heading odometry.

immediate:

u(t) = M−1z(t)

[
V (t)

ω(t)

]
=
[

1/2 1/2
1/W −1/W

] [
r(t)

l(t)

]
.

(95)

The observer Jacobians are

H(t) =
[

0 0 0
0 0 0

]
M(t) = N(t) =

[
1 W/2
1 −W/2

]
. (96)

Following eq. (28), the measurement spectral covariance
R can be used instead of the process noise covariance Q by
substituting the following for L:

L̃(t) = LN−1 = G̃(t). (97)

These new matrices are

G̃(t) = L̃(t) =

cθ 0
sθ 0
0 1


[ 1/2 1/2

1/W −1/W

]

=

cθ/2 cθ/2
sθ/2 sθ/2
1/W −1/W


 .

7.3.2. Transition Matrix

Therefore, the input transition matrix is

(̃(t, τ ) = ((t, τ )G̃(t) =

1 0 −/y(t, τ )

0 1 /x(t, τ )

0 0 1





cθ 0
sθ 0
0 1


[ 1/2 1/2

1/W −1/W

]

=

cθ −/y(t, τ )
sθ /x(t, τ )

0 1


[ 1/2 1/2

1/W −1/W

]
.

(98)
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The known errors can be converted to an equivalent set of
errors in integrated heading:[

δV (t)

δω(t)

]
DH

=
[

1/2 1/2
1/W −1/W

] [
δr(t)

δl(t)

]

[
σvv σvω
σvω σωω

]
DH

=



1

2

1

2
1

W
− 1

W



[
σrr σrl
σrl σll

]
1

2

1

2
1

W
− 1

W



T

.

(99)

This transformation will introduce appropriate correlations
between the linear and angular velocity uncertainties due to
their common dependence on two other variables.

7.3.3. Solution in Matrix Form

Under this substitution, the solution is identical to the inte-
grated heading case:

δx(t) = IC
d
+

t∫
0


cθ −/y(t, τ )
sθ /x(t, τ )

0 1


[δV (t)

δω(t)

]
DH

dτ

P (t) = ICs +
t∫

0


cθ −/y(t, τ )
sθ /x(t, τ )

0 1




[
σvv σvω
σvω σωω

]
DH


cθ −/y(t, τ )
sθ /x(t, τ )

0 1



T

dτ.

(100)

This result is the general linearized solution for the propa-
gation of systematic and random error in 2D differential head-
ing odometry for any trajectory and any error model. The con-
version to an equivalent integrated heading problem will be
carried out in every stage of subsequent derivations. It will
later be necessary to convert the error models so that they
are expressed in terms of equivalent integrated heading error
inputs as well.

7.3.4. Solution in Error Moment Form

Under the transformation, the integrated heading result in eq.
(87) applies equally to this case where the errors used are the
integrated heading equivalents.

8. Error Models

The general solutions presented earlier are functions of both:

• the reference trajectory, as is characteristic of linear
perturbations of nonlinear systems;

• the error models chosen.

In order to gain a deeper understanding of specific cases,
these two choices must be made. Specific trajectories and error
models will be assumed here in order to get specific results.

8.1. Error Gradient Notation

Error models such as constant biases and scale errors in
the systematic case and time- or distance-dependent random
walks in the random case will be used in examples. These as-
sumptions will generate a large number of constants for which
a consistent notation will be advisable. Most commonly, gra-
dients of error with time, distance or angle will occur.

For systematic error, the partial derivative will be indicated
by a right subscript. Thus:

δVv = ∂

∂V
{δV }.

On the assumption that velocity sensor error is proportional
to velocity, this error gradient is constant and

δV = δVv × V.

For random error, right subscripts are already used to in-
dicate the variable operated upon by the variance operator. In
this case the right bracketed superscript will be used. Thus:

σ (v)
vω

= ∂

∂V
{σvω}.

When this gradient is constant, the indicated covariance
varies linearly with (usually unsigned) velocity:

σvω = σ (v)
vω

× |V |.

8.2. Specific Error Models

For direct heading deterministic error, a speed encoder scale
error (due, for example, to incorrect wheel radius) will be
assumed. Likewise, a compass error due to a magnetic field
produced by the vehicle will be assumed. For random error,
a “motion-dependent” random walk (where variance grows
linearly with distance rather than time) will be assumed. A
constant spectral probability density for the compass leads to
a time dependent random walk contribution to the position
coordinates.

For integrated heading deterministic error, the same speed
encoder scale error and a constant gyro bias will be assumed.
For random error, a motion-dependent random walk encoder
variance will be assumed as well as a constant gyro bias
(in)stability.

For differential heading deterministic error, two potentially
different encoder scale errors will be used. For random error,
two potentially different motion dependent random walk vari-
ances will be assumed.

These assumptions are summarized in Table 1.
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Table 1. Error Sources
Deterministic Random

Odometry Error Error
Class Sources Sources

Direct δV = δVv × V σvv = σ (v)
vv

|V |
Heading δθ = δθc cos θ + δθs sin θ σθθ = const

Integrated δV = δVv × V σvv = σ (v)
vv

|V |
Heading δω = const σωω = const

σvω = 0
Differential δr = δrr × r σrr = αrr |Vr |

Heading δl = δll × l σll = αll|Vl|
σrl = 0

The constants δθc and δθs are not gradients but the compo-
nents of the magnetic field generated by the vehicle resolved
onto body fixed axes. The absolute value signs appear in order
to enforce the condition that variance remains positive regard-
less of the direction of motion. Many stochastic error integrals
over distance or angle must interpret the distance differentials
ds and dθ in an unsigned fashion.

8.3. Equivalent Error Models

Equation (100) can be unwieldy in hand calculations. How-
ever, the differential heading errors can be converted to an
equivalent set of integrated heading errors. Substituting the
appropriate error models and eq. (95) into eq. (99) leads to
the integrated heading error model which is equivalent to a
given differential heading model. For systematic error:[

δV (t)

δω(t)

]
DH

dt =
[
δVvV (t)

δωvV (t)

]
dt =

[
δVv
δωv

]
ds

[
δV (t)

δω(t)

]
DH

dt =
[
δVωω(t)

δωωω(t)

]
dt =

[
δVω
δωω

]
dθ.

(101)

IfR(t) is the instantaneous radius of curvature, the derived
equivalent gradients for systematic error are dependent on
curvature and velocity:

δVv(t)|DH =
{(

δrr + δll

2

)
+ (δrr − δll)

4R(t)
W

}

δωv(t)|DH =
{
(δrr − δll)

W
+
(
δrr + δll

2R(t)

)}

δVω(t)|DH = R(t)δVv(t)|DH
δωω(t)|DH = R(t)δωv(t)|DH .

(102)

These are time-dependent expressions but they are constant
on a constant curvature trajectory when the original differen-
tial heading gradients were constant. In this case, it becomes
possible to compute the error characteristics of a differen-
tial odometer which are equivalent to a given gyroscope, for
example.

The two forms for distance and angle above can be used to
remove the singularity whenR(t) = 0 from error integrals by
a change of variable, switching to the other form as necessary.

When applying the same procedure to stochastic error, it
becomes necessary to enforce the condition that unsigned
wheel velocities are used. A convenient way to do so is to
define the equivalent linear and angular velocities by “man-
hattan” sums and differences thus:

[
V (t)

ω(t)

]
DH

=
[

1/2 1/2
1/W −1/W

] [|r(t)|
|l(t)|

]
=



|r(t)| + |l(t)|
2|r(t)| − |l(t)|
W




κ(t)|DH = ω(t)|DH /V (t)|DH (103)

R(t)|DH = V (t)|DH /ω(t)|DH .
For a straight trajectory, these give expected results, but

note that in a point turn V (t)|DH �= 0 and ω(t)|DH = 0. The
differentials ds and dθ must be interpreted in a manner consis-
tent with these definitions. This device leads to the following
equivalent random error models:[

σvv σvω
σvω σωω

]
DH

dt =
[
σ (v)
vv

σ (v)
vω

σ (v)
vω

σ (v)
ωω

]
V (t)|DH

dt =
[
σ (v)
vv

σ (v)
vω

σ (v)
vω

σ (v)
ωω

]
ds

[
σvv σvω
σvω σωω

]
DH

dt =
[
σ (ω)
vv

σ (ω)
vω

σ (ω)
vω

σ (ω)
ωω

]
ω(t)|DH

dt =
[
σ (v)
vv

σ (v)
vω

σ (v)
vω

σ (v)
ωω

]
dθ.

(104)

The equivalent error gradients are

σ (v)
vv
(t)|DH =

(
σ (r)
rr

+ σ
(l)

ll

)
4

+
(
σ (r)
rr

− σ
(l)

ll

)
4

W

2R(t)|DH

σ (v)
vω

|DH =
(
σ (r)
rr

− σ
(l)

ll

)
2W

+
(
σ (r)
rr

+ σ
(l)

ll

)
4R(t)|DH (105)
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σ (v)
ωω

|DH =
(
σ (r)
rr

+ σ
(l)

ll

)
W 2

+
(
σ (r)
rr

− σ
(l)

ll

)
W 2

W

2R(t)|DH
σ (ω)
vv
(t)|DH = R(t)|DHσ (v)vv

(t)|DH
σ (ω)
vω
(t)|DH = R(t)|DHσ (v)vω

(t)|DH
σ (ω)
ωω
(t)|DH = R(t)|DHσ (v)ωω

(t)|DH .

When using the stochastic equivalents, it is important to
interpret the equivalent linear and angular velocity in a manner
consistent with the use of unsigned wheel velocities:

V (t)|DH = (|Vr(t)| + |Vl(t)|) /2
ω(t)|DH = (|Vr(t)| − |Vl(t)|) /W
κ(t)|DH = ω(t)|DH/V (t)|DH
R(t)|DH = V (t)|DH/ω(t)|DH .

(106)

The second forms of the last three expressions are for con-
venience only since the equivalent radius can never vanish.
Indeed for the stochastic constants:

|R(t)|DH | ≥ 1 |κ(t)|DH | ≤ 1.

Also, the apparent singularity when both wheel velocities
is zero is removable. Returning to the original form shows
that the constants are zero under these circumstances.

8.4. Solutions in Terms of Trajectory Moment Matrices

Under the above error assumptions, (and the rare additional
assumption of constant velocity and/or curvature) all earlier
results can now be written in terms of trajectory moments.
This step renders the results in essentially algebraic form since
trajectory moments can be tabulated for specific trajectories.

8.4.1. Direct Heading Odometry

The direct heading linearized dynamics from eq. (74) are now

d

dt

[
δx(t)

δy(t)

]
=
[

0 0
0 0

] [
δx(t)

δy(t)

]
+
[
cθ −V sθ
sθ V cθ

]
[

δVvV

δθccθ + δθssθ

]
.

This can be rewritten as

d

dt

[
δx(t)

δy(t)

]
=
[
cθ −sθ
sθ cθ

] [
δVv

δθccθ + δθssθ

]
V

d

ds

[
δx(s)

δy(s)

]
=
[
cθ −sθ
sθ cθ

] [
δVv

δθccθ + δθssθ

]
.

(107)

Under this error model this system is now homogeneous
to the first degree in the input velocity. This implies that sys-
tematic errors will be motion-dependent and reversible.

The direct heading solution from eq. (77) is now

δx(s) =
[
δx(0)
δy(0)

]
+ δVv

s∫
0

[
cθ

sθ

]
ds

+
s∫

0

[−δθcsθcθ − δθss
2θ

δθssθcθ + δθcc
2θ

]
ds

P (s) = P(0)+ σ (v)
vv

s∫
0

[
c2θ cθsθ

cθsθ s2θ

]
ds

+ |V |σθθ
2∫

0

[
s2θ −cθsθ

−cθsθ c2θ

]
ds.

(108)

The expression |V | appears because it was necessary to
factor

V 2dt = |V | × |V |dt = |V | × ds

in order to render ds unsigned.
Isolating the trajectory moment matrices and expressing

them in terms of the scalar moment notation:

δx(s) =
[
δx(0)
δy(0)

]
+ δVv

[
x(s)

y(s)

]
+
[−δθcSsc(s)− δθsSss(s)

δθsSsc(s)+ δθcScc(s)

]

P(s) = P(0)+ σ (v)
vv

[
Scc(s) Ssc(s)

Ssc(s) Sss(s)

]

+ |V |σθθ
[
Sss(s) −Ssc(s)

−Ssc(s) Scc(s)

]
.

(109)

All terms in this solution are motion-dependent so error
propagation ceases when motion stops. Systematic error is
reversible as expected. The arc length s is signed in the sys-
tematic case and unsigned in the stochastic case.

8.4.2. Integrated Heading Odometry

The integrated heading linearized dynamics from eq. (81) are
now

d

dt


δx(t)δy(t)

δθ(t)


 =


0 0 −V sθ

0 0 V cθ

0 0 0




δx(t)δy(t)

δθ(t)




+

cθ(t) 0
sθ(t) 0

0 1


[δVvV

δω

]
.

(110)

Here, the growth of heading error depends fundamentally
on time so this system is not motion-dependent.
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The integrated heading solution from eq. (87) is

δx(t) = IC
d
+ δVv

s∫
0


cθsθ

0


 ds + δω

t∫
0


−/y
/x

1


 dτ

P (t) = ICs + σ (v)
vv

s∫
0


 c2θ cθsθ 0
cθsθ s2θ 0

0 0 0


 ds (111)

+ σωω

t∫
0


 /y2 −/x/y −/y

−/x/y /x2 /x

−/y /x 1


 dτ

Isolating the trajectory moment matrices and expressing them
in terms of the scalar moment notation:

δx(t) = IC
d
+ δVv


Sc(s)Ss(s)

0


+ δω


−Ty(t)
Tx(t)

t




P(t) = ICs + σ (v)
vv


Scc(s) Ssc(s) 0
Ssc(s) Sss(s) 0

0 0 0




+ σωω


 Tyy(t) −Txy(t) −Ty(t)

−Txy(t) Txx(t) Tx(t)

−Ty(t) Tx(t) t


 .

(112)

8.4.3. Differential Heading Odometry

The equivalent integrated heading linearized dynamics are
obtained from eq. (81). The equivalent error gradients will
henceforth drop the DH subscript. The equivalent linearized
dynamics are now:

d

t


δx(t)δy(t)

δθ(t)


 =


0 0 −V sθ

0 0 V cθ

0 0 0




δx(t)δy(t)

δθ(t)




+

cθ(t) 0
sθ(t) 0

0 1


[δVv(t)V

δω(t)

]
.

(113)

Recall from eq. (102) the definition of δωv(t) and δωω(t).
Dividing respectively by V and ω gives the dynamics in the
forms:

d

ds


δx(s)δy(s)

δθ(s)


 =


0 0 −sθ

0 0 cθ

0 0 0




δx(s)δy(s)

δθ(s)




+

cθ(s) 0
sθ(s) 0

0 1


[δVv(s)

δωv(s)

]
(114)

d

dθ


δx(θ)δy(θ)

δθ(θ)


 =


0 0 −Rsθ

0 0 Rcθ

0 0 0




δx(θ)δy(θ)

δθ(θ)




+

cθ 0
sθ 0
0 1


[δVω(s)

δωω(s)

]
.

So this system is motion-dependent and, when turning, the
independent variable can be changed to heading angle. The
differential heading solution from eq. (100) is now

δx(s) = IC
d
+

s∫
0

δVv(s)


cθsθ

0


 ds +

s∫
0

δωv(s)


−/y
/x

1


 ds

P (s) = ICs

+
s∫

0


 −2cθ/y cθ/x − sθ/y cθ

cθ/x − sθ/y 2sθ/x sθ

cθ sθ 0


 σ (v)

vω
(s)ds

+
s∫

0


 c2θ cθsθ 0
cθsθ s2θ 0

0 0 0


 σ (v)

vv
(s)ds (115)

+
s∫

0


 /y2 −/x/y −/y

−/x/y /x2 /x

−/y /x 1


 σ (v)

ωω
(s)ds.

All terms in this solution are motion-dependent as ex-
pected. The covariance integrals must be interpreted carefully
to ensure that the error accumulation is consistent with un-
signed wheel velocities. When the trajectory is of constant
curvature, the trajectory moment matrices can be isolated and
expressed in terms of the scalar moment notation:

δx(s) = IC
d
+ δVv


Sc(s)Ss(s)

0


+ δωv


−Sy(s)
Sx(s)

s




P(t) = ICs

+ σ (v)
vω


 −2Syc(s) Sxc(s)− Sys(s) Sc(s)

Sxc(s)− Sys(s) 2Sxs(s) Ss(s)

Sc(s) Ss(s) 0




+ σ (v)
vv


Scc(s) Ssc(s) 0
Ssc(s) Sss(s) 0

0 0 0


 (116)

+ σ (v)
ωω


 Syy(s) −Sxy(s) −Sy(s)

−Sxy(s) Sxx(s) Sx(s)

−Sy(s) Sx(s) s


 .

The extra matrix associated with σ (v)
vω

arises from the fact
that the errors in linear and angular velocities are correlated
due to their common basis on two underlying measurements
of wheel velocities.
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The alternative form is also available:

δx(θ) = IC
d
+

θ∫
0

δVω(θ)


cθsθ

0


 dθ +

θ∫
0

δωω(θ)


−/y
/x

1


 dθ

P (θ) = ICs

+
θ∫

0


 −2cθ/y cθ/x − sθ/y cθ

cθ/x − sθ/y 2sθ/x sθ

cθ sθ 0


 σ (ω)

vω
(θ)dθ

+
θ∫

0


 c2θ cθsθ 0
cθsθ s2θ 0

0 0 0


 σ (ω)

vv
(θ)dθ (117)

+
θ∫

0


 /y2 −/x/y −/y

−/x/y /x2 /x

−/y /x 1


 σ (ω)

ωω
(θ)dθ.

When the trajectory is of constant curvature, the trajectory
moment matrices can be isolated and expressed in terms of
the scalar moment notation:

δx(θ) = IC
d
+ δVω


6c(θ)

6s(θ)

0


+ δωω


−6y(θ)

6x(θ)

θ




P(θ) = ICs

+ σ (ω)
vω


 −26yc(θ) 6xc(θ)−6ys(θ) 6c(θ)

6xc(θ)−6ys(θ) 26xs(θ) 6s(θ)

6c(θ) 6s(θ) 0




+ σ (ω)
vv


6cc(θ) 6sc(θ) 0
6sc(θ) 6ss(θ) 0

0 0 0


 (118)

+ σ (ω)
ωω


 6yy(θ) −6xy(θ) −6y(θ)

−6xy(θ) 6xx(θ) 6x(θ)

−6y(θ) 6x(θ) θ


 .

9. Solutions on Particular Trajectories

Using the above assumed errors, error propagation is com-
pletely determined by the trajectory followed. This section
gives closed-form propagation equations for linear, turn-in-
place, and constant curvature trajectories. Trajectories will
start from the origin facing along the x-axis. In this case, the
term alongtrack refers to the direction parallel to the x-axis
whereas the crosstrack direction is parallel to y.

9.1. Straight Trajectory

A linear trajectory, starting at the origin, parallel to the x-axis
is defined by the following inputs:

ω(t) = 0 V (t) = arbitrary

and the associated solution to eq. (2):

x(t) = s(t) y(t) = 0 θ(t) = 0. (119)

Error dynamics on this trajectory can also be used to ap-
proximate the local behavior of any trajectory up to the point
where the deviation of the true trajectory from a straight one
causes significant error in the Jacobians.

9.1.1. Direct Heading Odometry

The solution for direct heading from eq. (109) becomes

δx(s) =
[
δx(0)
δy(0)

]
+ δVv

[
s

0

]
+
[

0
δθcs

]

P(t) = P(0)+ σ (v)
vv

[
s 0
0 0

]
+ |V |σθθ

[
0 0
0 s

]
.

(120)

Both translational deterministic errors are linear in dis-
tance, but for different reasons. The x error is due to the
encoder scale error while the y error is due to the constant
compass error at zero heading.

The covariance matrix remains diagonal. Alongtrack vari-
ance increases linearly with distance. Crosstrack variance
also increases linearly under the assumption that velocity is
constant.

9.1.2. Integrated Heading Odometry

The solution for integrated heading from eq. (112) becomes

δx(t) = IC
d
+ δVv


s(t)0

0


+ δω


 0
V t 2/2
t




(t) = ICs + σ (v)
vv


s 0 0

0 0 0
0 0 0




+ σωω


0 0 0

0 (s2t)/3 (st)/2
0 (st)/2 t


 .

(121)

Constant velocity was assumed in getting the determinis-
tic error term quadratic in time. Alongtrack error is linear in
distance while heading error is linear in time. Crosstrack error
includes a term linear in distance and another term which is
quadratic in time or distance for constant velocity.

Constant velocity was assumed for the Tx and Txx duration
moments. Heading variance is linear in time as was intended.
Heading covariance with crosstrack is linear in distance and
time (or quadratic in either for constant velocity). Notice that
the alongtrack variance is (to first order) linear in distance
rather than time whereas crosstrack variance is cubic in time
(or distance for constant velocity).
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9.1.3. Differential Heading Odometry

The solution for differential heading from eq. (116) becomes

δx(s) = IC
d
+ δVv(s)


s0

0


+ δωv(s)




0
s2

2
s




P(s) = ICs + σ (v)
vω


 0 s2/2 s

s2/2 0 0
s 0 0




+ σ (v)
vv


s 0 0

0 0 0
0 0 0


+ σ (v)

ωω


0 0 0

0 s3/3 s2/2
0 s2/2 s


 .
(122)

All terms are motion-dependent. As in the integrated head-
ing case, deterministic alongtrack error is linear in distance.
However, in this case the heading error is also linear in dis-
tance (rather than time). The crosstrack error is quadratic in
distance. Note that if s reverses, the entire error vector re-
verses, because all terms depend explicitly on s.

For random error, the expression σ (v)
vω

vanishes (for straight
trajectories) when both encoders have identical error statistics
so the second term is due only to a differential in the charac-
teristics of the encoder noises. When the encoders have iden-
tical noises, this solution is analogous (after replacing time
with distance) to the integrated heading case. Heading vari-
ance and alongtrack variance are linear in distance whereas
crosstrack variance is cubic.

9.2. Turn-In-Place Trajectory

A turn-in-place trajectory starting at the origin, parallel to the
x-axis is defined by the following inputs:

ω(t) = arbitrary V (t) = 0

and the associated solution to eq. (2):

x(t) = 0 y(t) = 0 θ(t) =
t∫

0

ω(t)dt. (123)

9.2.1. Direct Heading Odometry

The solution for direct heading from eq. (109) becomes

δx(s) =
[
δx(0)
δy(0)

]
P(s) = P(0). (124)

Both translational deterministic errors are unchanged be-
cause no change in distance occurs. For random error, the co-
variance matrix is similarly unchanged. The solution means
that encoder error is zero and compass error is irrelevant if the
vehicle does not translate.

9.2.2. Integrated Heading Odometry

The solution for integrated heading from eq. (112) becomes

δx(t) =

δx(0)δy(0)
δθ(0)


+ δω


0

0
t




P(t) = ICs + σωω


0 0 0

0 0 0
0 0 t


 .

(125)

Deterministic translational error is unchanged and head-
ing error increases linearly with time. For random error, all
elements of covariance are unchanged with the exception of
heading variance which grows linearly in time.

9.2.3. Differential Heading Odometry

For this trajectory, R(t) = 0 for the deterministic case. The
distance-based equivalent error gradients such as δVv(t) are
singular so this case is treated with the alternative angle form.
The equivalent deterministic error gradients in eq. (102) be-
come constants after removing the singularity

δVω = R(t)δVv(t) = (δrr − δll)

4
W

δωω = R(t)δωv(t) =
(
δrr + δll

2

)
.

For the stochastic case, V (t)|DH �= 0 and ω(t)|DH = 0
so R(t)|DH is singular. The stochastic solution comes from
the distance-based forms and terms with R(t)|DH in their de-
nominator vanish. The equivalent stochastic gradients from
eq. (105) become distance-independent constants:

σ (v)
vv

= (σ (r)
rr

+ σ
(l)

ll )

4

σ (v)
vω

= (σ (r)
rr

− σ
(l)

ll )

2W

σ(v)
ωω

= (σ (r)
rr

+ σ
(l)

ll )

W 2
.

Also, on this unique trajectory/x = /y = 0. The solution
for differential heading, using the deterministic part of eq.
(117) and the stochastic part of eq. (115) becomes
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δx(θ) = IC
d
+ δVω

θ∫
0


cθsθ

0


 dθ + δωω

θ∫
0


0

0
1


 dθ

P (s) = ICs + σ (v)
vω

s∫
0


 0 0 cθ

0 0 sθ

cθ sθ 0


 ds

+ σ (v)
vv

s∫
0


 c2θ cθsθ 0
cθsθ s2θ 0

0 0 0


 ds

+ σ (v)
ωω

s∫
0


0 0 0

0 0 0
0 0 1


 ds

(126)

where the distance differential in the stochastic case is the
total unsigned travel of both wheels.

ds =
[ |r(t)| + |l(t)|

2

]
dt.

All terms are motion-dependent. In this equivalent form,
the integrals can be readily evaluated in closed form.

Deterministic translational errors are trig functions of the
rotation scaled by the difference in encoder scale errors. Head-
ing error is proportional to the average encoder scale error.

For random error, elements of the covariance matrix are
trig functions scaled by either the difference between encoder
noises or their average.

9.3. Constant Curvature Trajectory

A constant curvature (arc) trajectory, starting at the origin,
initially parallel to thex-axis is defined by the following inputs

ω(t) = κ(t)V (t) = V (t)/R

V (t) = arbitrary

and the associated solution to eq. (2):

θ(s) = κs

x(s) = R sin(κs)

y(s) = R[1 − cos(κs)].

Also we define for later

T = 1/ω.

9.3.1. Direct Heading Odometry

The solution for direct heading from eq. (109) becomes

δx(s) =
[
δx(0)
δy(0)

]
+ δVv

[
x(s)

y(s)

]

+ R

[−δθc/4
δθs/4

]
+ 1

2

[
δθss

δθcs

]

+ R

4

[
δθcc2θ + δθss2θ

−δθsc2θ + δθcs2θ

]

P(t) = P(0)+ σ (v)
vv
R

2


θ + s2θ

2
s2θ

s2θ θ − s2θ

2




+ |V |σθθ


θ − s2θ

2
−s2θ

−s2θ θ + s2θ

2




(127)

where θ = κs.
For deterministic error, there are linear terms relating to

position coordinates and distance traveled and pure oscillation
terms cycling twice per orbit of a complete circle.

For random error, all elements exhibit second harmonic
oscillation. The variances also have a linear term. There is a
particular radius when

σ (v)
vv
R

2
= |V |σθθ

where the principal variances become purely linear and all
oscillations cancel.

9.3.2. Integrated Heading Odometry

The solution for integrated heading becomes

δx(t) = IC
d
+ δVvf

v
+ δωf

ω

P (t) = ICs + σ (v)
vv
FFF vv + σωωFFFωω

(128)

where

f
v
=

xy

0


 (129)

f
ω

=




−R
ω

[sθ − θcθ ]
R

ω
[θsθ + cθ − 1]

t


=


−(T x(t)+ t[y(t)− R])

tx(t)− Ty(t)

t


 .
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The first moment matrix is

FFF vv =



R

[
θ

2
+ s2θ

4

]
Rs2θ

2
0

Rs2θ

2
R

[
θ

2
− s2θ

4

]
0

0 0 0




FFF vv =



s

2
+ x

2

(
1 − y

R

) x2

2R
0

x2

2R

s

2
− x

2

(
1 − y

R

)
0

0 0 0


 .

(130)

The second moment matrix is

FFFωω =




R2

ω

[
θ

(
1 + c2θ

2

)
− 3

2

(
s2θ

2

)]
R2

ω

[
θ

(
s2θ

2

)
+ 3

2

(
c2θ

2

)
− cθ + 1

4

]
−R
ω

[sθ − θcθ ]







−R
2

ω

[
θ

(
s2θ

2

)
+ 3

2

(
c2θ

2

)
− cθ + 1

4

]
R2

ω

[
θ

(
1 − c2θ

2

)
+ 3

2

(
s2θ

2

)
− 2sθ

]
R

ω
[θsθ + cθ − 1]







−R
ω

[sθ − θcθ ]

R

ω
[θsθ + cθ − 1]

t




(matrices written by column) (131)

FFFωω =



t

(
R2

2
+ (R − y)2

)
− 3T x

(
R

2
− y

2

)

−
(
xt (y − R)+ T

(
3

2
x2 − Ry

))
−(T x(t)+ t[y(t)− R])







−
(
xt (y − R)+ T

(
3

2
x2 − Ry

))
Txx(t)

Tx(t)





−(T x(t)+ t[y(t)− R])

Tx(t)

t


 .

For systematic error, constant velocity was assumed for all
duration moments. The heading error is linear in time whereas
the position errors are entirely oscillatory and of increasing
amplitude as time increases. The linear increase in amplitude
is a first-order approximation to the true nonlinear behavior of

a beat frequency. Eventually, the amplitude decreases again
in the exact nonlinear solution.

For random error, heading variance increases linearly with
time as was intended. Covariances of translation with heading
exhibit a sum of constant and linearly increasing oscillations
at the fundamental frequency. Translational covariances in-
clude a constant oscillation at the fundamental and constant
and linearly increasing oscillations at the second harmonic
frequency. The translational variances include similar oscil-
latory terms and a pure linear term caused by both the gyro
and the encoder variances.

9.3.3. Differential Heading Odometry

The solution for differential heading becomes

δx(t) = IC
d
+ δVvf

v
+ δωf

ω

P (t) = ICs + σ (v)
vv
FFF vv + σvωFFF vω + σωωFFFωω

(132)

where

f
v
=

x(s)y(s)

0




f
ω

=

 −R2[sθ − θcθ ]
R2[θsθ + cθ − 1]

s




=

−(Rx(s)+ s[y(s)− R])

sx(s)− Ry(s)

s


 .

(133)

For the stochastic integrals, the differential ds is based on
the equivalent velocity:

V |DH = (|Vr | + |Vl|) /2.

The first moment matrix is the same as the integrated head-
ing case:

FFF vv =



R

[
θ

2
+ s2θ

4

]
Rs2θ

2
0

Rs2θ

2
R

[
θ

2
− s2θ

4

]
0

0 0 0




FFF vv =



s

2
+ x

2

(
1 − y

R

) x2

2R
0

x2

2R

s

2
− x

2

(
1 − y

R

)
0

0 0 0


 .

(134)
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The second moment matrix is

FFFvω =




−2R2
[
θ

2
− s2θ

4

]
−R2

(
1

2
−cθ+ c2θ

2

)
Rsθ

−R2
(

1

2
−cθ+ c2θ

2

)
2R2

[
−θ

2
+sθ− s2θ

4

]
R(1 − cθ)

Rsθ R(1−cθ) 0




FFFvω =




−2
( x

2
(R − y)+ R

( s
2

)) 1

2

(
x2 − y2

)
x

1

2

(
x2 − y2

)
R
(
− s

2
+ x
)

− x

2
(R − y) y

x y 0


 .

(135)

The third moment matrix is

FFFωω =




R2

κ

[
θ

(
1 + c2θ

2

)
− 3

2

(
s2θ

2

)]
R2

κ

[
θ

(
s2θ

2

)
+ 3

2

(
c2θ

2

)
− cθ + 1

4

]
−R2 [sθ − θcθ ]






R2

κ

[
θ

(
s2θ

2

)
+ 3

2

(
c2θ

2

)
− cθ + 1

4

]
R2

κ

[
θ

(
1 − c2θ

2

)
+ 3

2

(
s2θ

2

)
− 2sθ

]
R2 [θsθ + cθ − 1]





 −R2 [sθ − θcθ ]
R2 [θsθ + cθ − 1]

Rθ




(matrices written by column)

FFFωω =



s

(
R2

2
+ (R − y)2

)
− 3xR

(
R

2
− y

2

)

−
(
xs(y − R)+ R

(
3

2
x2 − Ry

))
−(Rx(s)+ s[y(s)− R])







−
(
xs(y − R)+ R

(
3

2
x2 − Ry

))

s

(
R2

2
+ x2

)
− Rx

(
R

2
− 3y

2

)
sx(s)− Ry(s)





−(Rx(s)+ s[y(s)− R])

sx(s)− Ry(s)

s


 .

(136)

The structure is analogous to the integrated heading case.
Deterministic heading error is linear in distance whereas the
position errors are entirely oscillatory but of increasing am-
plitude as distance increases.

Heading variance increases linearly with distance as was
intended. Covariances of translation with heading exhibit a
sum of constant and linearly increasing oscillations at the fun-
damental frequency. Translational covariances include a con-
stant oscillation at the fundamental and constant and linearly

Linearized Covariance
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Fig. 6. Stochastic differential heading odometry error on an
arc trajectory.

increasing oscillations at the second harmonic frequency. The
translational variances include similar oscillatory terms and
a pure linear term caused by both the mean and differential
encoder variances.

For illustration purposes, the time evolution of the elements
of the state covariance are provided in Figure 6. The vehicle
speed is 0.25 m s−1 and the variance for both wheels advances
at a rate of 1% of distance. The wheelbase is 1 m and the
turn radius is 4 m. The total duration of the graph is 110 s
comprising a total rotation of just over one revolution.

10. Applications

The results developed here have many practical uses in ad-
dition to their pedagogic value. This section presents some
examples of problems that can be solved with the linearized
theory of odometry error propagation.

10.1. Optimal Trajectories

Given results which express errors as functionals evaluated
over a reference trajectory, it seems natural to wonder whether
the calculus of variations can provide explicit results for those
reference trajectories which are extremals of error. For exam-
ple, optimal control theory could be used to try to find the
input u(t) associated with extreme values of systematic error.

The formulation can be accomplished by adjoining the
state and its perturbation and forming the functional

J = δx(tf )
T δx(tf )

subject to the constraints[
ẋ

δ̇x

]
=
[
f (x(t), u(t), t)

F [.]δx +G[.]δu
] [

x(t0)

δx(t0)

]
given.
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The Hamiltonian takes the form

H [x(t), u(t), λ(t), t] = λT (t)f [x(t), u(t), λ(t), t]
where λ(t) are time-varying Lagrange multiplier functions.
The optimality condition is

∂H

∂u
= ∂f T

∂u
λ = 0.

This condition provides the differential equation that must
be satisfied by solution at a stationary point of the performance
index. Unfortunately in this case, the system dynamics are
linear in the inputs (but recall the benefits of homogeneity) and
the resulting optimality condition is not a differential equation
but an implicit function which cannot be satisfied by nontrivial
inputs.

Similarly, the problem can be attacked in a different man-
ner by assuming trajectory moment matrices can be used (sim-
ple error models). For example, consider the following two
moment matrices associated with random encoder and gyro
errors:

FFF vv =

Scc(s) Ssc(s) 0
Ssc(s) Sss(s) 0

0 0 0




FFFωω =

 Syy(s) −Sxy(s) −Sy(s)

−Sxy(s) Sxx(s) Sx(s)

−Sy(s) Sx(s) s


 .

(137)

Consider these to be covariance matrices. The total vari-
ance provides a convenient performance index for optimiza-
tion.

The trace of FFF vv is

Scc(s)+ Sss(s) =
s∫

0

[
c2θ + s2θ

]
ds = s.

Therefore, for a given endpoint, the shortest path has min-
imum variance and this is shown in the calculus of variations
to be a straight line.

Concentrating on position error, the trace of the first two
elements of FFFωω is

Sxx(s)+ Syy(s) =
s∫

0

[
/y2 +/x2

]
ds =

s∫
0

/R2ds

where /R is the radius from the endpoint to the historical
point associated with the distance s. The integral is invariant
to translations of coordinates so the endpoint can be set to the
origin and the limits reversed to get the functional:

J =
s∫

0

[
x2(ξ)+ y2(ξ)

]
dξ.

The Euler–Lagrange equations of the calculus of variations
applied to this parametric form of functional are

dJ

ds
x ′(s) = Jx(s)

dJ

ds
y ′(s) = Jy(s).

Here, because the integrands contain no derivatives, the
equations are again not differential equations and no station-
ary point exists.

However, it is easy to see that a boundary point extremum
does exist. The integral is also invariant to rotations of co-
ordinates, so let the endpoint be placed on the x-axis. The
minimization problem is now

J =
s∫

0

[
x2(s)+ y2(s)

]
ds x(s) given, y(s) = 0.

This integral is bounded from below and the bound is at-
tainable from the set of continuous curves because

s∫
0

[
x2(s)+ y2(s)

]
ds >

s∫
0

x2(s)ds.

Any curve other than the straight line has a larger value of
the performance index, so the straight line is the minimum.
It has been shown that straight-line trajectories are extremals
of random error in integrated heading odometry even though
variational methods were of little assistance. The present the-
ory contributes this result by supplying the explicit form of
the performance index as the trace of a trajectory moment
matrix.

10.2. Lateral Slip

Earlier sections have dealt with the case of systematic en-
coder scale error, symbolized by δVv. Scale error was chosen
to designate this case because variations in wheel radius, lon-
gitudinal slip and longitudinal skid all contribute to this error
in a manner which is indistinguishable.

Of course, wheels often slip sideways, particularly when
turning sharply. Consider an Ackerman steer vehicle, modeled
by bicycle kinematics as shown in Figure 7.

The lateral slip angle for a wheel is the difference between
where the wheel points and where it goes. Steer angle can be
viewed as an indication of curvature because for small steer
angles:

γ = atan

(
L

R

)
≈ L

R
= κL.

Odometry can be formulated using this measurement rela-
tionship, but for the present purpose it is economical to note
that if slip can be assumed to be proportional to steer angle,
then
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γ

Fig. 7. Lateral wheel slip in automotive applications.

δω = δ(κV ) = δ

(
γV

L

)
= V

L
δγ

= δγγ

(
V

L
γ

)
= δγγω.

Hence, lateral wheel slip acts like a scale error in angular
velocity. The associated differential error is of the form

δωdt = δγγωdt = δγγ dθ.

Given that angular velocity indications evolve according to
the spatial moments, this result means that while spatial dura-
tion moments apply to gyro biases, spatial rotation moments
apply to lateral wheel slip and gyro scale errors.

10.3. Calibration

Explicit expressions for the systematic and random errors that
result from a given trajectory and error source are valuable in
calibration applications. In principle, a vehicle can be driven
over any known trajectory and the observed errors at the end-
point can be used to solve for the parameters of the assumed
error source. In practice, generating many observations over
the same trajectory is advisable in order to distinguish the
mean (systematic) error from its variance.

Consider the calibration procedure, developed for differen-
tial heading odometry, known as the University of Michigan
odometry benchmark (UMBmark) described in Borenstein

x

y

ccw

cw

L

L

L

Fig. 8. Test trajectories for UMBmark. The vehicle is driven
over two closed trajectories and the closure error of the
computed trajectory is used to calibrate systematic errors.

and Feng (1995). The vehicle is driven around two different
paths designated the clockwise (CW) path and the counter-
clockwise (CCW) path and returned to its initial heading as
shown in Figure 8. The objective is to calibrate the difference
in encoder scale factors (or wheel radii) and the wheel tread
W . The two paths are illustrated in Figure 8.

10.3.1. Systematic Error

Perhaps the most straightforward procedure is to assume that
the path length L is large relative to the wheel travel during
the turns. Then, eq. (115) furnishes the error on the complete
square trajectory in each direction. The result of the integra-
tion is

δx(t)|ccw = δωv


 2L2

−2L2

4L


 δx(t)|cw = δωv


−2L2

−2L2

4L


 . (138)

Errors due to the average encoder scale error are path-
independent so they cancel out on these closed trajectories. To
use these equations to calibrate systematic error, the endpoint
error is measured directly and the equations are solved for the
unknown δωv. The six systematic error observations give rise
to the system of equations:



δxccw
δyccw
δθccw
δxcw
δycw
δθcw




=




2L2

−2L2

4L
−2L2

−2L2

4L



δωv. (139)
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This system is clearly of rank one. Maximum information
can be extracted from a left pseudo-inverse solution. The sys-
tematic errors in x and y are equal due to the choice of a square
trajectory. The four-component trajectories are straight so the
angular error gradient from eq. (102) is

δωv = (δrr − δll)

W
.

The three individual unknowns δrr , δll , andW appear only
in the form of this expression, so there is no way to solve for
them independently. They could be resolved if the trajectories
were not square and not closed (say, three sides of a rectangle).

10.3.2. Random Error

Neglecting the point turns, eq. (115) also furnishes the random
error on the complete square trajectory in each direction. The
result of the integration is

P(s)|ccw = σ (v)
vω


−2L2 0 0

0 −2L2 0
0 0 0




+ σ (v)
vv


2L 0 0

0 2L 0
0 0 0




+ σ (v)
ωω




5

3
L3 −L3 2L2

−L3
5

3
L3 −2L2

2L2 −2L2 4L




P(s)|cw = σ (v)
vω


2L2 0 0

0 2L2 0
0 0 0




+ σ (v)
vv


2L 0 0

0 2L 0
0 0 0




+ σ (v)
ωω




5

3
L3 L3 −2L2

L3
5

3
L3 −2L2

−2L2 −2L2 4L


 .

(140)

On these straight trajectories, the error gradients from
eq. (105) take the form

σ (v)
vv

= (σ (r)
rr

+ σ
(l)

ll )

4

σ (v)
vω

= (σ (r)
rr

− σ
(l)

ll )

2W

σ(v)
ωω

= (σ (r)
rr

+ σ
(l)

ll )

W 2
.

A scatter matrix of observations can be formed from multi-
ple trials. The observations on the counterclockwise trajectory
give rise to the following system of equations:




σxx
σyy
σxy
σxθ
σyθ
σθθ




=




2L −2L2
5

3
L3

2L −2L2
5

3
L3

0 0 −L3

0 0 2L2

0 0 −2L2

0 0 4L






σ (v)
vv

σ (v)
vω

σ (v)
ωω


 . (141)

A similar set is formed from the counterclockwise trajec-
tory. The above system is clearly only rank two, so the sec-
ond trajectory is needed to completely determine the three
unknowns. Once this occurs, the more fundamental three un-
knowns σ (r)

rr
, σ (l)ll , and W could be determined uniquely as

well.

10.3.3. Systematic Error with Point Turns

In order to observe any error in the wheel tread W , the four-
point turns at the corners of the square trajectory can be used.
The angular velocity during these turns is

ω(t) = r(t)

(W/2)

l(t)

(W/2)
.

Hence, differentiating with respect to the parameterW , an
error δW inW causes an associated error in angular velocity:

δω(t) = −2r(t)

W 2
δW =

(
−δW
W

)
ω(t) = −δωωω(t).

The significance of the minus sign is that an overestimate
in wheelbase causes an underestimate in angle of rotation.
Also, as noted in the reference, this error is an odd function
of angular velocity, so its effects reverse if the direction of
rotation is reversed. It also vanishes on straight trajectories so
this form of error can only be added to the analysis by rein-
troducing the previously neglected error integrals during the
point turns. During these turns, errors in encoder scale factors
also have a potential effect, so they must also be included in
the earlier analysis for it to be complete.

A slight change to earlier solutions for differential head-
ing will apply to this case. Consider again, the second set of
equivalent errors in eqs. (101) and (104):[

δV (t)

δω(t)

]
DH

dt =
[
δVωω(t)

δωωω(t)

]
dt =

[
δVω
δωω

]
dθ

[
σvv σvω
σvω σωω

]
DH

dt =
[
σ (ω)
vv

σ (ω)
vω

σ (ω)
vω

σ (ω)
ωω

]
ω(t)|DH

dt =
[
σ (v)
vv

σ (v)
vω

σ (v)
vω

σ (v)
ωω

]
dε.
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On a turn-in-place trajectory, R(t) = 0, so the systematic
error gradients from eq. (102) are

δVω = (δrr − δll)

4
W

δωω =
(
δrr + δll

2

)
.

Adding the additional error due to the wheelbase error
gives

δωω =
(
δrr + δll

2

)
−
(
δW

W

)
.

Now R(t)|DH is infinite on a turn-in-place trajectory as
well as a straight one. Hence, the equivalent random error
constants on a turn-in-place trajectory are

σ (v)
vv

|DH =
(
σ (r)
rr

+ σ
(l)

ll

)
4

σ (v)
vω

|DH =
(
σ (r)
rr

− σ
(l)

ll

)
2W

σ(v)
ωω

|DH =
(
σ (r)
rr

+ σ
(l)

ll

)
W 2

.

(142)

The error in wheel radius is assumed to be systematic so it
does not affect the variance, although that case can be handled
as well. Substituting into the systematic part of eq. (117) gives

δx(θ)|ccw = δωω


 Lπ

−Lπ
2π


 δx(θ)|cw

= δωω


 LπLπ

−2π


 .

(143)

The total error on the entire square trajectory with point
turns is the sum of the integrals for the linear and turning
portions. Hence the total systematic error due to encoder and
wheelbase sources is

δx(t)|ccw = (δrr − δll)

W


 2L2

−2L2

4L




δx(t)|cw = (δrr − δll)

W


−2L2

−2L2

4L




+
[(
δrr + δll

2

)
−
(
δW

W

)] Lπ

−Lπ
2π




+
[(
δrr + δll

2

)
−
(
δW

W

)] LπLπ
−2π


 .

These are identical to the results in Borenstein and Feng
(1995) where the sign convention for positive error in the
second term is reversed.

10.3.4. Random Error with Point Turns

The variance due to encoder noises during the turns is also
given by the same equation used for the lines (eq. (115)).
Integrating over the turn-in-place trajectory gives

P(s)|ccw = σ (v)
vω
(−LW)


1 0 0

0 1 0
0 0 0




+ σ (v)
vv

(π
2
W
)1 0 0

0 1 0
0 0 0




+ σ (v)
ωω




π

2
L2W −π

4
L2W

π

2
LW

−π
4
L2W

π

2
L2W −π

2
LW

π

2
LW −π

2
LW πW




P(s)|ccw = σ (v)
vω
(LW)


1 0 0

0 1 0
0 0 0




+ σ (v)
vv

(π
2
W
)1 0 0

0 1 0
0 0 0




+ σ (v)
ωω




π

2
L2W

π

4
L2W −π

2
LW

π

4
L2W

π

2
L2W −π

2
LW

−π
2
LW −π

2
LW πW


 .

Likewise, the total stochastic error due to both sources is

P(s)|ccw = σ (v)
vω
(−2L2 − LW)


1 0 0

0 1 0
0 0 0




+ σ (v)
vv

(
2L+ π

2
W
)1 0 0

0 1 0
0 0 0


 (145)

+ σ (v)
ωω




5

3
L3 + π

2
L2W − L3 − π

4
L2W 2L2 + π

2
LW

−L3 − π

4
L2W

5

3
L3 + π

2
L2W −2L2 − π

2
LW

2L2 + π

2
LW − 2L2 − π

2
LW 4L+ πW




P(s)|cw = σ (v)
vω
(2L2 + LW)


1 0 0

0 1 0
0 0 0



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+ σ (v)
vv

(
2L+ π

2
W
)1 0 0

0 1 0
0 0 0




+ σ (v)
ωω




5

3
L3 + π

2
L2W L3 + π

4
L2W −2L2 − π

2
LW

L3 + π

4
L2W

5

3
L3 + π

2
L2W −2L2 − π

2
LW

−2L2 − π

2
LW −2L2 − π

2
LW 4L+ πW


.

These are the stochastic equivalent of the deterministic
UMBmark test. Note that some terms in each element of the
state covariance change sign with the direction of rotation
whereas others do not. They can be used to calibrate the ran-
dom component of error evidenced by the spread of the ob-
servations over a large number of trials.

10.4. Calibration from Arbitrary Trajectories

While this paper has made much of the difficulty caused by
the path-dependent nature of odometry, there are a few ad-
vantages to its integral nature. In particular, residuals for each
different path to the same terminal point generate indepen-
dent observations of the sources of error. Therefore, only a
single reference point is needed, rather than ground truth for
the entire path followed, or the same for a large number of
very different paths terminating at different places.

Any number of systematic parameters become particularly
convenient to calibrate, in principle, because the burden of
ground truth measurement is minimal. The linearized error
integrals will be used here as the basis for generating con-
straint equations. Arbitrary trajectories can be used, but if
they are used, it is reasonable to ask why the machinery of
the paper should be used rather than, for example, integrating
eq. (25) numerically. While this technique will certainly work
in some cases, it does require numerical differentiation of an
integral with respect to its parameters. The scaling problems
encountered in this step may outweigh the simplicity of using
eq. (25) whereas the linearized theory requires only numerical
integration.

Consider the case of differential heading where the wheel
tread and the two wheel radii are to be determined through
calibration. The wheel radii errors can be absorbed into the
encoder scale errors. After augmenting the inputs with the
wheel tread, the inputs are

z̃ = [Vr Vl W
]
.

The transition matrix in this case is the same as for inte-
grated heading and is given in eq. (82). The input Jacobian is

G(t) = ∂

∂u
(ẋ)

∂

∂z̃
(u) =


cθ(t) 0
sθ(t) 0

0 1






1

2

1

2
0

1

W
− 1

W
− ω

W




where

ω =
(
Vr

W
− Vl

W

)
.

This case also illustrates how parameters can be treated
in general. The wheelbase was considered an input of equal
stature to the wheel velocities. The general solution can now
be written as

δx(t) = IC
d
+

t∫
0


cθ −/y(t, τ )
sθ /x(t, τ )

0 1






1

2

1

2
0

1

W
− 1

W
− ω

W





δVrδVl
δW


 dτ.

Now, assume that the encoder scale errors are constant so
that 

δVr(t)δVl(t)

δW


 =


αrVr(t)αlVl(t)

δW


 .

Define the parameter error vector

δp(s) = [αr αl δW
]T
.

Some manipulation leads to the following final equation

δx(s) = IC(s)δx(0)+M(s)δp(s) (146)

where

M(s) = M1(s)M2(s)+M3(s)

IC(s) =

1 0 −y(s)

0 1 x(s)

0 0 1


 M1(s) =


0 −y(s)

0 x(s)

0 1




M2(s) =
∫ 

dsr

2

dsl

2
0

dsr

W
−dsl
W

(dsr − dsl)

W 2




M3(s) =
∫ cθ y(τ)

sθ −x(τ)
0 0





dsr

2

dsl

2
0

dsr

W
−dsl
W

(dsr − dsl)

W 2


 .

This equation can be written for any number of trajecto-
ries for which the uncalibrated trajectory is the basis for the
moment calculation and any or all of the residual position and
heading errors at a single reference point are used to generate
constraints on the unknown parameters.

Figure 9 shows six such trajectories that were used in this
manner.
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Fig. 9. Test trajectories for odometry calibration. Six of
the 28 trajectories used are shown. All start at the origin
with zero heading. All terminate near the point (3,12) with
arbitrary heading.
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Fig. 10. Residuals both before and after calibration. The
white squares represent the computed endpoint residuals for
the initial scale factor and wheelbase estimates. The black
squares are the results based on solving the overdetermined
system of linearized equations.

Zooming in on the correct endpoint, the errors before and
after calibration are shown in Figure 10.

The calibrated results were obtained by solving the obser-
vation equations by the left pseudo-inverse. Heading residuals
were not used due to the need to make extra measurements.
The position residuals were taken simply as the difference be-
tween the computed endpoint and the known correct answer.

10.5. Optimum Loop Bandwidth in Visual Tracking

The application which originally motivated this work was the
vision-based guidance system described in Kelly (2000). In
this work the reversibility of systematic error was manifest
when the vehicle would reacquire a lock on its position if
driven backward after losing lock. A second observation, that
optimum performance occurred at precisely 2 Hz update rate,
is the subject of this analysis.

Consider the case where a camera is moved at very high
speed over a flat surface. A localization algorithm tracks fea-
tures in a prior appearance model of the scene in order to damp
the errors in a odometry system used to provide an estimate
of the motion between image acquisitions.

Let the trajectory be a straight line and simplify matters
by considering the problem of tracking a single feature in the
center of the field of view of the camera. A differential heading
system is the basis of the odometry system. The accumula-
tion of position error (for zero initial conditions) is given by
eq. (122):

P(s) = σ (v)
vω


 0 s2/2 s

s2/2 0 0
s 0 0




+ σ (v)
vv


s 0 0

0 0 0
0 0 0


+ σ (v)

ωω


0 0 0

0 s3/3 s2/2
0 s2/2 s


 .

For a straight trajectory R(t)|DH is infinite and eq. (105)
gives the error gradients as

σ (v)
vv

=
(
σ (r)
rr

+ σ
(l)

ll

)
4

σ (v)
ωω

=
(
σ (r)
rr

− σ
(l)

ll

)
2W

σ(v)
vω

=
(
σ (r)
rr

+ σ
(l)

ll

)
W 2

.

Assuming identical error statistics for the two wheels, the
solution takes the form

P(s) = σ (v)
vv


s 0 0

0 0 0
0 0 0


+ σ (v)

ωω


0 0 0

0 s3/3 s2/2
0 s2/2 s


 .
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The total variance is the accumulated expected squared
error radius

r2(s) = σxx + σyy = σ (v)
oo

(
s

4
+ s3

3W 2

)
.

where σ (v)
oo

= (σ (r)
rr

+ σ
(l)

ll ) is the effective odometry error
gradient.

When features are matched a certain amount of random
injected error is to be expected. All error is removed when an
image is matched except for this noise floor. This error forms
the initial conditions for the odometry episode up to the next
image match. The initial conditions formula is

P0(s) =

1 0 −y(s)

0 1 x(s)

0 0 1




σxx(0) σxy(0) σxθ (0)
σxy(0) σyy(0) σyθ (0)
σxθ (0) σyθ (0) σθθ (0)





1 0 −y(s)

0 1 x(s)

0 0 1



T

.

For a straight trajectory y(t) = 0 and x(t) = s, so this
becomes

P0(s) =

1 0 0

0 1 s

0 0 1




σxx(0) σxy(0) σxθ (0)
σxy(0) σyy(0) σyθ (0)
σxθ (0) σyθ (0) σθθ (0)





1 0 0

0 1 s

0 0 1



T

.

Assuming zero initial cross correlations, this is

P0(s) =

σxx(0) 0 0

0 σyy(0)+ s2σθθ (0) sσθθ (0)
0 sσθθ (0) σθθ (0)


 .

For s � 1 the total variance due to initial conditions is

r2
0 (s) = σxx(0)+ σyy(0)+ s2σθθ (0).

If the initial translational errors are equal and denoted by
σ 2
vis

, then this is

r2
0 (s) = 2σ 2

vis
+ s2σθθ (0).

However, σθθ (0) is also related to σ 2
vis

. Let the initial head-
ing be determined by locating two features separated by an
effective image width F:

θ = (x1 − x2)/F.

The observer Jacobian relates heading error to feature

matching error as follows:

δθ = 1

F
[1 − 1]

[
δx1

δx2

]
= Jδx

σθθ = Exp[δθδθT ] = JExp[δxδxT ]J T

σθθ = 1

F2
[1 − 1]

[
σ11 0
0 σ22

] [
1

−1

]
= 2

F2
σ 2
vis
.

Therefore, the total variance due to the noise floor is

r2
0 (s) = 2σ 2

vis

(
1 + s2

F2

)
.

The total variance due to vision and odometry is

r2
tot
(s) = σ (v)

oo

(
s

4
+ s3

3W 2

)
+ 2σ 2

vis

(
1 + s2

F2

)
.

In order to track a single feature, correlations must be per-
formed for the entire radius of uncertainty. If the pixel size is
ρ, and the distance traveled between images is

s = V/t

then the number of correlations required to search the circular
region of uncertainty for a feature is

fcpu = r2
tot
(V/t)

/t
=
σ (v)
oo

(
s

4
+ s3

3W 2

)
+ 2σ 2

vis

(
1 + s2

F2

)
/t

.

Figure 11 shows the variation in this expression as the time
between images /t increases. The speed is 0.3 m s−1, pixels
are 2.5 mm in size, the wheelbase is 1 m and an image is 0.2 m
across. Encoders experience a random error whose variance
is 1% of distance and a vision noise floor of one pixel standard
deviation is assumed.

A clear minimum exists at an update frequency of 2 Hz.
To understand where this comes from, notice that the noise
floor (vision) contributes a constant term and a quadratic
term whereas odometry contributes linear and cubic terms.
A closed-form solution for the extremum requires the roots
of the cubic polynomial generated from setting the derivative
to zero:

σ 2
vis

(/t)2
= σ 2

vis

(
V 2

F2

)
+ σ (v)

oo

(
V 3/t

3W 2

)
.

Given that all terms are positive, it is clear that the growth of
the constant part of the noise floor processing as/t decreases
is being balanced by the growth of both the quadratic and cubic
terms of fcpu as/t increases. The optimum update rate is the
rate at which both of these effects exactly cancel.

The numeric assumptions used here are not likely to be
perfectly accurate. The main point, however, is that an uncor-
related noise floor always implies that a minimum exists and
running tracking algorithms as fast as possible is not always
the best policy. See Vincze and Weiman (1997) for earlier
work on this topic reaching the opposite conclusion when no
noise floor is present.
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Fig. 11. Visual tracking. Processing requirements experience
a minimum around 2 Hz.

10.6. Sensor Comparison

Sensors of disparate modalities can always be compared based
on the state error generated on a given trajectory. In the case
of gyros and differential odometry, a relationship was derived
earlier which effects a more direct comparison. Consider again
the systematic equivalent integrated heading error sources for
a given differential heading setup. From eq. (102):

δVv(t) =
{(

δrr + δll

2

)
+ (δrr − δll)

4R(t)
W

}

δωv(t) =
{
(δrr − δll)

W
+
(
δrr + δll

2R(t)

)}
.

Differential heading will be most competitive with a gy-
roscope when the curvature is zero and the second terms in
the second line vanish. Under these conditions, the equivalent
gyro bias is

δω(t) = δωv(t)V (t) = (δrr − δll)

W
V (t).

The motion-dependent nature of differential heading im-
plies that if time is not important, the velocity can always be
reduced enough to beat the performance of any gyro. How-
ever, in a realistic context, the velocity needs to be on the
order of 1 m s−1 and the wheelbase is also of the order of 1
m. Equating to a gyro bias gives

(δrr − δll) = δω(t)
W

V
= δω(t).

Hence the difference in encoder scale errors corresponds to
an equivalent gyro bias. On the presumption that the encoder
scale errors can be calibrated to a residual 0.5%, the difference
between the residual errors cannot exceed 1%. Solving for the
equivalent residual gyro bias leads to

δω(t) = (δrr − δll) = 1% = 0.01 rads s = 2063 deg h−1.

While this level of performance (0.6 deg s−1) is compa-
rable to the best contemporary MEMS gyros, contemporary
fiber optic gyros exceed it by several orders of magnitude. On
this basis alone, such gyros can be expected to significantly
outperform differential heading in practice even before ac-
counting for their relative immunity to floor irregularities.

11. Extensions

This section sketches some ways in which the theory can be
extended.

11.1. 3D Odometry: Strapped Down Integrated Attitude and
Heading Configuration

Given the ease with which 2D odometry yielded to linearized
analysis, it is natural to wonder whether 3D odometry can be
analyzed similarly. 3D odometry can be accomplished with
indications of the attitude and heading of the vehicle (or their
derivatives) as well as its translational speed.

Let axes be assigned to the body fixed frame according to
the SAEJ670e convention: x forward, y to the right, z down.
Let the world fixed frame be coincident with the body frame
when the pose of the vehicle is zero in all six degrees of
freedom. Let a z–y–x Euler angle sequence be used. Then,
the rotations which move the earth-fixed frame of reference
into coincidence with the vehicle-fixed frame is to rotate first
by the yaw angle ψ around the z-axis, then by the pitch angle
θ around the new y-axis, and then by the roll angle φ around
the new x-axis.

Let there be three strapped down gyroscopes oriented along
the three axes of the body frame reading the three components
of angular velocity ω̄. To simplify matters, assume they indi-
cate angular velocity relative to the world frame (rather than
an inertial frame). Let ψ denote yaw, θ denote pitch, and φ
denote roll. Under these assumptions, the equations of 3D
odometry are

d

dt




x

y

z

φ

θ

ψ




=




V cψcθ

V sψcθ

−V sθ
ωx + tθ(ωysφ + ωzcφ)

ωycφ − ωzsφ
1
cθ
(ωysφ + ωzcφ)



. (147)

The Jacobian of this system is

F =




0 0 0 0 cψż −ẏ
0 0 0 0 sψż ẋ

0 0 0 0 −V cθ 0
0 0 0 tθ θ̇ ψ̇

cθ
0

0 0 0 −cθψ̇ 0 0
0 0 0 θ̇

cθ
tθψ̇ 0




(148)

where tθ denotes the tangent.
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It turns out that the transition matrix for this system is very
difficult to derive. Consider trying to use eq. (59). Recall the
definition:

R =
t∫

τ

F (ζ )dζ.

Use of this technique for the transition matrix requires that

FR = RF. (149)

Taking, for example, the top element of the fifth column
of both matrices leads to

ψ̇ tan(θ)

t∫
τ

ẏ(ζ )dζ ?
= ẏ

t∫
τ

ψ̇ tan θ(ζ )dζ.

Clearly, these are not equal in general so eq. (59) cannot
be used. This has occurred because strapping the gyros down
makes the orientation rates depend on the orientation, break-
ing the intuitive rule stated earlier of unit depth dependences.
More generally, the technique of Section 6.4 can be used.

By analogy to Section 7.2.4, the transition matrix can be
derived by differentiating the kinematic relationships between
coordinate frames corresponding to times 0, t , and τ . The ho-
mogeneous transform relating two frames in arbitrary position
using the SAE convention is

T =



cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ x

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ y

−sθ cθsφ cθcφ z

0 0 0 1


 .

As in the earlier example, the pose of the endpoint can be
written as the product:

T 0
t

= T 0
τ
T τ

t
.

If we partition the state vector into translational and rota-
tional components thus:

x = [rT IT
]T

r =

xy
z


 I =


φθ
ψ


 .

Then, the Jacobian is composed of four elements:

∂x(t)

∂x(τ )
=



∂r(t)

∂r(τ )

∂r(t)

∂I(τ)
∂I(t)

∂r(τ )

∂I(t)

∂I(τ)


 .

Two of these elements are trivial:

∂r(t)

∂r(τ )
= I

∂I(t)

∂r(τ )
= 0.

The other two are quite complicated but they should be
within the reach of symbolic mathematics packages. For
example:

∂x(t)

∂φ(τ)
= (cψsθcφ + sψsφ)0

τ
yτ
t

+ (−cψsθsφ + sψcφ)0
τ
zτ
t
.

An alternative route to computing the partials of angles
with respect to angles would be to use quaternions. When
the explicit formula for the transition matrix is available, it is
already clear that new 3D Fourier moments will arise from
terms like those in the last equation.

11.2. 3D Odometry: Stabilized Integrated Attitude and
Heading Configuration

Suppose that the gyros are mounted on a platform stabilized
to maintain its initial attitude with respect to the earth. The
gimbal rates �ρ required to stabilize the platform are a direct
readout of the Euler angle rates. Then the system dynamics
are

d

dt




x

y

z

φ

θ

ψ




=




V cψcθ

V sψcθ

−V sθ
ρx
ρy
ρz



. (150)

The system Jacobian is

F =




0 0 0 0 cψż −ẏ
0 0 0 0 sψż ẋ

0 0 0 0 −V cθ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



. (151)

Now FR = RF = 0 and the transition matrix is much
easier to obtain. Direct heading can be expected to behave
similarly.

11.3. Discrete Time Error Propagation

The availability of the exact continuous time transition matrix
renders the conversion to discrete time fairly straightforward.
Let the subscript k be used to denote function evaluation at
time step tk.

In the discrete time case, the perturbative state equations
are of the form

x
k+1 = Fkxk +Gkuk

for which the general solution is

x
n
= (n,0x0 +

n∑
k=0

(n,k+1Gkuk.
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The transition matrix between any two times is computed
by simply substituting the times into the continuous form:

(n,k = ((tn, tk).

11.4. Generic Error Models

So far, the error models that have been assumed have been
relatively straightforward and motivated by intuition and ex-
perience. However, the technique of substituting a power se-
ries into an integro-differential equation has been known for
centuries.

Here, the importance of this matter is that the Taylor series
is convergent in most practical situations. If there is reason to
believe that, for example, a particular source of error ε(t) is a
complicated function of velocity, it can be written as

ε(t) = a + bV (t)+ cV 2(t)+ dV 3(t)+ . . . . (152)

When enough observations are available, such models can
be calibrated to determine the coefficients. The technique is
not limited to polynomials, any parametrized relationship can
be used. Likewise, dependence on any combination of states
and inputs can be modeled in principle.

12. Validation

As a linear approximation, the results of earlier sections can
be expected to represent the dominant behavior of odome-
try error propagation up to the point where neglected higher-
order terms become significant. This section uses numerical
techniques to validate the linearized theory by evaluating the
significance of these higher-order terms on a representative
example.

Error propagation results were verified by comparing the
linearized solutions of the article with an exact nonlinear nu-
merical solution for both systematic and random errors. The
integrated heading case was chosen for the simulation. The
input error characteristics were as shown in Table 2.

These models represent a systematic scale error of 5% on
velocity and a motion-dependent random walk stochastic ve-
locity error of equal standard deviation. A systematic gyro
bias of 30 deg h−1 is used as well as a bias stability of equal
standard deviation.

Table 2. Error Sources for Monte Carlo Analysis

Error
Source Deterministic Random

Linear δV = αV σv = δV

Velocity α = 0.05
Angular δω = b σω = b

Velocity b = 30 deg h−1

Integrated Headin g Test Case
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Fig. 12. Nonlinear numerical solution on a test trajectory.
Effects of both systematic and random error are shown. The
systematic error is initially larger but mostly cancels on the
closed loop. The random error is more subdued but more
persistent.

Systematic Error Magnitudes
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Fig. 13. Systematic error magnitudes. The loop closes at the
last point where both error curves cross. At this point, only
the incoming initial error and the accumulated gyro error on
the loop remains.

Such error magnitudes are considerably larger than might
be expected in a practical situation. The intention here is both
to stress the linearity assumption and to provide a common er-
ror magnitude for both systematic and random sources which
is large enough to be noticeable in Figures 12–15.

In the systematic case, straightforward numerical quadra-
ture can be used to integrate the nonlinear dynamics in both the
perturbed and unperturbed case and the difference between
the two is obtained as the exact nonlinear solution within
the limits of time discretization. Computing exact nonlinear
dynamics for stochastic systems is not so straightforward.
Monte Carlo simulation was used to generate a large number
of separately and randomly perturbed solutions to the sys-
tem dynamics whose statistics could then be computed and
compared with the linearized solution of the article.
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Linearization Error

-1.5

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200

Time  in Secs

Li
ne

ar
iz

at
io

n 
E

rr
or

 in
 

cm
.

dxErr(t)

dyErr(t)

Fig. 14. Linearization error. Linearized error dynamics are
accurate to 3% even in the presence of unrealistically large
encoder and gyro errors.

Monte Carlo Simulation Results
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Fig. 15. Monte Carlo simulation compared to theory. Agree-
ment of the full nonlinear solution with theory is excellent.
Note how the two translational variances vary symmetrically
about a steady growth curve.

Roughly 500,000 independent, unbiased, unit variance
Gaussian random variables were first generated. Half were
designated for linear velocity error δV (t) and the other half
for angular velocity error δω(t). Each set was divided into
250 discrete time random signals which were then scaled ap-
propriately and presented to the nonlinear system as random
corruptions to the nominal inputs.

Figure 12 illustrates the result of nonlinear simulation; an
arbitrary trajectory chosen to contain a loop but exhibiting no
particular symmetry. The velocity for the test is 0.25 m s−1,
the total time is 210 s and the time step is 0.5 s.

While there is a single systematic result to plot, only one
representative of the 250 randomly perturbed trajectories is
shown. Due to the tendency of random error to cancel in the
short term, the effect of systematic error is locally more dra-
matic when compared to a random error. However, systematic
error may cancel in the long term due to path independence

or symmetry, while decreases in random error over the long
term are less likely.

The effect of the systematic velocity scale error is evident
in the increase in error magnitude with the radius from the
origin. As predicted by theory, substantial accumulated sys-
tematic errors in the far left vanish when the loop closes. For
random error, the overall growth rate is more subdued but it
nonetheless accumulates to nontrivial levels over time, par-
ticularly at the end of the trajectory.

The magnitude of systematic error is presented in Fig-
ure 13. On this scale, the difference between linearized and
nonlinear error propagation in not detectable. Angular error is
omitted because it is linear by construction. The point of loop
closure is the last place where both translational error curves
cross.

The difference between linearized and nonlinear error is
shown in Figure 14.

Clearly, the linearized solution is an excellent approxima-
tion for errors of this magnitude. Throughout the test, the
difference between exact and linearized solutions never ex-
ceeds 1 cm or 3% of the actual error magnitude. This result
validates the systematic part of eq. (87).

The results of the Monte Carlo simulation are provided in
Figure 15 for the translational variances and covariances. Ro-
tational variance is linear by construction and translational–
rotational covariances agree similarly with theory. The agree-
ment between theory and simulation is excellent. Note how
the two translational variances exhibit conservation behav-
ior by varying symmetrically about an average steady growth
curve.

Overall, three classes of error can be expected in the
stochastic case: linearization, discretization, and sampling er-
ror. The first two classes have been demonstrated to be rela-
tively small by the systematic error results. These curves show
that for a sample size of 250 pairs of input random processes,
the sample variance of the state covariance matrix tracks the
linearized theoretical population variance quite well. This re-
sult validates stochastic part of eq. (87).

13. Summary

The goal of this paper has been to discover and understand
the major behaviors of odometry error propagation. Linear
systems and optimal estimation theory have provided all of
the necessary tools. All of the most important interpretation
of the mathematical results has been reserved for this section.

13.1. Dynamics

Odometry is distinct from both inertial guidance and trian-
gulation in fundamental ways. Odometry is dead reckoning;
solutions and their errors propagate according to nonlinear
differential equations whose solutions are integrals.

While odometry is nonlinear it is often homogeneous in
its inputs. The fact that the odometry solution stops moving
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when the inputs are nulled is closely related to the facts that
error propagation also stops when motion stops, that certain
systematic errors cancel on closed trajectories, and that some
are reversible.

The key to the direct application of linear systems theory
to error propagation is to linearize both the system dynamics
and the observer equation and substitute the observer into
the dynamics. The result is referred to here as the “ forced
dynamics” formulation.

13.2. Solution Basis

Once the equations are linearized, the general solutions for
both systematic and random error propagation can be writ-
ten immediately in terms of the transition matrix, which is
known to exist but may not be easy to find or express in
closed form. As a linear solution, the output is the sum of
a path-independent response to initial conditions and a gen-
erally path-dependent response to the input history. In both
the systematic and random error cases, both elements of the
response may exhibit zeros and extrema and neither is neces-
sarily monotone.

The input response can be expressed as a sum of a set of
vector and matrix-valued basis functions which describe the
response of pose error to each individual source of input sensor
error. This solution basis comprises a set of integral transforms
of the inputs where the convolution kernel is derived from
the columns of the product of the transition matrix and the
input Jacobian. The basis also supplies the canonical form of
many error propagation behaviors. When errors are of simple
forms, the integral transforms take the form of moments of
the reference trajectory. In this way, linear systems theory
provides the explicit relationship between the shape of the
path followed and the projection of sensor errors onto solution
errors.

13.3. Error Propagation Behaviors

These moments can be tabulated for specific trajectory shapes
and used like tables of moments of inertia or Laplace trans-
forms. They generate the interesting behaviors of error dy-
namics. Two classes of moments are the spatial moments and
the Fourier moments. The spatial moments are simply mo-
ments of arc evaluated about the endpoint. The Fourier mo-
ments are essentially the Fourier series coefficients. Spatial
moments apply to angular velocity errors and Fourier mo-
ments apply to linear velocity errors. Systematic error tends
to propagate with the first-order moments and random error
with both first-order and second-order moments. Linear and
angular biases tend to propagate in a time-dependent manner
whereas scale errors generate motion-dependent behavior.

The first-order Fourier moments are path-independent
whereas the second-order moments are monotone. Patterns
of systematic error behavior correspond to related patterns

of random error behavior. Thus, systematic velocity scale er-
ror cancels on closed trajectories and random velocity error
grows monotonically in total variance although error ellipses
may rotate over time. The first spatial moments vanish at the
centroid of the trajectory and the second moments reach ex-
trema at the same places. Random pose error due to angular
velocity indications (such as gyros) is not monotone.

Thus, odometry usually performs well at the point of clo-
sure of closed symmetric paths for fundamental reasons. Good
gyros will tend to outperform differential heading odometry.
On a symmetric figure 8 trajectory with the origin at the cen-
ter, the effects of both velocity scale error and systematic
gyro bias will vanish. Accordingly, closed and/or symmetric
trajectories may or may not be good choices for calibrating
errors, depending on what sensitivities are being emphasized
or suppressed.

13.4. Closed-Form Dynamics

In addition to being a nonlinear, input homogeneous system,
odometry is also often in echelon form with state variable
coupling that is no more than unit depth. This structure leads to
a system Jacobian which is strictly upper rectangular, which,
in turn, leads to a rapidly terminating exponential series for
the transition matrix as well as the right to use the series in
the first place.

The general solution for linearized dynamics is converted
to specific solution for a given problem by making three
choices: the form of odometry determines the form of input
transition matrix, the reference trajectory fixes its value, and
the error inputs drive the linearized system with respect to the
reference trajectory.

Different forms of odometry have different system and in-
put Jacobians. As a result, they have different input transition
matrices and different forms of the general solution. Different
forms are equivalent when only the input Jacobian and/or ob-
server differs. Differential heading odometry, for example, is
just a form of integrated heading with an input observer. The
same general solution applies and a given set of differential
heading inputs and input errors can be converted using the
observer to equivalent inputs and input errors for integrated
heading. Consequently, it is sometimes possible to convert
one sensor package to another equivalent one composed of
different sensors.

In a linearized solution, the Jacobians are not updated to re-
flect the errors in the assumed reference trajectory that become
known as the solution is computed over time. This means that
errors are treated as if they do not compound (but not as if they
do not accumulate) and the solution integrals can therefore be
understood on an intuitive level as the accumulation of the
suitably scaled effects of the input error history.

13.5. Applications

The theory can be applied to a large number of applica-
tions and extended to 3D. Variational methods can be used to
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determine trajectories of extreme error. The trace of the tra-
jectory moment matrix is the logical performance index for
random error. Using this, it is easy to show that the trajectory
minimizing accumulated error when traveling between any
two points is a straight line.

The theory applies to any form of odometry for which
the transition matrix can be found, for any trajectory or error
model. For example, lateral wheel slip can be shown to prop-
agate (like a gyro scale error) according to spatial rotation
moments.

A clear application is the calibration of both systematic
and random error models by using the linearized error equa-
tions as models to be calibrated. In the case of the University
of Michigan odometry benchmark, the equivalent stochastic
calibration method can be derived easily.

Tracking problems can be analyzed with the theory to both
show that an optimum finite update rate exists and extract its
value for given error magnitudes.

14. Conclusions

It has not been the purpose here to demonstrate that commonly
used models of error propagation are sufficiently representa-
tive of reality. The entire field of optimal estimation, including
Kalman filtering, routinely uses linear models, assumptions
of decorrelation, etc. The main purpose here has been to show
that the associated models can be solved in closed form and
that those solutions generate important insights into the gen-
eral case.

In addition to their pedagogic value, these results can be
used:

• in design to determine acceptable levels of sensor er-
ror, or determine optimal approaches to error compen-
sation;

• in analysis to predict performance of a given design;

• in calibration and evaluation to accentuate or attenuate
response to individual error sources;

• in operation to plan trajectories in order to minimize
exposure to specific error sources.

Trajectory moments figure prominently in the analytical
theory of odometry error propagation. Propagation is essen-
tially determined by a combination of the moments of arc
and the Fourier coefficients of the vehicle trajectory. Tables
of such moments for given trajectories can encapsulate solu-
tions to estimation problems in a manner analogous to the use
of the Laplace transform in control, the Fourier transform in
signal processing, or the moment of inertia in dynamics.

As exemplified here, analytic expressions are important
tools in the development of theory. The present results en-
able the symbolic application of linear systems theory, op-
timal control, calculus of variations, etc., to any application

which attempts to account in some way for odometry error
propagation.
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