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Sampling in the space of controls or actions is a well-established method for ensuring fea-
sible local motion plans. However, as mobile robots advance in performance and compe-
tence in complex environments, this classical motion-planning technique ceases to be ef-
fective. When environmental constraints severely limit the space of acceptable motions or
when global motion planning expresses strong preferences, a state space sampling strat-
egy is more effective. Although this has been evident for some time, the practical ques-
tion is how to achieve it while also satisfying the severe constraints of vehicle dynamic
feasibility. The paper presents an effective algorithm for state space sampling utilizing a
model-based trajectory generation approach. This method enables high-speed navigation
in highly constrained and/or partially known environments such as trails, roadways, and
dense off-road obstacle fields. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

Outdoor mobile robot navigation is a challenging
problem because environments are often complex
and only partially known, dynamics can be difficult
to predict accurately, and both planning time and
computational resources are limited. We can gener-
ally model the dynamics of a vehicle by a nonlinear

differential equation of the form

·x = f(x, u). (1)

The input or control vector u and the state vector x
are both time-varying points in input and state space,
respectively. The complexity of such accurate mod-
els of mobility combined with the scale of outdoor
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Figure 1. Hierarchical motion planning. The planner uses a search space that accounts for vehicle mobility constraints in
the area close to the vehicle, and it uses a grid that ignores vehicle mobility constraints in the area far from the vehicle.

mobile robot navigation leads to a difficult trade-off
between the computational demands of perceptive
intelligence at the local level and deliberative intelli-
gence at the global level. It is difficult to be both smart
and fast when computation is limited.

A common approach to this problem is to em-
ploy a hierarchical motion planning architecture to
generate behaviors that are both intelligent and re-
sponsive. Figure 1 illustrates a case in which the en-
vironment is a continuous cost field. Cases based on
a more topological environment representation, such
as a road network, are shown in Figure 2.

The architecture is hierarchical in the sense that
two levels of detail are used for the modeling of
both the vehicle and the environment. The higher-
level motion planner (global planner) is responsible
for directing the vehicle to achieve mission goals. It
produces a large-scale, long-term motion plan based

Figure 2. Search spaces generated by sampling in control space vs. state space are shown in environments that are highly
constrained (e.g., road networks). The majority of the options generated by sampling in control space leave the lane or are
oriented to do so shortly, whereas those generated by sampling in state space remain within the lane.

on simplified vehicle models and coarse represen-
tations of the environment. Conversely, the lower-
level motion planner (local planner) is used to keep
the vehicle safe. It generates a finer-scale, short-
term motion plan based on higher-fidelity vehicle
models and finer-resolution representations of the
environment.

Whereas it is a common approach to use higher-
fidelity models to subsequently smooth the trajecto-
ries produced by lower-fidelity planners, the result-
ing smooth path may be reduced in optimality and
it may no longer avoid obstacles. For a continuously
moving vehicle, such a planner failure leads at best
to the inefficiencies associated with stopping and at
worst to a damaging collision. Such considerations
lead to a desire for the smoothing algorithm to in-
terpret the environmental model in its computations
and hence become a planner in its own right. Once
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the smoother becomes a planner, any short-term por-
tion of the path produced by the global planner be-
comes somewhat redundant because it will always be
replaced by the results of this planner, which is more
competent on the local scale.

The models used by each of these planners are
also typically associated with mutually exclusive spa-
tial regions. Local planner models are used in a small
region centered around the vehicle that extends out-
ward as far as useful perception data are available.
Global planner models are used outside the bound-
ary of the local region. The local region moves with
the vehicle so that decisions are based on models that
are, at least locally, as accurate as computation and
sensing will allow.

1.1. Motivation

The capacity of a vehicle to move in the environment
depends on both the characteristics of the vehicle and
the environment. Typical vehicle mobility constraints
include, for example, a restriction that wheels roll
with no slip or with specified or terrain-dependent
slip profiles. Others include the dynamics of the loco-
motion and steering actuators and of the propulsion
system. Motions that satisfy such constraints are said
to be “feasible.” Environmental constraints may in-
clude terrain geometric or soil characteristics that
modulate tractive forces, body-contacting obstacles
that actively oppose motion, or contextual informa-
tion such as the requirement that the vehicle remain
in its assigned lane of the road most of the time.

In the context of the architecture described previ-
ously, the opportunity for a degree of optimization
arises regularly when many candidate paths in the
local region are obstacle free. For any locally gener-
ated path, the characteristics of a path to the goal that
starts where the local solution ends can be used to de-
fine the best local solution and select it for execution.
In this sense, the global planner can serve as guidance
to the selection process.

Furthermore, as we will show, different sets of lo-
cal paths comprising the local search space may be
fundamentally better than others in terms of the qual-
ity of the solutions they produce. This paper deals
with the problem of improving the quality of local
motion-planning search spaces that satisfy feasibil-
ity and environmental constraints while attempting
to maximally exploit global guidance information.

This paper also addresses a difficult issue that
arises in the context of hierarchical planning architec-

tures and in differentially constrained motion plan-
ning in general. The formation of the local planning
problem involves constraints and utilities that are
most conveniently expressed in two spaces:

• State space: Those arising from the environ-
ment

• Control space: Those arising from vehicle mo-
bility

Environmental constraints are easily satisfied when
planned trajectories are expressed in state space, but
their dynamic feasibility cannot be easily guaranteed.
Conversely, when trajectories are expressed in con-
trol (input) space, feasibility constraints can be triv-
ially satisfied but the satisfaction of environmental
constraints cannot be easily guaranteed. When most
feasible motions are likely to satisfy environmental
constraints, control space sampling is an effective ap-
proach. However, this traditional approach suffers if
the environment imposes significant limits on accept-
able motions (Figure 2).

A second consideration is path-sampling effi-
ciency. All approaches to motion planning funda-
mentally select one trajectory from a set of alterna-
tives. The problem is the design of a search space
that will best utilize the computational resources in
the time available. Separation of trajectories matters
because nearly identical trajectories will likely inter-
sect the same obstacles and are therefore inefficient.
We define a well-separated set of trajectories to be
one that covers a majority of the reachable state space
with a minimum of overlap.

For example, consider a control space sampling
consisting of a set of uniformly sampled constant
curvature arcs (Figure 3) applied to different initial
vehicle states. The trajectories are denser in the direc-
tion of the initial angular velocity because the vehi-
cle’s limited maximum turning rate (dω/dt) leads to
very similar outputs for several distinct inputs. Con-
versely, sampling in state space would permit direct
control over the spacing of the endpoints of these
trajectories.

1.2. Related Work

There has been substantial research in the genera-
tion of expressive and complete trajectory sets for lo-
cal motion-planning search spaces. Some early work
in this appears in Kelly and Stentz (1998), where
the local motion-planning search space is generated
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Figure 3. Irregular mapping from control space to state space. Accurate dynamic simulations of a set of uniformly sampled
constant curvature arcs (control space sampling) are shown for a variety of different initial vehicle states. Notice that the
responses are not uniformly separated despite the uniform separation of controls.

by sampling in the control space of curvature. Each
control is passed through a vehicle dynamics model
to estimate the response of the vehicle to the con-
trol. The shape of the response is highly dependent
on the vehicle model and the initial vehicle state
(curvatures and velocities). Similar approaches have
been adapted in a variety of other unmanned ground
vehicles (Kelly et al., 2006; Wettergreen, Tompkins,
Urmson, Wagner, & Whittaker, 2005). Egographs
(Lacze, Moscovitz, DeClaris, & Murphy, 1998) rep-
resent another method for generating local motion-
planning search spaces. This approach generates,
offline, a well-separated dynamically feasible search
space for a limited set of initial states. Online adap-
tation to changes in terrain or vehicle models are
not considered. Precomputed arcs and point turns
comprised the control primitive sets that were used
to autonomously drive Spirit and Opportunity dur-
ing the Mars Exploration Rover mission (Besiadecki,
Leger, & Maimone, 2007). Trajectory selection was
based on a convolution on a cost or “goodness”
map. This approach was an extension of Morphin, an
arc-planner variant in which terrain shape was con-
sidered in the trajectory selection process (Simmons
et al., 1995; Singh et al., 2000). Another closely related
algorithm is the one presented in Bonnafous, Lacroix,
and Siméon (2001), where an arc-based search space
is evaluated based on considering risk and interest.

Rapidly exploring random trees (RRTs) have
recently been applied to the problem of generating
dynamically feasible controls through complex en-
vironments. This method is well suited to the prob-
lem of navigating complex environments because of
its ability to search high-dimensional input spaces
and can consider vehicle dynamics and terrain shape

in its solution (Berg, Ferguson, & Kuffner, 2006;
Melchior, Kwak, & Simmons, 2007). Frazzoli, Dahleh,
and Feron (2001) use RRTs to navigate among static
and dynamic obstacles, where tree expansions are
done in state space rather than input space. A con-
troller is applied to determine the feasible action, if
one exists, that connects the current state to the new
branch state. Chen and Fraichard (2007) applied par-
tial motion planning, an iterative technique based on
RRT that considers vehicle model constraints such
as acceleration, steering velocity, and steering angle
bounds and the real-time operation constraint of the
system for navigation in urban environments.

Potential fields (Haddad, Khatib, Lacroix, &
Chatila, 1998; Koren & Borenstein, 1991) have reg-
ularly been applied to obstacle avoidance and nav-
igation, where attractive forces represent goals and
repulsive forces represent obstacles. In Shimoda,
Kuroda, and Iagnemma (2005), potential fields gener-
ate actions that considered dynamic hazards such as
rollover and terrain shape in their evaluation. Lacroix
et al. (2002) applied potential fields for navigation in
simple terrain. For more difficult environments, they
applied arcs and arc-trees that consider terrain shape
in their forward simulation to generate the naviga-
tion search space.

Another important group of work involves nav-
igators that solve for an optimal or near-optimal tra-
jectory in the continuum. These methods typically are
fast and solve for the local, but not global, optimal
solution. A navigator based on optimizing a utility
function in the continuum is described in Cremean
et al. (2006). Horizon-limited trajectories are gener-
ated by minimizing the steering and acceleration con-
trol effort subject to a vehicle dynamics model that
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considers limited steering rates and rollover con-
straints. Obstacles are avoided by representing them
as very low-speed regions and are naturally avoided
in this framework. The local minima problem is han-
dled by seeding the optimization function with a
coarse spatial path. The dynamic window approach
(Fox, Burgand, & Thrun, 1997) selects translational
and rotational velocities by maximizing an objective
function based on the heading to the target posi-
tion, distance to the closest obstacle, and velocity of
the robot. The search space is generated using arcs
and is restricted to reachable and safe velocities at its
current state.

The satisfaction of environmental constraints in
local motion-planning search spaces is related to lane
following, a problem that has generated a great deal
of interest with the recent DARPA Grand Challenge
competitions. In Miller et al. (2006), Bézier splines
are constructed with terminal points defined by a
lateral offset and the road shape. Dynamically infea-
sible trajectories are culled through a postprocess-
ing technique, and an optimal navigation strategy is
determined through minimizing a weighted combi-
nation of integrated path cost and steering effort. A
related approach involves Bézier splines whose con-
trol points are located and adjusted by the location
of obstacles (Berglund, Jonsson, & Soderkvist, 2003;
Trepagnier, Nagel, Kinney, Koutsougeras, & Dooner,
2006). In Urmson et al. (2006), a geometric planner
that conforms environmental constraints (a trail or
road network) is applied to the problem of navigat-
ing in desert environments. Dynamic feasibility is
passed to a path tracker, and a speed planner en-
sures safety by slowing the vehicle during aggres-
sive maneuvers. Another similar system is described
in Leedy et al (2006), where the deliberative plan-
ner generates a path by searching a cost map us-
ing A* and following the trajectory using pure pur-
suit (Coulter, 1992) and then checking it for safety.
This method trades off inherent dynamic feasibility
for global guidance. A reactive approach is also pre-
sented in Leedy et al. (2006) that uses a fuzzy logic
controller to follow roads and avoid local obstacles.
Nudges and swerves (Thrun et al., 2006), represent-
ing smooth and aggressive lateral offsets around a
base trajectory, have proven effective for generating
expressive local motion-planning search spaces for
obstacle avoidance and lane following. Search in tra-
jectory space (κ ,v) bounded by hazards and dynamic
effects including steering limits, wheel–terrain inter-
action, rollover, and sideslip constraints is presented

in Spenko, Kuroda, Dubowsky, and Iagnemma (2006)
and demonstrated to be an effective approach at
speeds up to 9 m/s.

This research is related to another body of work
concerning the need for expressive motion sets. Mo-
tion planning has been concerned with the expres-
siveness of sequences of motion primitives since
Dubins (1957), and work continues in this area today
(Frazzoli, Dahleh, & Feron 2003). The importance of
separation in a local planning search space has been
discussed in Green and Kelly (2007), where it was
shown that the mutual separation of a set of paths is
related to the relative completeness of the motion set.

This paper differentiates itself from the prior
art through applying a state-based sampling strat-
egy to generate path sets that consider global guid-
ance and satisfy environmental constraints while also
guaranteeing dynamic feasibility through the use of
a model-predictive trajectory generator. Controlling
the state-based sampling increases the expressiveness
and completeness of the search space. The model-
predictive trajectory generator guarantees dynamic
feasibility of the actions (to the fidelity of the mo-
tion model that describes the dynamics) and requires
no postprocessing of the trajectory set. The explicit
requirement that trajectories terminate at a regular
and predefined horizon provides a better basis for
a trajectory arbiter function to select optimal control
inputs.

1.3. Technical Approach

An effective local planning search space would ide-
ally be optimal, efficient, and robust. The search space
would be optimal if it could maximally exploit global
guidance, efficient if it could control path separa-
tion, and robust if it searched only feasible motions.
Recent advances in real-time, model-based trajec-
tory generation have provided the capability to make
progress toward achieving these goals. In Howard
and Kelly (2007) a general method is presented that
computes control inputs that satisfy a pair of bound-
ary states subject to the vehicle dynamics model, and
in Howard, Knepper, and Kelly (2006) we applied it
to the problem of path following in the absence of
obstacles.

This paper improves on Howard et al. (2006)
by generating a set of feasible actions derived by
sampling in the surrounding state space. Motions
are generated to alternative terminal states based on
global guidance—in the form of a global planner or
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knowledge of road lane configuration. The technique
is superior to control space sampling in its efficiency
(mean separation of trajectories) and its satisfaction
of environmental constraints by construction.

The approach in this paper differs from that of
all of the prior work cited in its capacity to gener-
ate expressive local motion-planning search spaces
using a state space sampling approach while enforc-
ing arbitrary dynamic constraints. Section 2 describes
the model-predictive trajectory generation technique
used to generate dynamically feasible paths between
arbitrary boundary state constraints. Section 3 de-
scribes ideas related to the expressiveness and com-
pleteness of search spaces. In Section 3, the argu-
ments for why expressiveness and completeness are
important in search space generation are reviewed.
Section 4 describes the methodology for generating
adaptive search spaces that sample in state space
subject to vehicle dynamic and environmental con-
straints, and Section 5 discusses some of the practi-
cal considerations for how such a system would be
deployed on a real field robot. Simulation and field
results for two mobile robot platforms are presented
and discussed in Section 6.

2. MODEL-PREDICTIVE TRAJECTORY
GENERATION

Our state-based sampling approach requires a
method for generating the action between specified
pairs of vehicle states. This was achieved by applying
the real-time model-predictive trajectory generator
from Howard and Kelly (2007) that numerically lin-
earizes and inverts simulated models of vehicle mo-
tion. The continuum optimization method efficiently
modifies parameterized control inputs to minimize
boundary state constraint error.

Explicitly requiring that the actions in our search
space satisfy kinodynamic constraints of the vehicle
is important for two reasons. First, it allows the mo-
tion planner to reason about the feasibility and true
cost of actions in the search space. Sampling in the
space of controls ensures feasibility of the predicted
motion. In a state-based sampling search space gen-
eration approach, an algorithm (such as the model-
predictive trajectory generator) is needed to invert
the vehicle dynamics to provide the input that con-
nects the states. The navigation function (the method
by which the local motion planner selects the best tra-
jectory from the set of candidate actions) must have
the best information possible to operate effectively.

Paths that violate the kinodynamic constraints may
not represent the actual vehicle path and yet can in-
fluence the navigation function, resulting in subop-
timal behaviors. The second reason for embedding
a sophisticated model of dynamics in the trajectory
generator is that the following error of such paths can
be minimized. Predicting some disturbances well for
feedforward purposes reduces the difficulty of path
following.

The model-predictive trajectory generator can be
used to solve for parameterized controls specified by
arbitrary boundary state constraints (positions, head-
ings, curvatures, rates of curvature, velocities, etc.).
In this paper we will consider boundary state con-
straints only on the position x, y and heading ψ at
the terminal state xF. Curvature continuity is not con-
sidered in this example because the vehicle will likely
never execute the entire selected motion between re-
planning cycles and because the global motion plan-
ner places no constraints on curvature. In contrast to
the terminal state, the full initial vehicle state xI is nec-
essary to initialize the vehicle dynamics model used
by the motion simulation.

Other considerations for the algorithm include
the controls parameterization and the vehicle dy-
namics model. The number of freedoms in the pa-
rameterized controls is typically a function of the
number of state constraints, how well the action
represents all feasible motions over that distance, and
whether it is desired to optimize something over
the path. For skid-steered or Ackerman-steered mo-
bile robots required to satisfy position and head-
ing state constraints, second-order curvature splines
(a spline function with three knot points) and sim-
ple linear velocity functions (constant, linear, trape-
zoidal, etc.) have proven to be effective. The second
consideration, the motion model, is itself a trade-off
between speed (dynamics are computed tens of thou-
sands of times per second) and fidelity (how well it
can accurately predict the response to the inputs). We
have found first-order models of linear and angular
velocity response, along with a rigid body motion
simulation, to be an effective trade-off that encodes
the major constraints of motion feasibility.

For example, consider the trajectory planning
problem exhibited in Figure 4. A simulated vehicle
is attempting to reach a target terminal state on top of
a hill by executing an action with no path error servo
to compensate reactively for path-following error. Ini-
tially, a trajectory that does not consider the terrain
shape and model dynamics is generated. Using a
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Figure 4. Model-predictive trajectory generation. Two trajectories are generated and executed with and without predictive
models of motion that consider terrain shape and simple model dynamics. By incorporating a predictive motion model that
understands kinodynamic constraints and wheel–terrain interaction into the trajectory generator, an action that compen-
sates for these effects can be found.

more sophisticated motion model in the simulation,
we see that the action terminates at a point that is not
the target terminal state. By folding a more accurate
model of motion into the vehicle model used by the
model-predictive trajectory generator, an action can
be generated that reaches the target terminal state.

Typically, feedback control is applied to com-
pensate for discrepancies in the motion model, but
in general it cannot be assumed that the gener-
ated trajectory is feasible or easily followable in the
first place. By applying a method that integrates a
more sophisticated vehicle model at the trajectory-
planning stage, we can reduce the amount of error
that a feedback controller must compensate while
having a more accurate prediction of cost for candi-
date action. If the forward predictive model is in fact
good enough, then we can execute controls directly
from the model-predictive trajectory generator.

3. SEARCH SPACE SEPARATION

In Green and Kelly (2007) it was shown that one im-
portant characteristic of a search space is how well

Figure 5. Regions that may contain obstacles: (a) two separated differential regions, (b) two overlapping differential re-
gions, and (c) two finite regions (swept volumes) that overlap.

separated its encoded paths are. A portion of that dis-
cussion follows. Given a limited amount of compu-
tation time, the number of paths that form a search
space is necessarily limited and should be selected to
maximize the probability of finding a solution when
one exists, which we define as relative completeness.
Additionally, the incremental benefit of finding mul-
tiple solutions is small compared to the penalty for
failing to find any solutions. So we would like to max-
imize the probability of finding at least one solution.

Consider next two nonempty differential regions
dR1 and dR2. If the two regions do not overlap
[Figure 5(a)] and obstacles are considered to have
zero width, then the probability that dR1 intersects
an obstacle is independent of the probability that dR2
intersects an obstacle. But if the two regions do over-
lap [Figure 5(b)] then the probability that both regions
intersect an obstacle increases with the area of the
overlap. Additionally, if obstacles have some size as-
sociated with them, then increasing the separation of
two regions that do not overlap decreases the prob-
ability that one individual obstacle could intersect
both regions at the same time.
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For two finite regions R1 and R2 that could repre-
sent the swept volume of a vehicle following a path
[Figure 5(c)], the correlation depends on the influence
of every element of R2 on every element of R1. For
such sets we approximate the effect of the separation
of each element by relating the probability that two
paths will intersect the same obstacle to the area be-
tween the two paths.

Based on the above argument, it would be a poor
choice if two paths in a search space were unnecessar-
ily close to each other because if one were in collision,
the other would also be highly likely to be in collision.
Furthermore, if one were not in collision, the other
would likely be a redundant solution whose presence
is probabilistically of little value from the perspective
of completeness—because only one safe path is re-
quired. So a search space in which the encoded paths
are close to each other is probabilistically less likely
to solve a planning query, and has a lower relative
completeness, compared to a search space with bet-
ter separated paths.

4. ADAPTIVE SEARCH SPACES

The algorithm in Howard and Kelly (2007) creates
an opportunity to produce controlled distributions
of sampled terminal states, in a local search space,
that satisfy environmental and separation constraints
while also producing feasible trajectories that ad-
here to a nontrivial dynamics model. Section 4.1 out-
lines our general approach to structuring the search
space adaptation algorithm, and Sections 4.2 and 4.3
discuss and provide examples for exploiting global
guidance information and satisfying environmental
constraints, respectively.

4.1. Adaptive Search Space Set Design

A search space for any motion-planning problem
can be considered to be simply a set of candidate
paths through state (or less generally, configuration)
space. The paths may be specified implicitly or ex-
plicitly in any sufficiently expressive system of coor-
dinates. One form of state space sampling technique
generates a set of actions (encoding paths indirectly)
by solving for trajectories between n boundary state
pairs xN. The first state in each pair is the initial or
current state of the vehicle xI, and the second state is
the target terminal state xF, which is to be reached at
the end of the trajectory:

xN =
[

xI

xF

]
=

[
xI,0 xI,1 . . . xI,n

xF,0 xF,1 . . . xF,n

]
, (2)

where

x = [
x y ψ κ v . . .

]T
.

The problem becomes that of determining the proper
input or control u(p, x) that satisfies both the bound-
ary state constraint pair xI, xF and the system dynam-
ics f(x, u):

uN(p, x) =

⎡
⎢⎢⎢⎣

u0(p0, x)
u1(p1, x)

...
un(pn, x)

⎤
⎥⎥⎥⎦ . (3)

Because the navigation function typically relies on
the convolution of the trajectory with a “goodness”
or cost map and not simply the input itself, a cost
ci is computed for each valid control that connects a
boundary state pair in the set:

cN = [
c0 c1 . . . cn

]T
. (4)

Note that this definition is independent of the
method of generating the search space because all
trajectories start and end somewhere. The basic out-
line of the adaptive search space generation method
is shown in Algorithm 1, which takes the initial
state of the vehicle, a model of the system dynam-
ics, and a data structure containing information about
the desired shape of the search space. The first step
in the algorithm is to generate the boundary state
pairs, which in this version is accomplished through
Algorithm 2. Once the set of boundary state pairs is
established, the method calls the GENERATETRAJEC-
TORY() method to determine the control input and
trajectory that satisfies the pair of state boundary con-
straints. In our implementation we utilize the model-
predictive trajectory generation algorithm described
in Section 2 because of its ability to generate feasible
actions between boundary state pairs in real time sub-
ject to arbitrary models of dynamics, although in gen-
eral other techniques could be substituted. Our ap-
proach is based on designing rules and parameters,
such as the ones presented in Algorithms 2–4, that
define the shape of the boundary state constraint set
based on expressiveness and completeness of trajec-
tory sets, global guidance, environmental constraints,
and initial state information.

An array of search space shape parameters pss

defines the shape of the search space. These variables
are typically tuned based on the reachable search
space of the vehicle, the desired density of the search
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Algorithm 1 . GENERATESEARCHSPACE (xI,f(x, u(p, x)))

Input: pss (shape parameter vector), xI (initial state),
f(x, u(p, x)) (vehicle motion model)

Output: control set (uN(pN, x)), cost set (cN)
1 xN ← GENERATEUNIFORMBOUNDARYSTATES(pss,xI)
2 for i ∈ n do
3 ui(pi, x)← GENERATETRAJECTORY(xI,i ,xF,i ,f(x, ui(pi , x)))
4 if ui(pi, x) exists then
5 ci ← COMPUTETRAJECTORYCOST(xI,ui(pi, x))
6 end
7 end
8 return uN(pN, x),cN

Algorithm 2 . GENERATEUNIFORMBOUNDARYSTATES (pss,xI)

Input: pss (shape parameters), xI (initial vehicle state)
Output: boundary state pair set (xN)

1 for i = 0 to (np − 1) do
2 for j = 0 to (nh − 1) do
3 n ← i · nh + j

4 xI,n ← xI
5 α ← αmin + (αmax − αmin) · i/(np − 1)
6 xF,n ← xI + d · cos(α + ψI )
7 yF,n ← yI + d · sin(α + ψI )
8 ψF,n ← ψI + ψmin + (ψmax − ψmin) · j/(nh − 1) + α

9 end
10 end
11 return xN

space, and the number of boundary state constraints
we wish to satisfy. In the example shown in Figure 6,
the parameter array contains seven constants: the
number of samples in terminal state position and
heading np,nh, the terminal position horizon d, the
angular range of the terminal position sampling

Figure 6. Uniform terminal state sampling for adaptive search space generation with varied initial states. The ability to
control the shape of the search space for three initial states: (a) turning left, (b) straight, and (c) turning right.

αmin,αmax, and the angular range of the terminal head-
ing angle offsets (ψmin,ψmax):

pss =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

np

nh

d

αmin
αmax
ψmin
ψmax

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

In the scenarios considered in Figure 6, search spaces
are generated with the following shape parameter
vector values, with varying initial curvature values:

pss =

⎡
⎢⎢⎢⎢⎣

np = 30
nh = 3

d = 5.0 m
αmin, αmax = ±45 deg
ψmin, ψmax = ±45 deg

⎤
⎥⎥⎥⎥⎦ . (6)

The result of this approach is a set of sophisticated
maneuvers that adapt automatically to varied initial
conditions. Furthermore, the trajectories span most of
the feasible set while remaining roughly equidistant
from each other at their terminal states. This result
contrasts dramatically with the results of the control
space space sampling techniques from Figure 3.

4.2. Utilization of Global Guidance

The global planner may produce a preferred path to
follow or a cost field or navigation function ϕ(x, y)
encoding the optimal distance to the goal from every
state. Both cases are referred to here more generically
as global guidance. On the assumption that deviation
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from global guidance is less likely to lead efficiently
to the goal, a local motion-planning search space will
improve if it biases its search to be most consistent
with global guidance. We typically use a global plan-
ner that continuously provides a navigation function
(consisting of (an infeasible) path cost from any point
to the goal) to the local planner. Given such informa-
tion, it is better on average to sample terminal states
at a higher density in lower-global-cost regions and
at a lower density in higher-cost regions, as shown in
Figure 7. Some samples are retained in higher-cost re-
gions because the low-cost regions produced by the
global planner may not reflect actual dynamic con-
straints of the vehicle, or an accurate map of the sur-
roundings, and the global planner may not be able to
react quickly enough to recently perceived obstacles.

The shape parameters for the navigation
function–influenced search space include all of the
parameters from the uniformly sampled search
space with the addition of the number of navigation
function samples ns :

pss =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ns

np

nh

d

αmin
αmax
ψmin
ψmax

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Algorithm 3 is applied to bias the search space
with respect to global guidance in the example shown

Figure 7. Focused terminal state sampling for adaptive search space generation. The ability to exploit global guidance via
state space sampling generates local motion-planning search spaces that are denser in the direction of minimum global cost
(and therefore more likely to reduce the cost to the goal). Examples (a) and (b) show the same setup as in Figure 6 but
focused in the direction of minimum global cost.

in Figure 7. It is similar to Algorithm 2 except that
the α parameter is not sampled uniformly; it is biased
to sample more densely in regions where the naviga-
tion function ϕ(x, y) is near a minimum. This is ac-
complished by sampling the navigation function at a
fixed horizon uniformly and creating a distribution
by taking the difference between the maximum and
the sampled values and dividing by the sum. Then
the integral of this conditional distribution is sam-
pled uniformly, generating a nonuniform sampling
of the angular value of the terminal position α. This
generates denser sampling in the low-cost regions of
the navigation function, corresponding to a denser
search space in those regions. The number of samples
taken of the navigation function ns can be dynami-
cally modified based on the complexity of the envi-
ronment and how long each sample takes to compute.
We use linear interpolation to approximate the navi-
gation function values between sampled states. All of
the shared shape parameters used in Figure 7 were
the same as in Figure 6 with ns = 100.

4.3. Satisfaction of Environmental Constraints

It is valuable for mobile robots operating in struc-
tured environments such as road networks and for-
est trails to consider environmental constraints in
the design of their local motion-planning search
space. Figure 2 exhibited the effects of ignoring such
constraints, leading to utterly ineffective planning
because many actions lie outside of the accept-
able navigation region. In situations in which
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environmental constraints are important, it is desir-
able to adjust the sampling strategies to be (at least
partially) based on these constraints. For example,
consider the search spaces shown in Figure 8. The
state-based sampling strategy here is parameterized
on the road shape at some forward distance along the
path and sampled along the perpendicular of the cen-
terline of the road. The alternative (noncenterline) ac-
tions exhibited here are generated for obstacle avoid-
ance and lane-switching capabilities.

Algorithm 3 . GENERATEGLOBALLYGUIDEDBOUNDARY

STATES (pss,xI,ϕ(x, y))

Input: pss (shape parameters), xI (initial vehicle state),
ϕ(x, y) (global navigation function)

Output: boundary state pair set (xN)
1 for i = 0 to (ns − 1) do
2 αsi ← αmin + (αmax − αmin) · i/(ns − 1)
3 cnavi ← ϕ(xI + d · cos(ψI + αsi ), yI + d · sin(ψI + αsi ))
4 end
5 cnavsum ← ∑n−1

i=0 cnavi

6 cnavmax ← max(cnav)
7 for i = 1 to (ns − 1) do
8 cnavi ← (cnavmax − cnavi )/(cnavmax · ns − cnavsum)
9 end

Figure 8. State-based sampling applied to navigation in road networks, an example of exploitation and satisfaction of
environmental constraints. In each of these examples, a local motion-planning search space is generated that adapts to the
shape of the road, inherently satisfying the environmental constraint of staying within or oriented along the lanes in the
direction of travel.

10 for i = 0 to (np − 1) do
11 for j = 0 to (nh − 1) do
12 n ← i · nh + j

13 xI,n ← xI
14 α ← FINDINTERSECTION (

∫ α
αmin

cnav, i/(np − 1))
15 xF,n ← xI + d · cos(α + ψI )
16 yF,n ← yI + d · sin(α + ψI )
17 ψF,n ← ψI + ψmin + (ψmax − ψmin) · j/(nh − 1) + α

18 end
19 end
20 return xN

To generate the search spaces exhibited in
Figure 8, we apply an algorithm similar to Algo-
rithms 2 and 3 except that the sampling strategy is
defined by some environmental constraints, such as
centerlanes and road boundaries. As shown in Fig-
ure 8, in the presence of multiple valid lanes, we
can easily generate single or full sets of trajecto-
ries to evaluate the relative cost of a lane change
maneuver. The search space parameter array that
corresponds to the provided example consists of
road centerlines lcenter, lane headings lheading, lane
widths lwidth, vehicle width vwidth, lane horizons d, the
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number of lateral offsets to generate for each lane np,
and the number of lanes itself nl :

pss =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

lcenter
lheading
lwidth
vwidth

d

np

nl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Algorithm 4 generally operates by finding the
state at some distance d along each lane defined in
our search space parameter array. In this particular
example, the terminal positions are sampled with a
uniform lateral offset δ from a lane centerline at a
fixed distance down the lane. Although it is not re-
quired, all of the terminal headings are constrained
to be aligned with the tangent of the centerline.

Algorithm 4 . GENERATELANEGUIDEDBOUNDARY

STATES (pss,xI)

Input: pss (shape parameters), xI (initial vehicle state)
Output: boundary state pair set (xN)

1 for i = 0 to (np − 1) do
2 for j = 0 to (nl − 1) do
3 xcenter ←COMPUTESTATEATDISTANCEALONGLANE

(lcenter,j, d)
4 n ← i · nl + j

5 xI,n ← xI
6 δ ← −0.5(lwidth,j − vwidth) + (lwidth − vwidth) ·i/

(np − 1)
7 ψF,n ← lheading,j
8 xF,n ← xcenter − δ sin(ψcenter)
9 yF,n ← ycenter + δ cos(ψcenter)

10 end
11 end
12 return xN

This is important for two reasons. The first is
that because all trajectories terminate at an equal dis-
tance along the path, the trajectory selection function
is easier to design because they match better with the
global guidance heuristic. The penalty for deviating
from the centerline of the road shape is accounted
for when all paths terminate at an equal distance
along the road. Control-sampled search spaces that
consider a constant distance for each trajectory do
not have this feature, and this is why in part such
approaches fail to navigate effectively in road net-
works. The second reason is in the control of the ter-
minal heading at points along the path. It is impor-

tant to consider whether an evasive action will in-
evitably lead the vehicle out of the lane, which would
be unacceptable in a real-world application. The abil-
ity to control terminal heading and curvature ensures
that the vehicle will stay in the lane after an evasive
maneuver.

5. PRACTICAL CONSIDERATIONS

The ability to apply an arbitrary state-based sampling
strategy is powerful, but actual implementation re-
quires solutions to a few additional practical prob-
lems. This section will describe potential and applied
solutions to several application challenges, including
search space envelope determination, state sampling
strategies, trajectory selection function, and model
identification.

5.1. Adaptive Search Envelope Determination
in Unconstrained Environments

The envelope of the adaptive search space depends
heavily on the dynamic limitations of the mobile
robot and the initial conditions. The shape and po-
sition of the search space horizon should adapt to the
current speed because of braking distance and obsta-
cle avoidance limitations. Curvature and angular ac-
celeration limits may decrease the range of terminal
headings.

An effective way to determine the envelope
of the reachable set is simply to exhaustively and
densely sample control space and record the extremes
achieved in state space. Such a method would have
to be employed offline, and it could not be used in
rough terrain or for vehicles whose models change
over time. Another approach is to exploit the con-
tinuity of the dynamic model and evaluate several
aggressive maneuvers (such as max-turn right and
left) to form rough bounds on reachable positions
and headings at the horizon. This approach is sim-
ple and fast, and it can be used for adaptive vehicle
models (whose motion model can change over time),
and so we have preferred it over the offline method.

5.2. Sampling the Search Envelope

Whereas it is important to have an accurate represen-
tation of the envelope of the reachable set to constrain
the search in regions where trajectories are likely to
be feasible, another equally important consideration
involves sampling of boundary states in this search
envelope. Although it has already been mentioned
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that it is beneficial to focus the terminal state sam-
pling in the direction of global guidance, it is also
important to generate a search space that is reason-
ably well separated. Given the high number of free-
doms still available in the definition of the boundary
state pairs (including initial state curvature and ve-
locity commands, terminal state positions, headings
and curvatures, and velocities), it is important to gen-
erate rules based on the expressiveness of trajectories
that adhere to the model dynamics to generate well-
separated search spaces.

5.3. Trajectory Selection Function

In any approach in which an optimal trajectory must
be determined from a local motion-planning search
space, generating the correct optimization function
for this procedure is important and often difficult. It
is important to generate a cost function that correctly
considers some mixture of risk, energy consumption,
slope dwell (time spent on slopes), global guidance,
smoothness, aggressiveness, and other “costs” that
can be associated with a trajectory. Although most
current approaches are hand tuned by robot opera-
tors, a promising approach is to apply machine learn-
ing techniques to discover the proper mapping from
action and environment to cost, but this method still
is human or self-supervised and requires a wealth of
useful feature inputs and representative data for the
training process. We have used a similar approach ap-
plied by other research projects by minimizing some
weighted combination of integrated cost and steering
activity.

5.4. Model Identification

It is important in the application of these model-
predictive techniques to have an accurate trajectory
prediction, as the validity of the motion plans is di-
rectly related to the fidelity of the forward vehicle
model. If a high-fidelity vehicle model is available,
we have the ability to directly execute commands
from the local planner without the need for a path
follower. In applications in which no model is avail-
able, the dynamics are too complex, or the model may
degrade over time, it may be necessary to apply some
feedback control to attempt to follow the selected tra-
jectory. The use of predictive motion models in mo-
tion planning and navigation simplifies the obstacle
avoidance problem by considering only dynamically
feasible actions in its search space.

Methods applied for model identification on the
two projects detailed in Section 6 consist of of-
fline learning and parameterized model tuning from
prior data. Neural networks have proven to be ef-
fective for offline learning of the forward predictive
model (Bode, 2007), but it can be difficult to pro-
vide comprehensive training data. We have imple-
mented parameterized models that represent the un-
derlying physics tuned for accuracy from prior data
logs, which has proven to be an effective, however
inefficient, method. More sophisticated approaches
involving online learning and real-time system iden-
tification will inevitably lead to better motion predic-
tion and higher-performance navigators for complex
environments.

6. EXPERIMENTS AND EXPERIMENTAL RESULTS

To evaluate the performance of our approach,
the adaptive search space algorithm presented in
Section 4 was tested in a series of simulation and field
experiments. The simulation experiments are com-
parisons, in a series of randomized worlds, of our
approach against constant curvature control based
search spaces. The field results consist of two sepa-
rate field robotic programs operating in complex and
distinct environments: the off-road DARPA UGCV-
PerceptOR Integrated (UPI) project and the Tartan
Racing project that produced Carnegie Mellon’s win-
ning entry to the DARPA Urban Grand Challenge in
2007. The vehicles used on each of these programs are
shown in Figure 9. Section 6.1 describes and details
the simulation experiments, and Section 6.2 demon-
strates new capabilities for the two field robotics
projects.

6.1. Simulation Experiments

This section describes the set of simulation exper-
iments performed to assess the value of the pro-
posed methods in a setting where experiments can
be controlled and a statistically significant number of
them can be performed. Simulation is the most cost-
effective way to judge the relative performance of the
proposed algorithms because a sufficient quantity of
field results would be prohibitively expensive to col-
lect. Also, field experiments spanning long periods
of time may be too difficult to control because con-
ditions such as weather, visibility, and vehicle health
will not be sufficiently controllable.
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Figure 9. The two mobile robot platforms used to perform the field experiments. (a) Crusher is a six-wheeled, skid-steered
field robot for the DARPA UPI program. (b) Boss, a converted Chevrolet Tahoe, was the platform for Tartan Racing and was
Carnegie Mellon’s winning entry in the 2007 DARPA Urban Grand Challenge.

6.1.1. Simulation Setup

The experiment consisted of a vehicle driving
through a randomly generated world populated with
randomly sized circular obstacles, simulating a forest
or boulder field environment. Obstacle positions and
sizes are drawn from bounded uniform distributions.
A region of points within a fixed radius from the ve-
hicle represents the portion of the world known to the
vehicle from its limited horizon perception system.
This region is updated in each planning cycle with
all obstacles. The vehicle model used for these simu-
lations consists of a simple first-order (change in ve-
locity is proportional to velocity error) approximation
for linear and angular velocity based on observations
from the Crusher platform. There is no uncertainty in
this simulation; both vehicle model and obstacle ob-
servations are perfect.

During each planning cycle, the vehicle follows
the path that was determined to be obstacle free for
the greatest length. That selected path is followed
for a distance corresponding to how far the vehicle
would travel during the time required for planning
and perception calculations. The global planner used
is Field D* (Ferguson & Stentz, 2006). In the case of a
tie, the path with the lowest Field D* distance to the
goal (based on the portion of the world that is known
at that point) is selected. In the simulation the goal is
1 km away and the local search space path lengths
are 17 m. The method of evaluating a constant set
of paths has been applied to the obstacle avoidance
problem at least as far back as Daily et al. (1988). A
view of the two search spaces, the environment, and
a comparison of two runs can be found in Figure 10.

For simplicity, the vehicle cannot adjust its speed
during a simulation. Instead, if the vehicle is in a po-
sition where is cannot avoid an obstacle at its fixed
speed, then the vehicle heading is changed to point
along the Field D* path to goal to simulate a stop-
and-turn correction.

6.1.2. Simulation Results

One hundred simulated runs were performed for
each of the search spaces. For each pair of runs, one
simulated world was generated and both the con-
stant curvature arc-based and adaptive search spaces
were tested on that world. The two search spaces
had equal numbers of trajectories. Simulations that
ended without the vehicle reaching the goal were
not used in the final results. A representative run
from the comprehensive set is shown in Figure 10(c).
Note that there were no successful simulations for
both search spaces at 5 m/s for the higher obstacle
densities, and so no data are provided in that region.
On average, the overall path length was between
25% and 60% shorter in high-obstacle-density worlds
for the adaptive search space as shown in Figure 11.
This demonstrates that the improved flexibility and
efficiency of the adaptive search space provides a
performance advantage over constant-curvature
search spaces in complex environments.

6.2. Field Experiments

As previously mentioned, the field experiments were
conducted on two mobile robot platforms designed
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Figure 10. Examples of the arc-based (a) and adaptive search space (b) driving through a simulated random world with a
limited perceptual horizon. (c) Plots of the resulting paths for each search space for one simulated world.

Figure 11. Simulation results. The percent improvement in path length provided by the adaptive search space compared
to simple constant curvature controls for various densities and vehicle speeds.
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for operation in different environments. The first set
of experiments was performed on Crusher, an au-
tonomous six-wheeled, skid-steered field robot de-
signed to operate in the most difficult outdoor en-
vironments. The second set of field experiments was
performed on Boss, a converted Chevrolet Tahoe de-
signed for autonomous operation in urban environ-
ments. The Crusher experiments are a series of com-
parative tests to an arc-based search space, and the
Boss experiments exhibit new capabilities gained and
difficult problems made easy by applying this ap-
proach to highly constrained environments consider-
ing dynamic obstacles.

Boss and Crusher operated with similar naviga-
tion architectures. A global motion planner (Field D*
for Crusher, a lane-based planner for Boss) provided
global guidance to a local motion planner based on
the presented adaptive search space algorithm to
navigate complex environments. A testament to the
value of model-predictive motion planners was that
neither system relied on a path tracker; the controls
generated by the model-predictive trajectory gener-
ator were accurate enough when executed without
path-relative error feedback to ensure safe and effec-
tive navigation.

6.2.1. UPI/Crusher

Expressiveness of maneuvers is important for com-
petent operation of mobile robots when obstacles are
dense, speeds are high, or stopping and reorient-
ing of the robot is undesirable or unacceptable. The
autonomy system on Crusher has proven the capa-
bility to traverse more than 30 km/day under such
circumstances with an average distance of more than
10 km between human interventions.

This adaptive search space has been used exten-
sively on the Crusher platform during UPI field tests.
For these field tests the adaptive search space was
inserted into a full planning system. This system in-
cludes Field D* to provide global guidance and a se-
ries of reactive behaviors that are called to help the
vehicle navigate through difficult situations that in-
volve backing up. The adaptive search operates in the
main behavior, which is responsible for forward navi-
gation when there are no error conditions. These new
trajectories replace a set of constant curvature con-
trols that were used in that behavior for many years.
Online, trajectories are selected to minimize the sum
of the convolved cost along the trajectory, the Field
D* distance to goal from the end of the trajectory, and

a set of costs that penalize large curvature commands
and deviation from the previously planned path.

It would be difficult and expensive to perform
statistically significant tests of our hypothesis on this
mobile robot. Routine software upgrades are per-
formed several times per week in order to enhance
the performance of the system in DARPA controlled
field tests, and a freeze on all other development ac-
tivities for our purposes for the times required is sim-
ply not feasible. Nonetheless, a small number of com-
parisons were completed. Two runs were completed
on a short, 2-km course during which the only pa-
rameter changed was the set of trajectories used in
the forward navigation behavior. The path traversed
by the vehicle using each trajectory set is shown in
Figure 12(b). As shown in Figure 12(a), the adaptive
search space achieved a lower path cost early in the
runs and maintained that advantage throughout the
course. This set of runs was repeated three times. Av-
eraging the results of these three runs, the adaptive
search space had a 3.5% lower total path cost com-
pared to constant curvature controls, where cost can
be related to the roughness of the terrain or probabil-
ity of mission failure.

In addition to these specific comparisons, many
subjective observations led the field team to believe
that this search space offered some improvements
over our legacy constant curvature controls. Because
of these factors, this adaptive search space has been
successfully used on the UPI program for 5 months
with more than 250 autonomous kilometers driven
during field tests.

6.2.2. Tartan Racing/Boss

The second platform for experiments in adaptive
search spaces, Boss, was designed to compete in
the 2007 DARPA Urban Grand Challenge, a 60-mile
(96.5 km), 6-hour race through an urban environ-
ment. To date Boss has driven more than 2,000 au-
tonomous miles using the described adaptive search
space algorithm. This algorithm was chosen for key
parts of the local motion planner design based on
its ability to conform the search space to highly con-
strained road environments and its generation of tra-
jectories that satisfy a representative dynamic model.
The latter was especially important for navigation
among movable obstacles, as we needed an accurate
prediction of vehicle motion to evaluate the safety of
each action. The application of motion models that
do not accurately represent reality (instantaneous
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Figure 12. Comparative experiment between arc-based and adaptive search space local motion planners on the Crusher
mobile robot. (a) Graph showing the total path cost as it accumulates along the paths followed by the vehicle for each search
space. (b) The two paths overlaid on a cost map of the site.

Figure 13. In-lane navigation. These images show the local motion-planning search space of Boss navigating in a single-
lane road. (a) The trajectory that acquires the centerline path of the lane is selected because of the absence of obstacles.
(b) The vehicle selects an alternative trajectory to the left of the centerline to avoid the parked car obstructing the right-
hand side of the lane.
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Figure 14. Generation of search spaces for passing. The ability to choose an arbitrary state sampling strategy allows simple
generation of local motion-planning search spaces for lane switching. Boss senses that it would like to pass a slower-moving
car, so it generates and evaluates candidate actions for switching lanes.

velocity, infinite acceleration, the absence of angular
velocity or angular acceleration limits) could lead to
selecting suboptimal and/or dangerous maneuvers
in the presence of both static and dynamic obstacles.
This section will highlight two capabilities of apply-
ing this method to on-road navigation from the Ur-
ban Grand Challenge event that took place in Vic-
torville, California, on November 3, 2007.

6.2.2.1. In-Lane Navigation

The majority of urban driving involves navigating
in a single lane and adhering to local traffic laws.
Typically, it is optimal to drive in the center of these
road lanes as this provides the most distance between
the vehicle and other obstacles in the environment.
In some situations, it is necessary to make small ad-
justments inside the lane to avoid cones, potholes,
pedestrians, parked cars, or other typical hazards. It
is therefore necessary to not only generate trajecto-
ries that will drive the vehicle to the center of the
road lane but to generate other candidate actions that
offset the vehicle within the lane. Figure 13 shows

two situations where the vehicle plans to drive down
the center of the lane [Figure 13(a)] and the vehi-
cle selects an action that drives the vehicle to the
left (but still within the lane) to avoid the parked
car that is obstructing the right-hand side of the lane
[Figure 13(b)].

6.2.2.2. Lane Switching

When lanes can be blocked in a multilane road or
when driving as fast as possible is important, the ca-
pacity to switch lanes is necessary. When a higher-
level planner in the motion-planning hierarchy sug-
gests to the local motion planner that it should switch
lanes, the state space sampling strategy for the search
space adapts to the desired lane and leverages the
model-based trajectory generator to determine the ac-
tions necessary to reach those states. For example,
consider Figure 14, where the vehicle is attempting
to pass a slower-moving vehicle on a two-lane road.
When Boss realizes that it is necessary to change
lanes, a series of candidate actions to make the s-turn
maneuver to change lanes are evaluated. Notice that
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a single trajectory to a forward point of the current
lane is generated to provide an alternative action in
the situation in which all trajectories that drive to the
desired lane collide with obstacles, are infeasible, or
are less optimal than driving in the current lane. Al-
ternatively, a control space sampling technique that
considered actions more sophisticated than arcs (e.g.,
clothoids) could also be used to generate the trajecto-
ries for lane switching. This approach would, how-
ever, be considerably less efficient as it could not
guarantee that all of the actions generated satisfy the
environmental constraints (staying within the road
network) and thus would incur the increased com-
putational burden of generating the large set of ac-
tions needed to densely search the more complex con-
trol space. Limiting the number of sampled actions
negates the added computation requirements but sac-
rifices completeness as the control space is sampled
sparsely. Using the state space sampling framework
for navigating in constrained environments works
well because it allows the local motion planner to fo-
cus its search in the direction of interest using more
sophisticated control inputs.

7. CONCLUSIONS

We have leveraged our own recent work in model-
predictive trajectory generation to create the ca-
pacity to efficiently generate state-based sampled,
dynamically feasible search spaces. This approach
generates search spaces that are more expressive
and outperform contemporary approaches in input
or control space when navigating in complex en-
vironments. This is important because the number
of trajectories that we can evaluate is limited (be-
cause computational resources and replanning time
are constrained) and more complete search spaces
are more likely to find the optimal solution. We have
demonstrated that this approach produces search
spaces that are less influenced by the initial state of
the vehicle, can exploit global guidance, and can sat-
isfy environmental constraints, all within a simple
unified framework. When navigating in an uncon-
strained environment, the terminal boundary states
in the search space can be focused in the direction of
minimum global cost. In a constrained environment,
such as in lane following or navigating in traffic, diffi-
cult problems such as lane switching or in-lane obsta-
cle avoidance become simple. The inherent feasibility
of the search space provides the navigation function
with better information to represent the actual result

of a selected action. Because the actions consider pre-
dictive dynamic models, they can be applied directly
without the explicit need for a path follower.

The provided simulation and field experiments
demonstrate that the algorithm performs better
when directly compared to a contemporary constant
curvature input space sampling technique. We also
advocate that this approach simplifies several rele-
vant problems for mobile robot navigation in road
networks, including lane changes and in-lane navi-
gation. This algorithm has been used to generate lo-
cal motion-planning search spaces for two outdoor
mobile robots at speeds up to 30 mph (13.4 m/s),
has been used to navigate thousands of autonomous
kilometers in both constrained on-road and complex
off-road environments, and was generally used as
the search space generation component for Carnegie
Mellon’s winning entry in the 2007 Urban Grand
Challenge.
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