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Abstract.  Photogeometric sensing is a relatively new sensor 
modality that tightly integrates geometry and appearance sensing 
into a single package. Such a sensor produces imagery that 
encodes the appearance and the range to every sensed point in 
the scene. This new type of sensor enables much higher fidelity 
virtualized reality displays that can be produced in real time 
from the data gathered by a moving robot. Such displays exhibit 
several ideal characteristics for human robot interaction tasks 
that enable new approaches to supervisory control and remote 
visualization. Photogeometric sensors suitable for HRI 
applications cannot yet be purchased but they can be constructed 
by co-locating ranging and appearance sensors and combining 
the data at the pixel level. This paper outlines our approach to 
the construction of such sensors as well as their successful use in 
several applications. 

1 INTRODUCTION 
We will use the term appearance to refer to sensing modalities 
which are sensitive to the intensity of incident radiation 
including visible color, visible intensity, and infrared modalities. 
Conversely, geometry will be used to refer to modalities that 
register any of depth, range, shape, disparity, parallax, etc. The 
term photogeometric (PG) sensor will refer to a sensing device 
that produces both kinds of data in a deeply integrated manner. 
For our purpose in this paper, the data is deeply integrated if the 
spatial correspondences of the data are known. Ideally, as shown 
in Figure 1, the resolutions are matched as well so that a one-to-
one mapping exists between geometry and appearance12.  
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Figure 1: Photogeometric Data Set. Every color pixel in the 
left image has an associated range pixel in the right image. 

The deep integration of appearance and geometry data can be 
a powerful technique for enabling effective human-robot 
interaction. In many applications, robots must understand the 
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geometry of the environment in order to move around 
competently while avoiding collision. In such applications, 
geometry sensing is often the preferred modality of the robot 
designers. Conversely, humans process appearance data more 
readily and we can assimilate geometry perceptually only when 
it is converted to appearance data. For example, two stereo views 
or the parallax evident in a moving cloud of points on a 
computer screen will enable humans to perceive depth. 

When images of both modalities are available – and their 
correspondence is known – it becomes possible to convert 
between the modalities relatively seamlessly. For supervisory 
control, such conversion makes it possible to extract accurate 3D 
coordinates when a pixel in a video stream is designated. For 
visualization, such conversion makes it possible to render 
synthetic views of the scene from arbitrary perspectives which 
may never have been the site of any real sensor. 

The paper is organized as follows. Section 2 provides a broad 
overview of related work. Section 3 explains our technique for 
producing a photogeometric sensor. Section 4 describes an 
experiment using such sensing for mobile manipulator 
teleoperation. Section 5 describes an experiment using such 
sensing for outdoor mobile robot teleoperation. Section 6 
provides a brief summary and outlook. 

2 RELATED WORK 
The notion of aiding an operator by displaying the perception 
data produced by a remotely controlled robotic system must have 
occurred to the first designers of such systems. Numerous 
techniques for supervisory control and teleoperation of 
manipulators, and even telepresence were clearly outlined as 
early as the mid 1980s [16]. The same concepts were considered 
early for legged vehicles [13] and wheeled mars rovers [3].  

In broad terms, although perception data is nominally a view 
of the state of the environment, it is more properly described as a 
view of the robot’s model of that environment. Hence, such data 
is equally a view into the internal state of the robot. It is natural 
for engineering displays to use such data during system 
development but it also quickly becomes clear that a good way 
to understand robot behavior is to know what it “thinks” it 
perceives in its immediate surroundings. 

Of course, this mode of tele-operation depends on the use of 
adequate sensing. Military and consumer markets have driven 
the development of guidance systems and TV cameras that are 
relevant to mobile robots today. While laser ranging sensors are 
now commercially produced for factory robots, systems 
designed specifically for outdoor mobile robots are either single 
axis, immature products, or of inadequate performance for our 
purposes. For these reasons, our work continues a long tradition 
[11] of custom sensor development for lack of any alternative 



which continues in robotics labs around the world up to the 
present time [12]. 

Given the sensor data needed, the earliest approaches simply 
displayed the raw sensor data or showed the robot in a 2D 
overhead view in the context of its surrounding perceived 
objects. Applications like space exploration generated a strong 
impetus to develop more realistic virtual displays as early as 
1991 [8]. These systems were tested terrestrially [6] and 
derivatives were ultimately used on the Mars pathfinder mission. 
Contemporary developments include more emphasis on sensor 
fusion [5] as well as efforts which display both forms of data in a 
less integrated but more useable way [15].  

Our work presented in this paper is consistent with trends to 
provide more realistic views for the purpose of real-time control. 
However, our work emphasizes the construction of a novel 
sensing device which performs sensor fusion at the pixel level. 
This device has been designed to be well suited to solving the 
problem of virtualizing a real environment in real-time.  

3 IMPLEMENTING PG SENSING 
At some point in the future, flash lidar devices may be available 
which share apertures with color cameras in order to produce 
photogeometric data in hardware. Until that day comes, we find 
the value of PG data to be worth expending effort to produce it 
in whatever manner we can today. 

Our implementation approach centers on the goal of 
producing an integrated data set of appearance and geometry 
data from two different sensors. The data may be organized 
arbitrarily but our two most common formats are camera-derived  
color data augmented with range, rangified color (RC), and 
lidar-derived range data augmented with color, which we call 
colorized range (CR) data. 

Computational stereo vision is a natural RC modality because 
range is produced for every pixel in the reference appearance 
image.  However, its utility in applications can be limited due to 
the relatively poor quality of the range data. This is often the 
case in our applications. Flash lidar sensors also continue to 
advance [1] but none yet meet our requirements for operation in 
outdoor environments. Conversely scanning lidar devices have 
been our preferred geometric sensing modality for two decades. 
Nevertheless, we will discuss PG sensing where the range data is 
provided by a scanning or a flash lidar. 

 In general, every appearance modality can potentially be 
paired with every geometry modality. Ideally, each sensor of a 
pair would image the same region of the scene as the other at the 
same resolution and frame rate from the same position. In 
practice, numerous technical issues arise due to the different 
attributes of the two sensors including: 
• Projective Geometry. Lidar is often spherical polar, 

whereas cameras (and flash lidars) provide a perspective 
projection. 

• Resolution. Scanning lidar typically produces 1% of the 
angular resolution (solid angle) of a camera so there can be 
up to 100 camera pixels for each lidar measurement. 

• Field of View. Standard camera lenses, spherical mirrors, 
and lidar scanning mechanisms rarely provide the same 
field of view. 

• Location. Displacement of one sensor center of projection 
or emission relative to another leads to parts of one view 
missing from the other ‒ even if all other parameters 
match. 

• Frame Capture and Beam Scanning. In cases where data 
is gathered on the move, each point of lidar data is 
captured from a different sensor position whereas all pixels 
in a camera frame come from a single position. 

3.1 Establishing Pixel Correspondences 
A basic property of cameras is their projective geometry which 
projects a 3D scene onto a 2D photosensitive sensor array. While 
the azimuth and elevation coordinates in the image are related to 
the equivalent directions in the scene, information about the 
depth of objects is lost when a camera image is formed.  

Hence, the most valuable attribute of PG imagery is its 
recovery of the depth dimension which is lost when a real scene 
is imaged with a camera. This information is recovered by: 
• establishing an association of lidar range points with 

camera pixels 
• geometric transformations to convert lidar data to camera 

coordinates 
For RC data, the color data is augmented with depth so that 

the result is an augmented image. For CR data the range data is 
colorized and the result is an augmented range image or point 
cloud. In either case, the mechanism to establish 
correspondences is the same. Consider Figure 2 which expresses 
the essence of the problem when both sensors are viewed from 
overhead.  

For now, suppose that both sensors are stationary with respect 
to the scene and let us define a lidar “image” to mean the data 
produced by one sweep over the scene of the lidar scanning 
mechanism. 

While it is not clear how to directly map color pixels onto a 
lidar data set, the reverse operation is conceptually 
straightforward. Hence both RC and CR datasets rely on a 
common procedure to establish correspondences. Let the letter 
L  designate a coordinate frame attached to the lidar center of 
emission and let the letter C  designate one at the camera center 
of projection. The homogeneous transform matrix that converts 
coordinates of a point from frame L  to frame C  is denoted C

LT . 
Let the letter I  designate row and column coordinates in the 
camera image plane. The projective transformation matrix that 
provides the image coordinates of a 3D point will be designated 

I
CP . The homogeneous dimension will be omitted from vectors 

unless the matrices are written out. Under this notation, the 
camera image coordinates [ ]TI yxr =  of the point imaged by a 
lidar point [ ]TL zyxr =  are: 

LC
L

I
C

I rTPr =  
 
(1) 

If the scene has sufficient 3D (non-planar) structure, the 
spatial separation of the sensors introduces characteristic 
problems of triangulation: 
• Missing parts. Even with perfect field of view overlap, 

surfaces oriented perpendicularly (and invisibly) to the 
viewing direction of one camera may be visible to the 
other. 

• Depth ambiguity. It is possible for the lidar to have 
ranged to a point on a background object that is behind a 
foreground object which was imaged by the camera. 
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Figure 2: Multi Sensor Geometry and Depth Ambiguity. The 
camera measures the angle to objects whereas as the lidar 
measures angle and range. Due to the baseline separating the 
sensors, a lidar may image more than one object along the line of 
sight of a camera pixel. 

While the first problem has no solution, the second can be 
solved by forming a depth buffer of all of the lidar data as 
viewed from the perspective of the camera image.  All lidar data 
can be projected into bins which are sorted by depth or the 
processing may simply retain only the smallest range value in 
each bin. In either case, when two or more lidar pixels fall on the 
line through a given camera pixel, only the closest lidar point 
should be associated with the color pixel. All others are occluded 
and invisible to the camera so their color is unknown. While 
these triangulation issues cannot be eliminated entirely, they can 
be mitigated significantly by placing the two sensors very close 
together relative to the depths being imaged. However when the 
lidar is mounted on a moving vehicle, its continuous scanning 
process places limits on what can be achieved. 

3.2 Forming Photogeometric Datasets 
Given the correspondences between elements in each data set, 
either CR or RC data may be formed. The production of CR data 
using lidar is easiest to illustrate. In this case, the sensor intrinsic 
data format is a temporally ordered set of 3D points expressed in 
Cartesian or polar coordinates relative to the sensor center of 
emission. Each lidar point is simply augmented by the color of 
its associated camera pixel, if any. The color information might 
be the color of the closest camera pixel, the average over a 
region, or a block of pixels forming a small texture map. 

In the case of RC data, the goal is to produce range data for 
every color pixel in a color image. Typical camera angular 
resolutions are 1 millirad whereas lidar is typically 10 millirad. 
Hence, once the lidar correspondences are computed, only 1% of 
the camera pixels can be expected to have associated lidar 
points. In other words, there will inevitably be holes in the 
coverage of the image by the range data. Small holes will be due 
to the reduced angular resolution of the lidar and larger ones due 
to missing parts or nonoverlapping fields of view.  

When dense range data is desired, interpolation can be 
justified on the basis that the lidar is really providing the average 
range of the region of the scene that is spanned by a large 
number of camera pixels. The range data can be interpolated 
using the dilation operation of computer vision to fill small 
holes. The dilation radius can be related to the expected angular 
lidar footprint in the camera image. When both sensors are close 
together, the effect of surface orientation is minimal. 

3.3 Sensor Configuration 
Due to many considerations including the numerous robotic 
platforms that we construct annually and the desire to 
standardize solutions across programs, we have been 
continuously refining our photogeometric sensor concept for 
many years.  

Two recent sensor designs are shown in Figure 3. For 
scanning lidars, we typically purchase an off the shelf scanning 
lidar which scans in one degree of freedom (called the fast axis) 
and then we actuate the housing in a second degree of freedom 
(called the slow axis) in order to produce a scanning pattern that 
spans a large angle in both azimuth and elevation. For flash 
lidars or stereo ranging systems, the interfaces to these devices 
are equal or similar to those of cameras so the process is more 
straightforward. 
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Figure 3: Two Custom Photogeometric Sensors.  The device 
on the right fuses data from a commercial scanning lidar by 
SICK, stereo cameras, and a forward looking infrared (FLIR) 
camera. The device on the left fuses a PMD-Tec flash lidar with 
a color camera. 

The interface to the composite device is a combination of fast 
Ethernet (used for high bandwidth data) and CAN Bus (used for 
low latency for control). One design goal is to render the 
composite device interface standard, high level, and easy to use.  

The lidar pointing control system provides precisely timed 
feedback on the angle of rotation. This data stream is merged 
with the range and angle data coming from the lidar to form a 2D 
scanning lidar data stream. This stream is then optionally merged 
with any camera data and transmitted to the host computer 
system.  

4 REMOTE MOBILE MANIPULATION 
Mobile manipulation is a task for which human-robot interaction 
is often needed due to the difficulty of dexterous manipulation 
and the higher stakes associated with forceful interaction with 
the environment. While robots can often competently control 
their gross position, the final operations of the end-effector 
tooling may need to be performed with a human in the loop. 

We recently conducted an effort to construct a mobile 
manipulation system that is analogous to commercial platforms 
and to endow it with a photogeometric sensor in order to study 
the benefits achievable when an operator designates a target to 
be manipulated on a video display [2]. Given the historical lack 
of range data, standard solutions to this problem include 
implementing a visual servo or using the robot navigation system 
to drive in the general direction designated until the operator 
issues a stop command. 



However, in complex environments or in cases where the 
operator needs to direct attention elsewhere, it is more effective 
to have the robot decide when to stop. Furthermore, if 
autonomous obstacle avoidance is used, the robot can perform 
much more intelligently when it knows the precise 3D target for 
the manipulator end-effector. If manipulation and mobility are to 
be automatically coordinated, it again is necessary to know the 
3D coordinates of the target. Hence, this is a case where it is 
valuable to have the human look at video while geometry 
(derived from the video) is communicated to the robot. 

4.1 Platform Design 
The robot used for these experiments was a modified LAGR 

mobile robot [9], fitted with a custom three degree-of-freedom 
manipulator arm and a gripper end-effector  (Figure 4). The base 
vehicle has proved to be a very flexible research platform: in 
addition to over 40 standard models deployed at various 
universities, custom versions with LIDAR, metal detectors and 
omnidirectional cameras have been built. 

The Photogeometric sensor consisted of two color video 
cameras, and the flash LIDAR unit of Figure 3 provided by 
PMDtec [14]. One camera is mounted on the manipulator arm 
near the wrist, for use during manipulation. The second camera 
and flash LIDAR unit is mounted to the shoulder yaw joint for 
driving and target acquisition. 

 The PMDtec sensor had a 30 Hz frame rate, a 64x48 range 
pixel array, a maximum range of 7.5 m, and was capable of 
operation in indoor and outdoor environments. The field of view 
was adjustable using standard C-mount optical lenses. For our 
experiments, a lens with a focal length of 4.2mm was used. This 
provided a 60 degrees horizontal and vertical field of view. By 
using a projective lens model, each pixel’s range can be 
converted a 3D point in the workspace. 

 
 

Figure 4: Test Platform for Click and Grasp.  The LAGR 
robot platform was retrofitted with a manipulator and a custom 
photogeometric sensor. 

4.2 Algorithm Design 
We implemented a “Click and Grasp” function which allows 

an operator to click on a color image to designate a target, and 
have the system then a) recover the location in 3D space, b) 
navigate to within manipulation range, and then c) either grasp 
the target or put the end-effector as near as possible. In addition 
to our PG sensor, key aspects of the solution included control 
algorithms that coordinated the motion of the platform and the 
manipulator.  
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Figure 5: Operator Control Unit Display.  The operator 
selects a target position in the left display. The system then plans 
and displays the entire motion and optionally asks for 
confirmation before execution.  

4.3 Results 
A custom graphical user interface was developed for the test 

(Figure 5). Two sets of experiments were performed to evaluate 
the effectiveness of the system in terms of increasing efficiency 
and usability.   

In the first test, an object to be grasped was placed within 
reach of the manipulator and time to achieve the grasp was 
measured in various control modes.  

Operator Target 1 
(secs. / errs) 

Target 2 
(secs. / errs) 

Target 3 
(secs. / errs) 

Auto 28.27 / 0 22.52 / 1 24.20 / 0 

Expert (JS) 41.92 / 0 40.84 / 0 45.73 / 0 

Expert 
(WS) 

47.73 / 0 32.75 / 0 45.37 / 0 

Novice (JS) 38.43 / 0 36.95 / 0 32.70 / 0 

Novice 
(WS) 

29.21 / 1 22.85 / 0 33.36 / 0 

Table 1: Pick Up of Object Within Reach of Manipulator. 
The operators were allowed to operate the manipulator in both 
joint-space (JS) and end-effector workspace (WS). “Auto” 
corresponds to using the automatic “click and grasp” system.  

The automatic system was able to accomplish the task 
significantly faster than both (expert and novice) operators using 
manual teleoperation, and workspace controls significantly 
improved the completion time of the novice operator. On 
average, the automatic click and grab system was able to 
perform the static manipulation task 13% faster than both users.  

Operator errors were noted whenever the test target was 
knocked over by the manipulator.  The test was then reset and 
the operator permitted to retry. If a failure was due to insufficient 
grasping force at the end effector, it was not counted as an 
operator error.  Our intent was to focus on characterizing the 
utility of the system as an aid to the precise positioning of the 
end effector. 

 
 



In the second test, the object was outside the manipulator 
workspace so the platform had to be moved in either an 
automated or manual fashion. 

Operator Target 1 
(secs./errs) 

Target 2 
(secs./errs) 

Target 3 
(secs.) 

Target 4 
(secs.) 

Auto 37.08 / 0 68.43 / 2 54.61 / 0 56.21 / 1 

Expert  48.37 / 0 40.77 / 0 54.75 / 0 43.00 / 0 

Novice 1 45.42 / 0 48.98 / 0 40.52 / 0 32.42 / 0 

Novice 2 49.52 / 1 49.43 / 0 43.17 / 0 35.48 / 0 

Table 2: Pick Up of Object Outside Reach of Manipulator. 
The automatic “Click and Grab” system performed comparably 
to the human operators. 

Work-space controls reduced both the time required to 
complete the task as well as the number of errors made. On 
average across four trials, operators reduced their number of 
errors from three to one, and reduced their completion time by 
11%. The results demonstrate that the autonomy and perceptive 
capabilities of our system eases the workload on the operator 
while increasing task efficiency. 

Results from the automatic system were potentially limited by 
the accuracy of the flash lidar range and co-registration. At short 
ranges, accuracy was sufficient to reliably grasp an object. 
However, at longer ranges, errors were large enough to cause 
manipulation errors. Instead, “click and grab” at long range 
required several operator interventions to re-designate the target 
once the base had positioned itself within range. 

4 MOBILE ROBOT TELEOPERATION 
Effective operation of any mobile platform without direct line-
of-sight is intrinsically difficult to achieve. In video-based 
teleoperation, the loss of peripheral vision caused by viewing the 
world through the “soda straw” of a video camera reduces 
driving performance and increases the operator’s frustration and 
workload. Wireless communication links are also subject to 
dropouts and high levels of latency. Their bandwidth limitations 
typically cause a large reduction in image quality relative to the 
fidelity of the underlying video cameras. 

When the robot undergoes significant or abrupt attitude 
changes, the operator response may range from disorientation, to 
induced nausea, to dangerous mistakes. In contexts where the 
operator is also in danger, the need for high attention levels 
deprives operators of the capacity to pay attention to their 
surroundings. Wireless communications issues and difficulty 
controlling the robot also increases time on task and increases 
the time required to become a skilled operator. 

4.1 PG Sensing for Autonomy 
We have been working on improved operator displays for at 

least a decade on our robot autonomy programs [3]. PG sensing 
was originally motivated by its capacity to disambiguate natural 
obstacles and non-obstacles of the same shape (such as a rock 
and a bush) by examining their color signatures (see Figure 6). 
Once the data was available for use in autonomy however, we 

began to produce specialized point cloud displays and quickly 
recognized the potential of the PG data for human interfaces. 
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Figure 6: Original Engineering Displays of PG Data on 
Autonomy Programs.  The display of traversability / cost or 
elevation from an overhead display (right) is traditional in 
robotics. In recent years, colorized point clouds have also been 
used. The evolution of the left figure toward photorealism was a 
natural extension of ongoing efforts. 

4.2 3D Video 
Photogeometric sensing enables a new capacity to address 

many of the problems described in the introduction to this 
section by providing a photorealistic, synthetic, line of sight 
view to the robot based on the content of geometry-augmented 
real-time video feeds. The operator experience is equivalent to 
following the robot in a virtual helicopter that provides arbitrary 
viewpoints including an overhead viewpoint and the over-the-
shoulder view that is popular in video games.  

The fusion of video and geometry produces a database whose 
content is much closer to a computer graphics rendering database 
than basic video. If the geometry is converted to faceted surfaces 
and the imagery is converted to textures, the PG sensor data has 
been converted to a rendering database. If this conversion is 
performed in real-time, a kind of hybrid 3D Video is produced 
which can be viewed from arbitrary perspectives while 
exhibiting the photorealism and dynamics of live video. 

If the sensors are omnidirectional and/or if the system 
remembers and integrates the rendering primitives over time, the 
net result is the real-time virtualization of the scene which 
enables the operation of the robot quite literally as if it were a 3D 
video game. 

3D Video ViewOne Video Frame

 
 

Figure 7: 3D Video View of a Mobile Robot.  Left: A video 
frame produced from a camera on a moving vehicle. Right: The 
3D Video view produced from all of the video that has been 
received in the last few seconds by the vehicle. The operator can 



look at this database from any angle, at any zoom, while it 
continues to be updated in real time.  

The ability to synthetically generate a viewpoint via computer 
graphics leads to the following capabilities: 
• A natural mechanism to introduce virtual operator aids into 

the display. 
• The capacity to zoom into objects of interest and view 

them from different perspectives (for example, from above 
or from the side) from just a few inches away. 

• The capacity to have multiple operators cooperate from 
multiple views, perhaps even using cooperating robots. 

5.3 Results 
The goal of 3D Video technology is to increase an operator’s 
situational awareness of the vehicle being controlled, thereby 
reducing operator errors and increasing the speed with which 
tasks are completed. 

We conducted an operator performance assessment over a 
period of one week involving five operators of different skill 
levels. The participants averaged 20 years of automobile driving 
experience. Three subjects had prior experience teleoperating a 
live vehicle, including one with a 3D Video system. Two of 
these subjects had participated in one other experiment, while 
the other had extensive experience, teleoperating a vehicle in 
many experiments. Three subjects had minimal experience 
teleoperating a simulated vehicle (two of these included in the 
group with live vehicle experience). Four subjects had been 
playing driving-based video games for an average of 13 years, 
with one subject playing as often as a few times per week. One 
subject had never played a driving based video game.  

The test platform was a John Deere eGator vehicle retrofitted 
for remote control and teleoperation. Participants completed four 
test conditions, which were counter-balanced across participants 
to minimize order effects related to course and Operator Control 
Station (OCS) familiarity:   

 

1.  Manually drive from seat  
2.  Basic Teleoperation with live video 
3. Teleoperate with 3D Video - without motion prediction 
4. Teleoperate with 3D Video - with motion prediction 

 

Motion prediction refers to a method used to alleviate the 
effects of video latency. We use the most recent navigation state 
received from the robot and predict the robot position based on 
the terrain shape and the history of operator inputs. Due to 
latency in sending commands to the robot, the instant of time 
being predicted is not “now” but rather the moment in the future 
when the commands are predicted to arrive at the vehicle. In 
principle the display will then respond instantly to operator 
inputs and it will correspond to a point in time slightly ahead of 
where the vehicle is now. The availability of lidar data makes it 
possible to predict robot motion to relatively high accuracy 
compared to the alternative of ignoring the latency. 

The course consisted of a paved roadway with traffic cones set 
up to guide drivers at particularly ambiguous areas such as 
intersections. Course features included slaloms, decision gates, 
and discrete obstacles as a series of loose and tight turns. 

Performance metrics included course completion time, course 
accuracy, average speed and errors as well as subjective input on 
workload [7], impressions of the system and recommendations 
for future improvement. Errors were defined as hitting a cone, 
(having the vehicle emergency-stopped before) hitting an 

obstacle along the edges of the course (concrete barriers, fences, 
and hay bales occurred sporadically along the perimeter of the 
course), or deviating from the defined region of the course 
(driving off the road). In the end, course accuracy was not 
measurable due to data collection equipment availability. 

Course Completion Time Results:  As the figure below 
indicates, 3D Video enabled operators to complete the course 
faster than basic teleoperation:  3D Video alone led to 
completion times approximately 20% lower, while times were 
30% lower when 3D Video was combined with motion 
prediction (MP). As expected, manual driving (in the vehicle) is 
still far superior, with course completion time approximately 
75% lower than basic teleoperation. 

 
Figure 8: Average Course Completion Times 

Speed Results: The benefit of 3D Video follows the same 
trend as completion time. Basic teleoperation achieved 1.0 m/s 
average speed, while 3D Video alone led to 30% faster driving, 
and 3D Video with motion prediction increased speed by 50%.  
Manual driving was more than three times faster. 
 

 
Figure 9: Average Speed 

Number of Stops: One interesting repetitive event was 
operators choosing to stop the vehicle. This was a common 
response when relevant information was not available due to 
limited field of view or because latency disoriented the operator. 
3D Video configurations reduced the frequency of stopping by 
43% when compared to basic teleoperation. No drivers stopped 
during the manual driving configuration. 

Error Rate:  Fewer errors were made with the 3D Video than 
basic teleoperation. With 3D Video alone, the error rate dropped 
by almost 50%, while the error rated dropped by about 20% 



when 3D Video was combined with motion prediction. Manual 
driving is again the gold standard, with an error rate 
approximately 75% lower than basic teleoperation. Interestingly, 
the course was sufficiently complex that drivers did commit 
errors even with manual driving. The average rate was 2.4 errors 
per run, and every driver committed at least one error over the 
course. 

 
Figure 10: Error Rate 

One result is particularly interesting: drivers made markedly 
fewer errors without motion prediction than with. In other 
metrics, motion prediction generally shows a small but positive 
benefit, while here, the contrast is substantial. Analysis of the 
motion prediction system likely explains why:  a combination of 
i) variable latency invalidating the constant-latency model used 
in the software, ii) sub-optimal vehicle model parameters and iii) 
inaccuracies in the pose data, all contributed to errors in motion 
prediction that were at times substantial (relative to the tolerance 
of many of the course decision gates, for example). 

Workload:  The NASA TLX workload questionnaire was 
administered after each run, allowing operators to rate perceived 
mental demand, physical demand, temporal demand, own 
performance, effort and frustration associated with each driving 
condition. Overall workload scores indicate the least amount of 
workload was required with the 3D visualization system alone. 
As expected, the highest workload was achieved with live video, 
while 3D Video with motion prediction and manual drive were 
rated similarly. In general, manual driving workload was rated 
higher than expected.  This may be due to the physical effort 
required to use the eGator steering wheel and a lower than 
anticipated perceived performance rating. 
 

 
Figure 11: Overall Workload 

Looking at the dimension scores associated with overall 
workload, differences between driving conditions become more 
apparent. Live video required significantly more mental demand 
than other driving conditions, as well as higher temporal 
demand, perceived effort and frustration levels. Temporal 
demand ratings were very close, which is not surprising given 
drivers were told to complete the course as quickly as possible, 
thereby creating time-based workload across all conditions. 3D 
visualization conditions were rated similarly, but frustration 
levels were higher without motion prediction. Drivers reported 
the lowest physical demand with the 3D Video conditions.   

Exit Interview: The exit interview was completed with each 
participant at the conclusion of all runs.  The most commonly 
requested improvements for basic teleoperation include 
decreased latency, higher video frame rate and more cameras or 
unique viewpoints. Participants also mentioned better resolution, 
wider field of view, and an indication of vehicle position in the 
video frame, which would allow them to drive through tight 
spaces. In general, operators wanted the ability to judge where 
the vehicle is positioned in the world by having a direct 
reference to all objects in the environment.   

Participants felt the greatest strength of the 3D Video is the 
vehicle model presented within the video. The model made it 
easier to recover from mistakes and allowed operators to judge 
upcoming course events with respect to the vehicle, thereby 
allowing them to respond to the environment more accurately.  
“I could go faster between events and then slow down before an 
event. I could time the slow down better.” 3D Video also 
provided a wider field of view, latency compensation, and 
selectable viewpoints. These features provided a “less stressful” 
environment and reduced the amount of time spent “paying 
attention to the vehicle,” potentially freeing up time for other 
vehicle control and mission-related tasks. 

The following artifacts were present in 3D Video: “video 
jittering around corners, straight lines in the middle of a road 
bending, cones disintegrating and appearing flat on the surface, 
3D objects smearing as vehicle drove by, and square pixels 
appearing at the edge of imagery.” 

3D Video improvement suggestions include reducing artifacts, 
a higher video frame rate, improvements in latency 
compensation, and a wider field of view for turns. A higher 
frame rate was suggested to make driving at a higher velocity 
easier. 

The final portion of the exit interview allowed participants to 
rank their preferences for driving condition and 3D Video 
viewpoints. Manual driving was preferred, followed by 3D 
Video with motion prediction, 3D Video without, and Live 
video. Three viewpoints were available within the 3D Video: 
native camera, over-the-shoulder, and overhead (bird’s eye 
view). The overall preference for viewpoints was unanimous: 
over-the-shoulder, followed by Overhead (Bird’s Eye View) and 
native. 

Comments indicate bird’s eye view was useful when 
navigating left or right for a short distance, such as in a slalom, 
and native location was useful if driving on straight roads for a 
long distance. Over the shoulder was more or less the “all 
purpose” preferred viewpoint. 

Summary:  In perhaps the most significant metric of task 
completion time, 3D Video showed improvements of 
approximately 20-30% compared to standard teleoperation. 



Other metrics showed improvement as well, with average speed 
increasing 30-50 % and error rates dropping by 20-50%. 

6 CONCLUSIONS & FUTURE WORK 
As long as humans use displays of data generated on a remote 
device in order to control it, the sensors deployed on the device 
will be used to produce those displays. While single use sensors 
are common, the dual use of robot perception sensors for 
autonomy and visualization is already well established. 

This paper has proposed a method to expend significant 
engineering effort in order to produce a virtual sensor with the 
ideal characteristic of reducing, in real-time, the environment 
around a remote device to the essence of a computer graphics 
rendering database. In other words, photogeometric sensing has 
the capacity to virtualize reality to produce displays with both 
the photorealism of video and the interactivity of a video game. 

PG sensor technology can be transformative for certain 
human-machine interface tasks, providing solutions to problems 
for which there has been little hope of significant progress for 
some time. We have produced many instances of PG sensors in 
recent years and deployed them in diverse applications. In the 
two discussed here, user studies have verified substantial gains 
in the effectiveness of the man-machine system. 

PG sensor technology introduces entirely new and highly 
effective approaches to latency compensation and video 
compression which have not been elaborated here for reasons of 
space and focus. 

We are reasonably convinced that PG sensing is a sensor 
modality of choice with unique advantages that enable a new 
level of shared mental model between a robot and a human. 
Based on it, communications between the two can become less 
frequent, more terse, and more precise. 

We have produced PG sensing by integrating distinct 
geometry (lidar) and appearance sensors (camera) into a virtual 
unit. Over time, the eventual development of high accuracy 
shared aperture sensors which are integrated in hardware at the 
pixel level seems inevitable. 
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