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Abstract. In this paper we address the problem of consistency for cryptographic
file systems. A cryptographic file system protects the users’ data from the file
server, which is possibly untrusted and might exhibit Byzantine behavior, by en-
crypting the data before sending it to the server. The consistency of the encrypted
file objects that implement a cryptographic file system relies on the consistency
of the two components used to implement them: the file storage protocol and the
key distribution protocol.

We first define two generic classes of consistency conditions that extend and
generalize existing consistency conditions. We then formally define consistency
for encrypted file objects in a generic way: for any consistency conditions for the
key and file objects belonging to one of the two classes of consistency conditions
considered, we define a corresponding consistency condition for encrypted file
objects. We finally provide, in our main result, necessary and sufficient conditions
for the consistency of the key distribution and file storage protocols under which
the encrypted storage is consistent. Our framework allows the composition of ex-
isting key distribution and file storage protocols to build consistent encrypted file
objects and simplifies complex proofs for showing the consistency of encrypted
storage.

1 Introduction

Consistency for a file system that supports data sharing specifies the semantics of mul-
tiple users accessing files simultaneously. Intuitively, the ideal model of consistency
would respect the real-time ordering of file operations, i.e., a read would return the last
written version of that file. This intuition is captured in the model of consistency known
as linearizability [16], though in practice, such ideal consistency models can have high
performance penalties. It is well known that there is a tradeoff between performance
and consistency. As such, numerous consistency conditions weaker than linearizability,
and that can be implemented more efficiently in various contexts, have been explored.
Sequential consistency [19], causal consistency [4], PRAM consistency [22] and more
recently, fork consistency [24], are several examples.

In this paper we address the problem of consistency for encrypted file objects used to
implement a cryptographic file system. A cryptographic file system protects the users’
data from the file server, which is possibly untrusted and might exhibit Byzantine be-
havior, by encrypting the data before sending it to the server. When a file can be shared,
the decryption key must be made available to authorized readers, and similarly autho-
rized writers of the file must be able to retrieve the encryption key or else create one of
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their own. In this sense, a key is an object that, like a file, is read and/or written in the
course of implementing the abstraction of an encrypted file.

Thus, an encrypted file object is implemented through two main components: the key
object that stores the encryption key, and the file object that stores (encrypted) file con-
tents. We emphasize that the key and file objects may be implemented via completely
different protocols and infrastructures. Our concern is the impact of the consistency of
each on the encrypted file object that they are used to implement. The consistency of the
file object is obviously essential to the consistency of the encrypted data retrieved. At
the same time, the encryption key is used to protect the confidentiality of the data and
to control access to the file. So, if consistency of the key object is violated, this could
interfere with authorized users decrypting the data retrieved from the file object, or it
might result in a stale key being used indefinitely, enabling revoked users to continue
accessing the data. We thus argue that the consistency of both the key and file objects
affects the consistency of the encrypted file object. Knowing the consistency of a key
distribution and a file access protocol, our goal is to find necessary and sufficient con-
ditions that ensure the consistency of the encrypted file that the key object and the file
object are utilized to implement.

The problem that we consider is related to the locality problem. A consistency con-
dition is local if a history of operations on multiple objects satisfies the consistency
condition if the restriction of the history to each object does so. However, locality is a
very restrictive condition and, to our knowledge, only very powerful consistency condi-
tions, such as linearizability, satisfy it. In contrast, the combined history of key and file
operations can satisfy weaker conditions and still yield a consistent encrypted file. We
give a generic definition of consistency (C1, C2)enc for an encrypted file object, start-
ing from any consistency conditions C1 and C2 for the key and file objects that belong
to one of the two classes of generic conditions we define. Intuitively, our consistency
definition requires that the key and file operations seen by each client can be arranged
such that they preserve C1-consistency for the key object and C2-consistency for the
file object, and, in addition, the latest key versions are used to encrypt file contents. The
requirement that the most recent key versions are used for encrypting new file contents
is important for security, as usually the encryption key for a file is changed when some
users are revoked access to the file. We allow the decryption of a file content read with a
previous key version (not necessarily the most recent seen by the client), as this would
not affect security. Thus, a system implementing our definition guarantees both consis-
tency for file contents and security in the sense that revoked users are restricted access
to the encrypted file object.

Rather than investigate consistency for a single implementation of an encrypted file,
we consider a collection of implementations that are all key-monotonic. Intuitively, in
a key-monotonic implementation, there exists a consistent ordering of file operations
such that the written file contents are encrypted with monotonically increasing key ver-
sions. We formally define this property that depends on the consistency of the key and
file objects. We prove in our main result (Theorem 1) that ensuring that an implementa-
tion is key-monotonic is a necessary and sufficient condition for obtaining consistency
for the encrypted file object, given several restrictions on the consistency of the key
and file objects. Our main result provides a framework to analyze the consistency of a
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given implementation of an encrypted file object: if the key object and file object sat-
isfy consistency conditions C1 and C2, respectively, and the given implementation is
key-monotonic with respect to C1 and C2, then the encrypted file object is (C1, C2)enc-
consistent.

In this context, we summarize our contributions as follows:

– We define two generic classes of consistency conditions. The class of orderable
consistency conditions includes and generalizes well-known conditions such as lin-
earizability, causal consistency and PRAM consistency. The class of forking con-
sistency conditions is particularly tailored to systems with untrusted shared storage
and extends fork consistency [24] to other new, unexplored consistency conditions.

– We define consistency for encrypted files: for any consistency conditions C1 and
C2 of the key and file objects that belong to these two classes, we define a corre-
sponding consistency condition (C1, C2)enc for encrypted files. To our knowledge,
our paper is the first to rigorously formalize consistency conditions for encrypted
files.

– Our main result provides necessary and sufficient conditions that enable an en-
crypted file to satisfy our definition of consistency. Given a key object that satisfies
a consistency property C1, and a file object with consistency C2 from one of the
classes we define, our main theorem states that it is enough to ensure the key-
monotonicity property in order to obtain consistency for the encrypted file object.
This result is subject to certain restrictions on the consistency conditions C1 and
C2.

In addition, in the full version of this paper [26], we give an example implementation
of a consistent encrypted file from a sequentially consistent key object and a fork con-
sistent file object. The proof of consistency of the implementation follows immediately
from our main theorem. This demonstrates that complex proofs for showing consistency
of encrypted files are simplified using our framework.

The rest of the paper is organized as follows: we survey related work in Section 2,
and give the basic definitions, notation and system model in Section 3. We define the
two classes of consistency conditions in Section 4 and give the definition of consistency
for encrypted files in Section 5. Our main result, a necessary and sufficient condition
for constructing consistent encrypted files, is presented in Section 6.

2 Related Work

SUNDR [21] is the first file system that provides consistency guarantees (fork consis-
tency [24]) in a model with a Byzantine storage server and benign clients. In SUNDR,
the storage server keeps a signed version structure for each user of the file system. The
version structures are modified at each read or write operation and are totally ordered
as long as the server respects the protocol. A misbehaving server might conceal users’
operations from each other and break the total order among version structures, with the
effect that users get divided into groups that will never see the same system state again.
SUNDR only provides data integrity, but not data confidentiality. In contrast, we are
interested in providing consistency guarantees in encrypted storage systems in which
keys may change, and so we must consider distribution of the encryption keys, as well.
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For obtaining consistency conditions stronger than fork consistency (e.g., lineariz-
ability) in the face of Byzantine servers, one solution is to distribute the file server
across n replicas, and use this replication to mask the behavior of faulty servers. Mod-
ern examples include BFT [9], SINTRA [8] and PASIS [1]. An example of a distributed
encrypting file system that provides strong consistency guarantees for both file data
and meta-data is FARSITE [2]. File meta-data in FARSITE (that also includes the en-
cryption key for the file) is collectively managed by all users that have access to the
file, using a Byzantine fault tolerant protocol. There exist distributed implementations
of storage servers that guarantee weaker semantics than linearizability. Lakshmanan
et al. [18] provide causal consistent implementations for a distributed storage system.
While they discuss encrypted data, they do not treat the impact of encryption on the
consistency of the system.

Several network encrypting file systems, such as SiRiUS [14] and Plutus [17], de-
velop interesting ideas for access control and user revocation, but they both leave the
key distribution problem to be handled by clients through out-of-band communication.
Since the key distribution protocol is not specified, neither of the systems makes any
claims about consistency. Other file systems address key management: e.g., SFS [23]
separates key management from file system security and gives multiple schemes for
key management; Cepheus [12] relies on a trusted server for key distribution; and
SNAD [25] uses separate key and file objects to secure network attached storage. How-
ever, none of these systems addresses consistency. We refer the reader to the survey
by Riedel et al. [27] for an extensive comparison of the security properties of various
encrypting file systems.

Another area related to our work is that of consistency semantics. Different ap-
plications have different consistency and performance requirements. For this reason,
many different consistency conditions for shared objects have been defined and imple-
mented, ranging from strong conditions such as linearizability [16], sequential consis-
tency [19], and timed consistency [28] to loose consistency guarantees such as causal
consistency [4], PRAM [22], coherence [15,13], processor consistency [15,13,3], weak
consistency [10], entry consistency [7], and release consistency [20]. A generic, con-
tinuous consistency model for wide-area replication that generalizes the notion of se-
rializability [6] for transactions on replicated objects has been introduced by Yu and
Vahdat [30]. We construct two generic classes of consistency conditions that include
and extend some of the existing conditions for shared objects.

Different properties of generic consistency conditions for shared objects have been
analyzed in previous work, such as locality [29] and composability [11]. Locality ana-
lyzes for which consistency conditions a history of operations is consistent, given that
the restriction of the history to each individual object satisfies the same consistency
property. Composability refers to the combination of two consistency conditions for a
history into a stronger, more restrictive condition. In contrast, we are interested in the
consistency of the combined history of key and file operations, given that the individ-
ual operations on keys and files satisfy possibly different consistency properties. We
also define generic models of consistency for histories of operations on encrypted file
objects that consist of operations on key and file objects.

Generic consistency conditions for shared objects have been restricted previously
only to conditions that satisfy the eventual propagation property [11]. Intuitively, even-
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tual propagation guarantees that all the write operations are eventually seen by all
processes. This assumption is no longer true when the storage server is potentially faulty
and we relax this requirement for the class of forking consistency conditions we define.

3 Preliminaries
3.1 Basic Definitions and System Model

Most of our definitions are taken from Herlihy and Wing [16]. We consider a system
to be a set of processes p1, . . . , pn that invoke operations on a collection of shared
objects. Each operation o consists of an invocation inv(o) and a response res(o). We
only consider read and write operations on single objects. A write of value v to object
X is denoted X.write(v) and a read of value v from object X is denoted v ← X.read().

A history H is a sequence of invocations and responses of read and write operations
on the shared objects. We consider only well-formed histories, in which every invo-
cation of an operation in a history has a matching response. We say that an operation
belongs to a history H if its invocation and response are in H . A sequential history
is a history in which every invocation of an operation is immediately followed by the
corresponding response. A serialization S of a history H is a sequential history con-
taining all the operations of H and no others. An important concept for consistency is
the notion of a legal sequential history, defined as a sequential history in which read
operations return the values of the most recent write operations.

Notation. For a history H and a process pi, we denote by H |pi the sequential history
of operations in H done by pi. For a history H and objects X1, . . . , Xn, we denote by
H |(X1, . . . , Xn) the restriction of H to operations on objects X1, . . . , Xn. We denote
by H |w all the write operations in history H and by H |pi +w the operations in H done
by process pi and all the write operations done by all processes in history H .

3.2 Eventual Propagation

A history satisfies eventual propagation [11] if, intuitively, all the write operations done
by the processes in the system are eventually seen by all processes. However, the or-
der in which processes see the operations might be different. More formally, eventual
propagation is defined below:

Definition 1 (Eventual Propagation and Serialization Set). A history H satisfies
eventual propagation if for every process pi, there exists a legal serialization Spi of
H |pi + w. The set of legal serializations for all processes S = {Spi}i is called a
serialization set [11] for history H .

If a history H admits a legal serialization S, then a serialization set {Spi}i with Spi =
S|pi + w can be constructed and it follows immediately that H satisfies eventual prop-
agation.

3.3 Ordering Relations on Operations

There are several natural partial ordering relations that can be defined on the operations
in a history H . Here we describe three of them: the local (or process order), the causal
order and the real-time order.
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Definition 2 (Ordering Relations). Two operations o1 and o2 in a history H are or-
dered by local order (denoted o1

lo−→ o2) if there exists a process pi that executes o1

before o2.
The causal order extends the local order relation. We say that an operation o1 di-

rectly precedes o2 in history H if either o1
lo−→ o2, or o1 is a write operation, o2 is a

read operation and o2 reads the result written by o1. The causal order (denoted
∗−→ )

is the transitive closure of the direct precedence relation.
Two operations o1 and o2 in a history H are ordered by the real-time order (denoted

o1 <H o2) if res(o1) precedes inv(o2) in history H .

A serialization S of a history H induces a total order relation on the operations of H ,
denoted

S−→ . Two operations o1 and o2 in H are ordered by
S−→ if o1 precedes o2 in

the serialization S.
On the other hand, a serialization set S = {Spi}i of a history H induces a partial

order relation on the operations of H , denoted
S−→ . For two operations o1 and o2 in

H , o1
S−→ o2 if and only if (i) o1 and o2 both appear in at least one serialization Spi

and (ii) o1 precedes o2 in all the serializations Spi in which both o1 and o2 appear. If o1

precedes o2 in one serialization, but o2 precedes o1 in a different serialization, then the
operations are concurrent with respect to

S−→ .

4 Classes of Consistency Conditions

The goal of this paper is to analyze the consistency of encrypted file systems generically
and give necessary and sufficient conditions for its realization. A consistency condition
is a set of histories. We say that a history H is C-consistent if H ∈ C (this is also
denoted by C(H)). Given consistency conditions C and C′, C is stronger than C′ if
C ⊆ C′.

As the space of consistency conditions is very large, we need to restrict ourselves
to certain particular and meaningful classes for our analysis. One of the challenges we
faced was to define interesting classes of consistency conditions that include some of
the well known conditions defined in previous work (i.e., linearizability, causal con-
sistency, PRAM consistency). Generic consistency conditions have been analyzed pre-
viously (e.g., [11]), but the class of consistency conditions considered was restricted
to conditions with histories that satisfy eventual propagation. Given our system model
with a potentially faulty shared storage, we cannot impose this restriction on all the
consistency conditions we consider in this work.

We define two classes of consistency conditions, differentiated mainly by the even-
tual propagation property. The histories that belong to conditions from the first class
satisfy eventual propagation and are orderable, a property we define below. The histo-
ries that belong to conditions from the second class do not necessarily satisfy eventual
propagation, but the legal serializations of all processes can be arranged into a fork-
ing tree. This class includes fork consistency [24], and extends that definition to other
new, unexplored consistency conditions. The two classes do not cover all the existing
consistency conditions.
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4.1 Orderable Conditions

Intuitively, a consistency condition C is orderable if it contains only histories for which
there exists a serialization set that respects a certain partial order relation. Consider the
example of causal consistency [4] defined as follows: a history H is causally consistent
if and only if there exists a serialization set S of H that respects the causal order relation,
i.e.,

∗−→ ⊆ S−→ . We generalize the requirement that the serialization set respects the
causal order to more general partial order relations. A subtle point in this definition is
the specification of the partial order relation. First, it is clear that the partial order needs
to be different for every condition C. But, analyzing carefully the definition of the causal
order relation, we notice that it depends on the history H . We can thus view the causal
order relation as a family of relations, one for each possible history H . Generalizing,
in the definition of an orderable consistency condition C, we require the existence of a
family of partial order relations, indexed by the set of all possible histories, denoted by
{ C,H−→ }H . Additionally, we require that each relation

C,H−→ respects the local order of
operations in H .

Definition 3 (Orderable Consistency Conditions). A consistency condition C is or-
derable if there exists a family of partial order relations { C,H−→}H , indexed by the set of
all possible histories, with

lo−→⊆ C,H−→ for all histories H such that:

H ∈ C⇔ there exists a serialization set S of H with
C,H−→⊆ S−→ .

Given a history H from class C, a serialization set S of H that respects the order
relation

C,H−→ is called a C-consistent serialization set of H .

We define class CO to be the set of all orderable consistency conditions. A subclass of
interest is formed by those consistency conditions in CO that contain only histories for
which there exists a legal serialization of their operations. We denote C+

O this subclass
of CO. For a consistency condition C from class C+

O , a serialization S of a history H that

respects the order relation
C,H−→ , i.e.,

C,H−→⊆ S−→ , is called a C-consistent serialization
of H .

Linearizability [16] and sequential consistency [19] belong to C+
O (with the corre-

sponding ordering relations <H and
lo−→ , respectively), and PRAM [22] and causal

consistency [4] to CO \ C+
O (with the corresponding ordering relations

lo−→ and
∗−→ ,

respectively).

4.2 Forking Conditions

To model encrypted file systems over untrusted storage, we need to consider consistency
conditions that might not satisfy the eventual propagation property. In a model with
potentially faulty storage, it might be the case that a process views only a subset of the
writes of the other processes, besides the operations it performs. For this purpose, we
need to extend the notion of serialization set.

Definition 4 (Extended and Forking Serialization Sets). An extended serialization
set of a history H is a set S = {Spi}i with Spi a legal serialization of a subset of
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operations from H , that includes (at least) all the operations done by process pi. A
forking serialization set of a history H is an extended serialization set S = {Spi}i such
that for all i, j, (i �= j), any o ∈ Spi ∩ Spj , and any o′ ∈ Spi:

o′
Spi−→ o⇒ (o′ ∈ Spj ∧ o′

Spj−→ o).

A forking serialization set is an extended serialization set with the property that its seri-
alizations can be arranged into a “forking tree”. Intuitively, arranging the serializations
in a tree means that any two serializations might have a common prefix of identical
operations, but once they diverge, they do not contain any of the same operations. Thus,
the operations that belong to a subset of serializations must be ordered the same in all
those serializations. A forking consistency condition includes only histories for which
a forking serialization set can be constructed. Moreover, each serialization Spi in the
forking tree is a C-consistent serialization of the operations seen by pi, for C a consis-
tency condition from C+

O .

Definition 5 (Forking Consistency Conditions). A consistency condition FORK-C is
forking if:

1. C is a consistency condition from C+
O;

2. H ∈ FORK-C if and only if there exists a forking serialization set S = {Spi}i for
history H with the property that each Spi is C-consistent.

We define class CF to be the set of all forking consistency conditions FORK-C. It is
immediate that for consistency conditions C, C1 and C2 in C+

O , (i) C is stronger than
FORK-C, and (ii) if C1 is stronger than C2, then FORK-C1 is stronger than FORK-C2.
CF extends the notion of fork consistency defined by Mazieres and Shasha [24].

5 Definition of Consistency for Encrypted Files

We can construct an encrypted file object using two components, the file object and the
key object whose values are used to encrypt file contents. File and key objects might be
implemented via different protocols and infrastructures. For the purpose of this paper,
we consider each file to be associated with a distinct encryption key. We could easily
extend this model to accommodate different granularity levels for the encryption keys
(e.g., a key for a group of files).

Users perform operations on an encrypted file object that involve operations on both
the file and the key objects. For example, a read of an encrypted file might require
a read of the encryption key first, then a read of the file and finally a decryption of
the file with the key read. We refer to the operations exported by the storage interface
(i.e., operations on encrypted file objects) to its users as “high-level” operations and the
operations on the file and key objects as “low-level” operations.

We model a cryptographic file system as a collection of encrypted files. Different
cryptographic file systems export different interfaces of high-level operations to their
users. We can define consistency for encrypted file objects offering a wide range of
high-level operation interfaces, as long as the high-level operations consist of low-level
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write and read operations on key and file objects. We do assume that a process that
creates an encryption key writes this to the relevant key object before writing any files
encrypted with that key.

The encryption key for a file is changed most probably when some users are revoked
access to the file, and thus, for security reasons, we require that clients use the most
recent key they have seen to write new file contents. However, it is possible to use older
versions of the encryption key to decrypt a file read. For example, in a lazy revocation
model [12,17,5], the re-encryption of a file is not performed immediately when a user is
revoked access to the file and the encryption key for that file is changed, but it is delayed
until the next write to that file. Thus, in the lazy revocation model older versions of the
key might be used to decrypt files, but new file contents are encrypted with the most
recent key. In our model, we can accommodate both the lazy revocation method and
the active revocation method in which a file is immediately re-encrypted with the most
recent encryption key at the moment of revocation.

For completeness, here we give an example of a high-level operation interface for an
encrypted file object ENCF, which is used in the example implementation given in the
full version of this paper [26] :

1. Create a file, denoted as ENCF.create file(f). This operation generates a new en-
cryption key k for the file, writes k to the key object and writes the file content f
encrypted with key k to the file object.

2. Encrypt and write a file, denoted as ENCF.write encfile(f). This operation writes
an encryption of file contents f to the file object, using the most recent encryption
key that the client read.

3. Read and decrypt a file, denoted as f ← ENCF.read encfile(). This operation reads
an encrypted file from the file object and then decrypts it to f .

4. Write an encryption key, denoted as ENCF.write key(k). This operation changes
the encryption key for the file to a new value k. Optionally, it re-encrypts the file
contents with the newly generated encryption key if active revocation is used.

Consider a fixed implementation of high-level operations from low-level read and write
operations. Each execution of a history H of high-level operations naturally induces
a history Hl of low-level operations by replacing each completed high-level operation
with the corresponding sequence of invocations and responses of the low-level opera-
tions. In the following, we define consistency (C1, C2)enc for encrypted file objects, for
any consistency properties C1 and C2 of the key distribution and file access protocols
that belong to classes CO or CF .

Definition 6. (Consistency of Encrypted File Objects) Let H be a history of completed
high-level operations on an encrypted file object ENCF and C1 and C2 two consistency
properties from CO. Let Hl be the corresponding history of low-level operations on key
object KEY and file object FILE induced by an execution of high-level operations. We
say that H is (C1, C2)enc-consistent if there exists a serialization set S = {Spi}i of Hl

such that:

1. S is enc-legal, i.e.: For every file write operation o = FILE.write(c), there is an
operation KEY.write(k) such that: c was generated through encryption with key
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k, KEY.write(k)
Spi−→ o and there is no KEY.write(k′) with KEY.write(k)

Spi−→
KEY.write(k′)

Spi−→ o for all i;
2. S|KEY = {Spi |KEY}i is a C1-consistent serialization set of Hl|KEY;
3. S|FILE = {Spi |FILE}i is a C2-consistent serialization set of Hl|FILE;
4. S respects the local ordering of each process.

Intuitively, our definition requires that there is an arrangement (i.e., serialization set)
of key and file operations such that the most recent key write operation before each
file write operation seen by each client is the write of the key used to encrypt that
file. In addition, the serialization set should respect the desired consistency of the key
distribution and file access protocols.

If both C1 and C2 belong to C+
O , then the definition should be changed to require the

existence of a serialization S of Hl instead of a serialization set. Similarly, if C2 belongs
to CF , we change the definition to require the existence of an extended serialization set
{Spi}i of Hl. In the latter case, the serialization Spi for each process might not contain
all the key write operations, but it has to include all the key operations that write key
values used in subsequent file operations in the same serialization. Conditions (1), (2),
(3) and (4) remain unchanged.

The definition can be immediately generalized to multiple encrypted file objects, as
was done in the full version of this paper [26].

6 A Necessary and Sufficient Condition for the Consistency of
Encrypted File Objects

After defining consistency for encrypted file objects, here we give necessary and suf-
ficient conditions for the realization of the definition. We first outline the dependency
among encryption keys and file objects, and then define a property of histories that en-
sures that file write operations are executed in increasing order of their encryption keys.
Histories that satisfy this property are called key-monotonic. Our main result, Theo-
rem 1, states that, provided that the key distribution and the file access protocols satisfy
some consistency properties C1 and C2 with some restrictions, the key-monotonicity
property of the history of low-level operations is necessary and sufficient to implement
(C1, C2)enc consistency for the encrypted file object.

6.1 Dependency among Values of Key and File Objects

Each write and read low-level operation is associated with a value. The value of a write
operation is its input argument and that of a read operation its returned value. For o a
file operation with value f done by process pi, k the value of the key that encrypts f and
w = KEY.write(k) the operation that writes the key value k, we denote the dependency
among operations w and o by R(w, o) and say that file operation o is associated with
key operation w.

The relation R(w, o) implies a causal order relation in the history of low-level op-
erations between operations w and o. Since process pi uses the key value k to encrypt
the file content f , then either: (1) in process pi there is a read operation r = (k ←
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KEY.read()) such that w
∗−→ r

lo−→ o, which implies w
∗−→ o; or (2) w is done

by process pi, in which case w
lo−→ o, which implies w

∗−→ o. In either case, the file
operation o is causally dependent on the key operation w that writes the value of the
key used in o.

6.2 Key-Monotonic Histories

A history of key and file operations is key-monotonic if, intuitively, it admits a consis-
tent serialization for each process in which the file write operations use monotonically
increasing versions of keys for encryption of their values. Intuitively, if a client uses a
key version to perform a write operation on a file, then all the future write operations
on the file object by all the clients will use this or later versions of the key.

We give an example in Figure 1 of a history that is not key-monotonic for sequential
consistent keys and linearizable files. Here c1 and c2 are file values encrypted with key
values k1 and k2, respectively. k1 is ordered before k2 with respect to the local order.
FILE.write(c1) is after FILE.write(c2) with respect to the real-time ordering, and, thus,
in any linearizable serialization of file operations, c2 is written before c1.

p1 : KEY.write(k1) KEY.write(k2)

p2 : k1←KEY.read() FILE.write(c1)

p3 : k2←KEY.read() FILE.write(c2)

Fig. 1. A history that is not key-monotonic

To define key-monotonicity for a low-level history formally, we would like to find the
minimal conditions for its realization, given that the key operations in the history satisfy
consistency condition C1 and the file operations satisfy consistency condition C2. We
assume that the consistency C1 of the key operations is orderable. Two conditions have
to hold in order for a history to be key-monotonic: (1) the key write operations cannot
be ordered in opposite order of the file write operations that use them; (2) file write
operations that use the same keys are not interleaved with file write operations using a
different key.

Definition 7 (Key-Monotonic History). Consider a history H with two objects, key
KEY and file FILE, such that C1(H |KEY) and C2(H |FILE), where C1 is an orderable
consistency condition and C2 belongs to either CO or CF . H is a key-monotonic his-
tory with respect to C1 and C2, denoted KMC1,C2(H), if there exists a C2-consistent
serialization (or serialization set or forking serialization set) S of H |FILE such that the
following conditions holds:

– (KM1) for any two file write operations f1
S−→ f2 with associated key write

operations k1 and k2 (i.e., R(k1, f1), R(k2, f2)), it cannot happen that k2
C1,H|KEY−→

k1.
– (KM2) for any three file write operations f1

S−→ f2
S−→ f3, and key write

operation k with R(k, f1) and R(k, f3), it follows that R(k, f2).
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The example we gave in Figure 1 violates the first condition. If we consider f2 =
FILE.write(c2), f1 = FILE.write(c1), then f2 is ordered before f1 in any linearizable
serialization and k1 is ordered before k2 with respect to the local order. But condition
(KM1) states that it is not possible to order key write k1 before key write k2.

The first condition (KM1) is enough to guarantee key-monotonicity for a history H

when the key write operations are uniquely ordered by the ordering relation
C1,H|KEY−→ . To

handle concurrent key writes with respect to
C1,H|KEY−→ , we need to enforce the second con-

dition (KM2) for key-monotonicity. Condition (KM2) rules out the case in which uses
of the values written by two concurrent key writes are interleaved in file operations in a
consistent serialization. Consider the example from Figure 2 that is not key-monotonic
for sequential consistent key operations and linearizable file operations. In this exam-
ple c1 and c′1 are encrypted with key value k1, and c2 is encrypted with key value k2.
A linearizable serialization of the file operations is: FILE.write(c1); FILE.write(c2);
FILE.read(c2); FILE.write(c′1), and this is not key-monotonic. k1 and k2 are not or-
dered with respect to the local order, and as such the history does not violate condition
(KM1). However, condition (KM2) is not satisfied by this history.

p1 : KEY.write(k1) FILE.write(c′1)

p2 : KEY.write(k2) c2←FILE.read()

p3 : k1←KEY.read() FILE.write(c1) k2←KEY.read() FILE.write(c2)

Fig. 2. A history that does not satisfy condition (KM2)

In cryptographic file system implementations, keys are usually changed only by one
process, who might be the owner of the file or a trusted entity. For single-writer objects,
it can be proved that sequential consistency, causal consistency and PRAM consistency
are equivalent. Since we require the consistency of key objects to be orderable and all
orderable conditions are at least PRAM consistent (i.e., admit serialization sets that re-
spect the local order), the weakest consistency condition in the class of orderable condi-
tions for single writer objects is equivalent to sequential consistency. If the key distribu-
tion protocol is sequential consistent, the key-monotonicity conditions given in Defini-
tion 7 can be simplified. We present below the simplified condition. The proof of equiva-
lence with the conditions from Definition 7 is given in the full version of this paper [26].

Proposition 1. Let H be a history of operations on the single-writer key object KEY
and file object FILE such that H |KEY is sequential consistent. H is key-monotonic if
and only if the following condition is true:

(SW-KM) There exists a C2-consistent serialization S (or serialization set or forking
serialization set) of H |FILE such that for any two file write operations f1

S−→ f2 with
associated key write operations k1 and k2 (i.e., R(k1, f1), R(k2, f2)), it follows that
k1

lo−→ k2 or k1 = k2.
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6.3 Obtaining Consistency for Encrypted File Objects

We give here the main result of our paper, a necessary and sufficient condition for
implementing consistent encrypted file objects, as defined in Section 5. Given a key
distribution protocol with orderable consistency C1 and a file access protocol that satis-
fies consistency C2 from classes CO or CF , the theorem states that key-monotonicity is
a necessary and sufficient condition to obtain consistency (C1, C2)enc for the encrypted
file object. Some additional restrictions need to be satisfied. The proof of the theorem
is in the full version of this paper [26].

Theorem 1. Consider a fixed implementation of high-level operations from low-level
operations. Let H be a history of operations on an encrypted file object ENCF and Hl

the induced history of low-level operations on key object KEY and file object FILE by
a given execution of high-level operations. Suppose that the following conditions are
satisfied: (1) C1(Hl|KEY); (2) C2(Hl|FILE); (3) C1 is orderable; (4) if C2 belongs to
C+
O , then C1 belongs to C+

O . Then H is (C1, C2)enc-consistent if and only if Hl is a
key-monotonic history, i.e., KMC1,C2(H).

Discussion. Our theorem recommends two main conditions to file system developers
in order to guarantee (C1, C2)enc-consistency of encrypted file objects. First, the con-
sistency of the key distribution protocol needs to satisfy eventual propagation (as it
belongs to class CO) to apply our theorem. This suggests that using the untrusted stor-
age server for the distribution of the keys, as implemented in several cryptographic file
systems, e.g., SNAD [25] and SiRiUS [14], might not meet our consistency definitions.
For eventual propagation, the encryption keys have to be distributed either directly by
file owners or by using a trusted key server. It is an interesting open problem to analyze
the enc-consistency of the history of high-level operations if both the key distribution
and file-access protocols have consistency in class CF . Secondly, the key-monotonicity
property requires, intuitively, that file writes are ordered not to conflict with the con-
sistency of the key operations. To implement this condition, one solution is to modify
the file access protocol to take into account the version of the encryption key used in a
file operation when ordering that file operation. We give an example of modifying the
fork consistent protocol given by Mazieres and Shasha [24] in the full version of this
paper [26].

Moreover, the framework offered by Theorem 1 simplifies complex proofs for show-
ing consistency of encrypted files. In order to apply Definition 6 directly for such proofs,
we need to construct a serialization of the history of low-level operations on both the file
and key objects and prove that the file and key operations are correctly interleaved in this
serialization and respect the appropriate consistency conditions. By Theorem 1, given a
key distribution and file access protocol that is each known to be consistent, verifying
the consistency of the encrypted file object is equivalent to verifying key monotonicity.
To prove that a history of key and file operations is key monotonic, it is enough to con-
struct a serialization of the file operations and prove that it does not violate the ordering
of the key operations. The simple proof of consistency of the example encrypted file
object presented in the full version of this paper [26] demonstrates the usability of our
framework.
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7 Conclusions

We have addressed the problem of consistency in encrypted file systems. An encrypted
file system consists of two main components: a file access protocol and a key distribu-
tion protocol, which might be implemented via different protocols and infrastructures.
We formally define generic consistency in encrypted file systems: for any consistency
conditions C1 and C2 belonging to the classes we consider, we define a corresponding
consistency condition for encrypted file systems, (C1, C2)enc. The main result of our pa-
per states that if each of the two protocols has some consistency guarantees with some
restrictions, then ensuring that the history of low-level operation is key-monotonic is
necessary and sufficient to obtain consistency for an encrypted file object. The applica-
bility of our definitions and main result to other classes of consistency conditions is a
topic of future work.

Another contribution of this paper is to define two classes of consistency conditions
that extend and generalize existing conditions: the first class includes classical con-
sistency conditions such as linearizability and causal consistency, and the second one
extends fork consistency. An interesting problem is to find efficient implementations of
the new forking consistency conditions from the second class and their relation with
existing consistency conditions.
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