
Design-Driven Assurance in Wyvern

Jonathan Aldrich and Alex Potanin

Workshop on New Object-Oriented Languages (NOOL) at SPLASH 2017

October 2017

School of Computer Science

The Wyvern Programming Language

• Designed for security and productivity from the ground up

• General purpose, but emphasizing web/mobile/IoT apps

• But you might ask:
• Isn’t there a tradeoff between security and productivity?

• What is Wyvern’s secret sauce?
2

Security

Productivity

MapReduce: Scalable big data
[Dean and Ghemawat ’04]

Insight: Engineering Impact of Design

• Design constraints drive program properties [Bass et al.]

3

Module dependencies and evolution
[Sullivan et al. ’01]

Security analysis with attack graphs
[Sheyner et al. ’02]

Shifting the Tradeoff Curve

4

Assurance

Productivity

Better expressing and enforcing
design could fundamentally shift
the tradeoff curve

Design-Driven Assurance in Wyvern

• The Wyvern Approach: Usable Design-Driven Assurance
• Usable mechanisms to express and enforce large-scale design
• Support for built-in assurance of critical properties, esp. security

• Key mechanisms for expressing and enforcing design
• Modules and architecture express high-level design
• Extensible notation express code-level design
• Types, capabilities, and effects to enforce design

5

An Old Idea: Layered Architectures

• Lowest layer: an unsafe, low-level library
• provides basic access to resources

• Middle layer: a higher-level framework
• enforces safety invariants over resources

• Top layer: the application

• Code must obey strict layering
• Application must only use the safe framework

• Many variants
• Secure networking framework
• Safe SQL-access library
• Replicated storage library
• Map-reduce library, …

• RQ: Can we use capabilities to enforce layered resource access?
• Capability: an unforgeable token controlling access to a resource

[Dennis & Van Horn 1966]

6

Unsafe
low-level library

Safe high-level
framework

Application code

[Dijkstra 1968]

Module Linking as Architecture

require db.stringSQL

application.run()

7

stringSQL

To access external resources like a
database, main requires a capability
from the run-time system. A capability
is an unforgeable token controlling
access to a resource

Module Linking as Architecture

require db.stringSQL

import db.safeSQL
import app.sqlApplication

val sql = safeSQL(stringSQL)
val application = sqlApplication(sql)

application.run()

8

stringSQL

safeSQL

sqlApplication

We must instantiate a
sqlApplication object, passing it
the resources it needs. We pass
only a capability to the safe library.

We can import code modules, but they
have no ambient authority to access
resources (cf. NewSpeak). sqlApplication
cannot access the database by itself.

Module Linking as Architecture

require db.stringSQL

import db.safeSQL
import app.sqlApplication

val sql = safeSQL(stringSQL)
val application = sqlApplication(sql)

application.run()

9

module def safeSQL(strSQL : db.StringSQL)
// implement ADT
// in terms of strings

stringSQL

safeSQL

sqlApplication

module def sqlApplication(safeSQL : db.SafeSQL)

def run() : Int
// application code

But won’t it be a pain to link everything?

• Most Wyvern modules don’t have state, can be freely imported

• Statically tracked: stateful modules/objects are or resource types

type SetM

resource type Set

def add(v:Int)

def isMember(v:Int):Bool

def makeSet():Set

module setM : SetM …

module def client(aFile:File)

import setM …

• resource types capture state or system access; other types do not
• Useful design documentation; e.g. MapReduce tasks should be stateless
• Supports powerful equational reasoning, safe concurrency, etc.

10

resource type File
def write(s:String)

Provides access
to OS resourceType of module is pure; no static

state. Objects created by module
are stateful resources, though.

Type of module is pure; no static
state. Objects created by module
may be stateful resources, though.

Resources must be passed in; pure
modules can just be imported

But I like my insecure SQL library!

• Pasting strings is convenient:
connection.executeQuery(

"SELECT * FROM Students WHERE name = '" + studentName + "';");

• A fully secure library might not be nearly as nice:
connection.executeQuery(select(star, new String[] { “Students” },

equals(column(“name”), studentName)));

• Prepared queries are also not great (and not fully secure):
PreparedStatement s = connection.prepareStatement(

"SELECT * FROM Students WHERE name = ?;");

s.setString(1, userName);

s.executeQuery();

11

Wyvern: Usable Secure Programming

• A SQL query in Wyvern
import metadata sqlLang

connection.executeQuery(~)

SELECT * FROM Students WHERE name = {studentName}

• Compare the (insecure) alternative
connection.executeQuery(

"SELECT * FROM Students WHERE name = '" + studentName + "';");

• Claim: the secure version more natural and more usable
• We hope to evaluate this empirically in the near future

12

~ triggers parser for SQL
DSL on indented lines

Can provide IDE support,
e.g. syntax highlighting,
autocomplete, …

Safely incorporates
dynamic data—as data,
not a command

Imports a DSL for SQL queries,
including metadata for parsing

Run-Time Architecture (ongoing work)

import lang architecture

architecture clientServer

component c:Client

component s:Server

connector link:HTTPSCtr

connect c.getInfo and s.sendInfo with link

13

Imports the architecture DSL

DSL impl uses capabiliites
internally to ensure components
only communicate via connections

Architecture specifies use of
connector library with desired
security characteristics

Connector implemented using
metaprogramming that generates
boilerplate, enhancing usability

Reasoning about Authority with Types

• How do we reasoning about the authority of an object?
• i.e. what effects (writes, system operations) can an object have? [Miller 2006]
• Prior work: semantic defn. of eventual authority [Drossopoulou et al., 2016]
• Prior work: topological bound on authority [Miller 2006; Maffeis et al. 2010]

• Approximate authority informally using types [Melicher et al., 2017]

type HttpRequestor

// HTTP get request on a URL

def get(url:String):String

// defined in a pure module

type MyADT

def operation(x:Int):String

def makeADT(req:HttpRequestor):MyADT
14

MyADT is born with permission
to an HttpRequestor. The type
proves it can’t get additional
permissions

If we trust the HttpRequestor
implementation, we can (informally)
reason about the authority of MyADT:
to do HTTP get requests.
More precise than topological bound.

Reasoning about Authority with Effects

• How do we reasoning about the authority of an object?
• i.e. what effects (writes, system operations) can an object have? [Miller 2006]
• Prior work: semantic defn. of eventual authority [Drossopoulou et al., 2016]
• Prior work: topological bound on authority [Miller 2006;Maffeis et al. 2010]

• Current work: reason formally, precisely about authority using effects

effect getRequest

type Requestor // untrusted code

def get(url:String):String { getRequest }

type MyADT

def operation(x:Int):String { getRequest }

def makeADT(req:HttpRequestor):MyADT
15

Trusted HTTP library
implements getRequest
functionality using network

We don’t know/trust the
Requestor implementation,
but the effect bounds its
authority (and the authority
of clients)

Wyvern Design Principles From 3 Fields

• SE: Express design that impacts engineering at scale
• Enforcing system organization: both code and run-time structure
• Immutability constraints play architectural role
• Effects for reasoning about authority in the large

• PL: Formal properties that are deep and widely applicable
• Composability of language extension [Omar et al. 2014]
• Immutability is used widely and provides high reasoning leverage
• Capability safety can be leveraged to enforce design properties

• HCI: Empirical focus on usability and user tasks
• SQL arguably a natural notation [Myers et al. 2004] for queries
• IDE support for languages has high impact on tasks
• Empirical study on usability of immutability [Coblenz et al. 2017]

16

Extensible Notation

Capability Safety

Synergies in Language Design

17

Module SystemImmutability

Effects

Architecture

Wyvern: Design-Driven Assurance

• Novel approach to achieve high usability and assurance

• Leverage new mechanisms for capturing design constraints
• Foundational: Immutability, capabilities, extensible notation
• Scaling up: Modules, architecture, effects

• Drivers
• SE: Design constraints that impact engineering at scale
• PL: Formal properties that are deep and widely applicable
• HCI: Empirical focus on usability and user tasks

• Follow on work: extensible checking, gradual verification

18

