
Penrose:
From Mathematical Notation
to Beautiful Diagrams

Jonathan Aldrich, Carnegie Mellon University
Joint work with Katherine Ye, Wode Ni, Keenan Crane,
Joshua Sunshine, Yumeng Du, Max Krieger, Dor Ma’ayan,
Lily Shellhammer, and Jenna Wise

1

Set A, B, C, D, E, F, G
IsSubset(B, A)
IsSubset(C, A)
IsSubset(D, B)
IsSubset(E, B)
IsSubset(F, C)
IsSubset(G, C)
NotIntersecting(E, D)
NotIntersecting(F, G)
NotIntersecting(B, C)

Diagrams are useful, but too rare

• Diagrams are useful…
• Diagrams help in solving math problems [Larkin&Simon]
• High-impact papers have many figures [Lee et al.]

• But rare: just 39% of arXiv math papers contain diagrams
• And even those contain only 1 figure for every 10 pages

“People have very powerful facilities for taking in information
visually... On the other hand, they do not have a good built-in facility
for turning an internal spatial understanding back into a two-
dimensional image. [So] mathematicians usually have fewer and
poorer figures in their papers and books than in their heads.”
 - Fields medalist William Thurston

2

The Penrose Vision

3

You write this:

Or, if you prefer, this:

Penrose generates this:

(some of this works today,
though more work is needed)

Penrose in Actoin

• Linear algebra – simple intro
• Linear algebra – sugar and direct manipulation

4

Can we create a LaTeX for Diagrams?

LaTeX

• Describe document content
(.tex) separate from layout

• Extensible formatting styles
(.sty)

• Extensible with new document
structuring concepts (macros)

• Optimizes (mostly textual)
layout of documents

Penrose

• Describe mathematical content
(Substance) separate from
visual representation

• Extensible rendering (Style)

• Extensible with new math
domains (Element)

• Optimizes (graphical) layout of
diagrams

5

Existing tools are inadequate

• Graphing calculators (e.g. Wolfram Alpha)
• Visualize concrete data or functions
• Don’t understand, can’t visualize mathematical abstractions

• Drawing tools (e.g. Adobe Illustrator, TikZ)
• Require laborious specification of low-level details
• Don’t understand semantics

• Domain-specific visualizations (e.g. Group Explorer)
• Work well for a particular domain, but are not extensible

6

The Penrose Architecture and Users

7

Anatomy of a Substance Program

8

Object U of type
VectorSpace

Syntactic sugar for
AddV(u3, u4)

Declares that u5 is
equal to AddV(u3, u4)

Syntactic sugar
declares variables
and relationships
In(ui, U) for each ui

The Element Language

9

Declares type VectorSpace. Constructors
may eventually have arguments.

Declares a predicate
and its type

Declares an operator
and its type

Declares syntactic
sugar

Substance and Element Design Features

• Separate, reusable domain extensions
• New types, predicates, operators
• New domain-specific notation

• Similar to Coq notation extension

• Generic, typed object model
• Check that substance programs are well-formed
• Match on types in style programs

10

The Style Language

11

Match once per Vector; call it v
For each v there must be at least one U

And In(v, U) must hold

The Style Language

12

For each match create an Arrow graphical
object. Attach it to the shape field of v.

Set a feature of v.shape
The runtime can optimize other features

encourage contributes to objective
function. ensure is a constraint.

Refines a shape created earlier

Creates more shapes for vectors
when there is predicate relating
them to other vectors

Creates more shapes for vectors
when there is predicate relating
them to other vectors

Substance, Style, and Output

13

4
4 3

Style Design Characteristics

• Extensible and reusable
• Many styles per domain
• Use different styles with the same substance program
• Typical end-users need not understand style programs

• But expert users can edit them or write new ones if they want to

• Provides a visual semantics for substance programs
• Pattern matches over logical objects, generates graphical objects
• Generates objectives and constraints for later optimization
• Later matches can refine the semantics provided by earlier ones

14

Optimization

• Basically hill-climbing to solve constraints and maximize
objectives

• All Penrose functions are end-to-end differentiable
• Can take the derivative and modify the input(s) in the direction(s)

that improve the composite objective function

• Can run multiple times
 multiple diagrams

15

Mathematics Underlying the Constraints

16

Point p, q, r, s

Segment a := MkSegment(p, q)
Segment b := MkSegment(p, r)

Point m := Midpoint(a)
Angle theta := AngleBetween(a, b)
Triangle t := MkTriangle(p, r, s)

Ray w := Bisector(theta)
Ray h := PerpendicularBisector(a)

How do these relationships look
if we assume that two parallel
lines never meet?

Euclidean Geometry

Point p, q, r, s

Segment a := MkSegment(p, q)
Segment b := MkSegment(p, r)

Point m := Midpoint(a)
Angle theta := AngleBetween(a, b)
Triangle t := MkTriangle(p, r, s)

Ray w := Bisector(theta)
Ray h := PerpendicularBisector(a)

drawn in euclidean geometry
(assuming parallel postulate)

Euclidean Geometry

Point p, q, r, s

Segment a := MkSegment(p, q)
Segment b := MkSegment(p, r)

Point m := Midpoint(a)
Angle theta := AngleBetween(a, b)
Triangle t := MkTriangle(p, r, s)

Ray w := Bisector(theta)
Ray h := PerpendicularBisector(a)

What if the parallel postulate
doesn’t hold?
How would we visualize these
relationships on, say, a sphere?

Non-Euclidean Geometry

Point p, q, r, s

Segment a := MkSegment(p, q)
Segment b := MkSegment(p, r)

Point m := Midpoint(a)
Angle theta := AngleBetween(a, b)
Triangle t := MkTriangle(p, r, s)

Ray w := Bisector(theta)
Ray h := PerpendicularBisector(a)

(different samples of the
same Substance program,
not a rotated sphere of the
same diagram)

here’s the style program

Non-Euclidean Geometry

https://github.com/penrose/penrose/blob/geometry/src/geometry-domain/spherical.sty

More Penrose Demonstrations

• Set theory
• tree style
• Venn style

• Real analysis
• parallel axis style
• perpendicular axis style

• Any live requests?
• Set theory
• Linear algebra
• Real analysis

21

Penrose: customizable visual semantics for concept-level
expressions in an extensible set of domains

22

Also ask me about:
• Gradual verification [VMCAI 2018]
• Usable immutability [ICSE 2017]

• In progress: usable typestate
for smart contracts

• Capability-based secure language
design [ECOOP 2017]

• In progress: software architecture
in code, v2.0

More examples

23

	Penrose:�From Mathematical Notation�to Beautiful Diagrams
	Diagrams are useful, but too rare
	The Penrose Vision
	Penrose in Actoin
	Can we create a LaTeX for Diagrams?
	Existing tools are inadequate
	The Penrose Architecture and Users
	Anatomy of a Substance Program
	The Element Language
	Substance and Element Design Features
	The Style Language
	The Style Language
	Substance, Style, and Output
	Style Design Characteristics
	Optimization
	Mathematics Underlying the Constraints
	Euclidean Geometry
	Euclidean Geometry
	Non-Euclidean Geometry
	Non-Euclidean Geometry
	More Penrose Demonstrations
	Penrose: customizable visual semantics for concept-level expressions in an extensible set of domains
	More examples

