
High-Level Abstractions for Safe Parallelism

Robert L. Bocchino Jr.
Carnegie Mellon University
rbocchin@cs.cmu.edu

Hannes Mehnert
IT University of Copenhagen

hame@itu.dk

Jonathan Aldrich
Carnegie Mellon University

jonathan.aldrich@cs.cmu.edu

Abstract
Recent research efforts have developed sophisticated type systems
for eliminating unwanted interference (i.e., read-write conflicts)
from parallel code. While these systems are powerful, they suf-
fer from potential barriers to adoption in that (1) they rely upon
complex and/or restrictive features that may be difficult for pro-
grammers to understand and use; and (2) they impose a nontrivial
annotation burden.

In this work we explore a different approach: instead of extend-
ing the type system to do all the work of proving noninterference,
we rely upon high-level abstractions that capture important patterns
of noninterfering parallelism — for example, performing a parallel
divide-and-conquer update on an array, or updating different array
cells in parallel while reading memory disjoint from the array. We
show how, with suitably designed APIs, a few simple type system
extensions can guarantee that user code is noninterfering, assuming
the APIs are correctly implemented. Of course someone still must
check the API implementation; but such checking (which can be
done, e.g., with program logic) is hidden from the user of the API.

To illustrate the idea, we present a prototype implementation
in Standard ML, including several parallel APIs and two realistic
client programs. We sketch the typing annotations and verification
methodology we have in mind. We pose several research questions
raised by the prototype and suggest ideas for extending the work.

1. Introduction
Single-processor size and speed have hit a scaling wall, and com-
modity hardware is becoming more parallel. Therefore software is
becoming more parallel as well. Parallel software, however, poses
significant development and maintenance challenges. One impor-
tant challenge is the possibility of data races, which occur when
two concurrent tasks access the same memory without coordina-
tion, and when at least one of the accesses is a write. Data races can
result in nondeterministic computation results and subtle errors.

Researchers have proposed different ways to avoid races and/or
ensure deterministic execution, typically using types and related
annotations to represent effects [17, 28] or permissions [19, 26, 38,
39]. Overall, the strategy of these approaches is to use program an-
notations to track where interference (i.e., parallel read-write con-
flicts) may potentially occur, and ensure correct synchronization.
These systems can provide impressive guarantees, for example ex-
cluding all data races at compile time [18, 39], or even assuring that
the program executes deterministically [15, 17, 28].

The cost of these guarantees, however, can be high. First, the
burden of understanding and writing the annotations is nontrivial.
Second, the type systems can impose awkward restrictions, such
as disallowing common patterns of assignment (in the case of re-
gion types, such as DPJ [16]) or aliasing (in the case of uniqueness
types [26, 38, 39]). Finally, the more esoteric aspects of these sys-
tems (for example wildcard regions in DPJ, or “borrowing” rules in
uniqueness-based systems) can be intimidating for programmers.

In this work we explore a different approach: instead of extend-
ing the type system to do all the work of proving noninterference,
we rely upon high-level abstractions that capture important patterns
of noninterfering parallelism — for example, performing a parallel
divide-and-conquer update on an array, or updating different array
cells in parallel while reading memory disjoint from the array. We
show how, with suitably designed APIs, a few simple type system
extensions can guarantee that user code is noninterfering, assuming
the APIs are correctly implemented. Of course someone still must
check the API implementation; but such checking (which can be
done, e.g., with program logic) is hidden from the user of the API.

Our main insight is that verified parallel APIs — plus an “ordi-
nary” user type system augmented with a few simple extensions —
can do the same work as the more complex type system extensions
in previous work. The primary benefit is that the user experience
should be more familiar: instead of mastering a complex type sys-
tem, the user just has to understand and use the API. The annotation
burden should also be less: for example, there are no uniqueness or
effect annotations. Finally, there are no restrictions on assignment
or aliasing, other than those imposed by the minimally extended
type system. Of course the programmer is restricted to using avail-
able APIs, but if another API is needed, then (assuming its design is
possible) it can be easily added. Overall, our approach is similar to
the work on parallel frameworks in DPJ [16], but with more robust
API design and far less user-side annotation.

We illustrate our idea by describing a prototype implementation
in Standard ML. We describe several parallel APIs and two realistic
client programs (a merge sort and an n-body simulation), including
the typing annotations and verification methodology we have in
mind. Then we discuss some research questions raised by our
prototype. After that we discuss related work and ideas for future
work.

2. Examples
In this section we illustrate our idea with two examples from our
prototype implementation, written in Standard ML (SML). ML is
well suited to this work because its type and module systems are
elegant and powerful for expressing higher-order functional APIs;
and yet it supports imperative computations with in-place updates,
e.g., using ref and array types. However, we believe this choice
is not essential; for example, we have written similar examples in
Scala and F# (we discuss the F# implementation in Section 3). The
full source code for our examples is available on GitHub [6].

2.1 Disjoint Array Slices
Our first example is an SML module DisjointSlices, which supports
in-place divide-and-conquer operations on collections of disjoint
array slices. By “array slice” we mean a sequence of index positions
into an array. By “disjoint” we mean that any two slices in the
collection represent non-overlapping memory, either because they
index into different arrays, or because the index ranges do not

overlap. We show how to (1) write the DisjointSlices module so
that it supports noninterfering divide-and-conquer parallelism on
arrays and (2) use the module to write parallel merge sort.

Our module uses types Array and ArraySlice from the SML
Standard Basis Library. An Array represents a type-polymorphic
array with in-place update, and an ArraySlice represents an array
slice as described above. In particular, creating an ArraySlice does
not copy any array data; instead the slice stores a reference to the
underlying array. That way several ArraySlice objects can read and
write the same underlying array.

1 s i g n a t u r e DISJOINT_SLICES =
2 s i g
3

4 (* A list of disjoint array slices *)
5 mutable t y p e ’a slices
6

7 (* A list of lists of disjoint array slices *)
8 mutable t y p e ’a partitions
9

10 (* Create fresh array slices from
11 (length , initial value) pairs *)
12 v a l slices : (int * ’a) list -> ’a slices
13

14 (* Wrap an array in a singleton slice *)
15 v a l fromArray : ’a Array.array -> ’a slices
16

17 (* Add fresh array slices *)
18 v a l add : ’a slices * (int * ’a) list ->
19 ’a slices
20

21 (* S -> I -> P splits each slice in S using the
22 corresponding index list in I *)
23 v a l split : ’a slices -> int list list ->
24 ’a partitions
25

26 (* Transpose the list of lists of slices *)
27 v a l transpose : ’a partitions -> ’a partitions
28

29 (* Apply function in parallel to each element *)
30 v a l apply : (’a slices -> unit) ->
31 ’a partitions -> unit
32

33 (* Get the list representation of the slices *)
34 v a l getList : ’a slices ->
35 ’a ArraySlice.slice list
36

37 ...
38

39 end

Figure 1. Signature for the DisjointSlices module (partial).

Module signature. Figure 1 shows selected members of the sig-
nature for our DisjointSlices module. We have extended the SML
syntax with a keyword mutable (highlighted in blue bold face in the
figure, and discussed below), but otherwise this is plain SML.

In Figure 1 lines 4–8, the signature defines two abstract types,
slices and partitions. Type slices represents a list of disjoint slices.
Type partitions represents a list of lists of disjoint slices; a value
of this type results from splitting one or more of the elements of a
slices into sub-slices, to represent sub-computations on parts of the
data. The user of this API expresses a divide-and-conquer parallel
algorithm as a higher-order function that (1) takes a slices type as
an argument; (2) splits the slices into partitions; and (3) applies
itself to the partitions.

The keyword mutable appearing in lines 5 and 8 specifies that
types slices and partitions represent values encapsulating refer-
ences to mutable state (for example, an SML reference or array,
or a record or tuple transitively containing a reference or array). On
the other hand, the type variable ’a must be an immutable value. To
allow binding of mutable data to ’a we would write mutable ’a. We

envision a simple extension to the SML type system that enforces
consistency with respect to these annotations. For example, given
the type shown in Figure 1 line 5, it would be a type error (1) for
the implementor to omit the mutable before the type keyword in the
signature and then implement the type with references or mutable
arrays; or (2) for the user to bind a mutable data type to a plain ’a
with no mutable keyword in the signature.

Lines 10–19 illustrate functions for creating and transforming
slices types. Function slices takes a list of parameters (length and
initial value) and uses them to populate a slices with fresh slices.
Function fromArray accepts an existing array and wraps it in a
slices. Function add adds fresh slices to an existing slices.

Lines 21–28 illustrate functions for creating and transforming
partitions types. Function split takes a slices S and a list I of index
lists, where I and S have equal length (if not, a runtime exception
occurs). It produces a partitions type by splitting each of the slices
in S according to the corresponding index list in I . For example,
inputs [A,B] and [[m], [n]] yield [[A1, A2], [B1, B2]], where A1

represents the first m indices of A, and A2 represents the rest,
and similarly for B1, B2, and n. Function transpose performs a
standard matrix transpose on a list of lists: for example, transpose
[[A1, A2], [B1, B2]] yields [[A1, B1], [A2, B2]].

Function apply (line 30 and following) applies a higher-order
function in parallel to each element in the list of slices types rep-
resented by the partitions input. Again we extend the SML type
system slightly: we assume the function type ’a slices → unit guar-
antees that (1) ’a is an immutable value type, as before; and (2) call-
ing the function does not touch any globally visible mutable state,
such as a reference variable defined outside the function body. If
a function does touch global mutable state, then its type must be
annotated global. For example, the function

fnx ⇒ let val y = ref x in fn z ⇒ (y := !y + z; !y)

has type int → global (int → int). The function itself is not global
(there are no free variables in its definition), but the returned func-
tion is (variable y is free in its definition and has type int ref). In
Figure 1 line 30 there is no global annotation, so we can infer from
the type that the only mutable state entering apply is the partitions
in the second argument; no such state may be “smuggled in” via the
first argument. Note, however, that the user-defined function bound
to the first argument can freely allocate and use its own (local) mu-
table state.
Merge sort. Figure 2 shows how to use the DisjointSlices module
to implement parallel merge sort with a four-way recursive split.
This code is based on the merge sort program in the DPJ bench-
marks [3]. Calls to functions declared in DISJOINT SLICES are
set off in green bold face.

Function sort (lines 33 and following) accepts an int array to
sort. It wraps the array in a slices, adds a fresh array to the slices,
and passes the result to the helper function sortSlices. Function
sortSlices (lines 8 and following) accepts a slices that wraps disjoint
slices A and B. A is the input to be sorted, and B is an auxiliary
array required by the sorting algorithm. At the end of a call to
sortSlices, A is sorted in place.

If A is smaller than a predetermined size, then sortSlices ap-
plies a sequential quicksort to A. Otherwise, it (1) divides A into
quarters and sorts each one in parallel; (2) in parallel merges each
pair of quarters of A into a half of B; and (3) merges the halves
of B back into A. The quarters and halves (lines 19–22) are cre-
ated by splitting and then transposing, as discussed above. Func-
tion splitFirst (lines 23–24) splits slice A only: it applies split to
transform [A,B] into [[A1, A2], [B]], and then it applies flatten to
transform that into [A1, A2, B].

Function merge (lines 3 and following) accepts a slices type
containing slices [A1, A2, B]; it merges A1 and A2 into B in

1 open DisjointSlices
2

3 fun merge (sls : int slices) : unit =
4 c a s e getList sls o f
5 [A1 ,A2,B] => (* Merge A1 , A2 into B *)
6 | _ => r a i s e BadArgument
7

8 fun sortSlices (sls : int slices) : unit =
9 c a s e getList sls o f

10 [A,B] =>
11 l e t
12 v a l len = ArraySlice.length A
13 i n
14 i f len <= QUICK_SIZE t h e n
15 quickSort A
16 e l s e l e t
17 v a l q = len div 4
18 v a l quarterIdxs = [q,2*q,3*q]
19 v a l quarters = t r a n s p o s e (s p l i t sls
20 [quarterIdxs ,quarterIdxs])
21 v a l halves =
22 t r a n s p o s e (s p l i t sls [[2*q],[2*q]])
23 fun splitFirst idx sls =
24 f l a t t e n (s p l i t sls [[idx] ,[]])
25 i n
26 (a p p l y sortSlices quarters;
27 a p p l y (merge o (splitFirst q)) halves;
28 merge (splitFirst (2*q) (r e v sls)))
29 end
30 end
31 | _ => r a i s e BadArgument
32

33 fun sort (arr : int Array.array) : unit =
34 sortSlices
35 (add (fromArray arr ,[(Array.length arr ,0)]))

Figure 2. Merge sort implementation using DisjointSlices.

parallel. We omit most of the code for this function, which is similar
to the code shown for sort.
Module implementation. Figure 3 shows a possible implementa-
tion of the DisjointSlices module. In line 34, we assume the exis-
tence of a function ParallelList.apply that applies the function f in
parallel over the elements of ps.

To ensure the safety of this module, we must prove that the
parallel application in the implementation of apply (line 34) is
safe, regardless of the values of f and ps provided by the user. As
stated in the introduction, in contrast to approaches like DPJ [17],
we do not extend the type system so that it is powerful enough to
carry out this proof; instead, the extended type system just provides
enough information so the proof is possible looking only at the API
implementation code. We imagine that the proof would be done
either manually or with an automatic or semi-automatic theorem
prover. Below we sketch how the proof might go.

By the semantics of the parallel map, and the semantics of
function types discussed above, it suffices to prove that any ps
passed to apply represents a disjoint partition, i.e., a list of lists
of slices such that for each pair of slices, the arrays are different or
the index sets are disjoint. To prove this fact, we must examine the
API and enumerate all the ways that a partitions can be produced.

Here the ML module system helps us. Because of the opaque
constraint :> in Figure 3 line 1, together with the abstract type in
Figure 1 line 8, the representation of the type partitions as a list
of lists is hidden outside the module implementation. Therefore
the only way the user can get a partitions is by splitting a slices
or applying a transformation such as transpose on an existing
partitions. Similarly, to obtain a slices the user must create one
using a constructor provided by the module signature, or transform
one to another, or flatten a partitions into a slices. Thus it suffices
to prove two facts: (1) any constructor for slices creates a disjoint

1 s t r u c t u r e DisjointSlices :> DISJOINT_SLICES =
2 s t r u c t
3

4 mutable t y p e ’a slices =
5 ’a ArraySlice.slice list
6 mutable t y p e ’a partitions =
7 ’a ArraySlice.slice list list
8

9 fun slices specs =
10 List.map (ArraySlice.full o Array.array) specs
11

12 fun fromArray a = [ArraySlice.full a]
13

14 fun add (a,specs) = a @ (slices specs)
15

16 fun splitOne (slice ,is) =
17 l e t
18 v a l starts = 0 :: is
19 v a l ends = is @ [ArraySlice.length slice]
20 v a l lens = ListPair.map (op -) (ends ,starts)
21 fun makeSlice (start ,len) =
22 ArraySlice.subslice (slice ,start ,SOME len)
23 i n
24 ListPair.map makeSlice (starts ,lens)
25 end
26

27 fun split sliceList isList =
28 ListPair.map splitOne (sliceList ,isList)
29

30 fun transpose ([]::_) = []
31 | transpose rows = map hd rows ::
32 transpose (map tl rows)
33

34 fun apply f ps = ParallelList.apply f ps
35

36 fun getList slices = slices
37

38 ...
39

40 end

Figure 3. Implementation of the DisjointSlices module.

slices; and (2) any transformation that maps one slices or partitions
to another preserves disjointness.

As an example of checking fact 1, notice that the API shown in
Figure 1 supports constructing a slices from fresh arrays (function
slices in line 12) or wrapping a single array in a slices (function
fromArray). In the first case, the fresh arrays are disjoint by the se-
mantics of the SML array operations used in line 10 of Figure 3,
while in the second case the single array is trivially disjoint. Signif-
icantly, because of the hidden representation, the user may not sim-
ply take an arbitrary list of slices (which might not be disjoint) and
wrap them in a slices. As an example of checking fact 2, consider
function split (Figure 3 line 27), which maps a slices to a partitions.
Because split partitions the components of the slices into disjoint
pieces, it should be straightforward to prove from its implementa-
tion that if the sliceList input is disjoint, then the partitions output
is disjoint as well.

Finally, notice that the function getList (Figure 3 line 36) ex-
poses the list representation of the slices type. This exposure is
necessary so that the client can access the elements of the slices
(for example, in Figure 2 lines 4 and 9). This exposure does not
present a problem for the correctness argument sketched above. It
would be a problem if the user could go the other way, i.e., could
construct an arbitrary list of slices and make it into a partitions ob-
ject. However, that is not allowed by the API.

2.2 Spatial Region Tree
Our second example is an SML module RegionTree, which repre-
sents a spatial region tree. This structure stores data (usually rep-

resenting physical objects in space) in its leaves, while the inner
nodes of the tree represent partitions of space. Such trees appear, for
example, in physics simulations (to simulate particle interactions)
and graphics computations (for ray tracing and collision detection).

1 s i g n a t u r e REGION_TREE =
2 s i g
3

4 (* A region tree with read/write privileges *)
5 mutable t y p e ’a tree
6

7 (* A region tree with read -only privileges *)
8 r e a d o n l y t y p e ’a readOnlyTree
9 r e a d o n l y t y p e ’a readOnlyNode

10

11 ...
12

13 (* Construct a new empty tree with given number
14 of dimensions and index function *)
15 v a l empty : int -> ’a indexFn -> ’a tree
16

17 (* Insert a value into the tree *)
18 v a l insert : ’a tree -> ’a -> unit
19

20 (* Apply a reduction to the tree in parallel ,
21 updating the nodes in place *)
22 v a l reduce : ’a tree -> ’a reduction ->
23 ’a option
24

25 (* Obtain a read -only alias to a tree *)
26 v a l readOnly : ’a tree -> ’a readOnlyTree
27

28 (* Get the root node out of a tree *)
29 v a l getRoot : ’a readOnlyTree ->
30 ’a readOnlyNode option
31

32 (* Get the children of a node *)
33 v a l getChildren : ’a readOnlyNode ->
34 ’a readOnlyNode option array option
35

36 (* Get the data out of a node *)
37 v a l getData : ’a readOnlyNode option ->
38 ’a option
39

40 ...
41

42 end

Figure 4. Signature for the RegionTree module (partial).

API design. Figure 4 shows selected members of our RegionTree
API. It is similar to the API described in [16], but it uses the
techniques introduced here instead of region and effect annotations
for safe parallelism.

Line 5 declares an abstract mutable type ’a tree that represents
a region tree carrying data of type ’a. The API provides three kinds
of operations on the type. First, the user may build a region tree
by inserting elements repeatedly from the root. Each node stores
its children in a mutable array, and the build occurs by updating
the child arrays in place. Second, the user may perform a parallel
reduction on the tree. This operation starts at the leaves; at each
node it reduces the results produced by the node’s children into
a single result for the node. It also modifies the node in place by
storing the result into the node’s data field (implemented with a ref
type). Third, the user may obtain references to the tree nodes in
order to write custom read-only traversals.

To use the API, the user must first create a fresh region tree
by applying empty (line 15) to two arguments: (1) the dimension
of space that the tree represents; and (2) a user-defined “index
function” that specifies how to traverse the tree when inserting an
element. As in [16], the index function maps a tree level and data
element to the index of the child to visit next. To add nodes to a tree,

the user passes a tree and a data element to insert (line 18), which
uses the index function stored in the tree to add a node containing
the data.

To perform a parallel reduction, the user calls reduce (line
22), passing in a standard reduction function of type ’a reduction,
defined to be

’a option → ’a option list → ’a option.

The reduction function takes a current value and a list of child
values and reduces them to a single updated value. We use an
option type so that a node may have an empty data field. As in
the DisjointSlices API, ’a is an immutable value, and any mutable
state accessed by a function of type ’a reduction must be local to
the function definition.

To support read-only operations on the tree, we introduce an
annotation readonly, indicating a type that provides a reference to
mutable data but may be used only for reading, and not writing, the
data. Figure 4 lines 8–9 define two readonly types, readOnlyTree
and readOnlyNode, which provide read-only access to a tree or a
node respectively. Function readOnly (line 26) converts a tree into
a readOnlyTree; its implementation is the identity function, as only
the types are significant. As shown in lines 28 and following, the
API also provides functions for obtaining a readonly reference to
the root of a readOnlyTree, obtaining readonly references to the
children of a node, and reading data out of a node.

As with the mutable annotation discussed in Section 2.1, the
compiler enforces that readonly types are consistently used (for ex-
ample, that a mutable type is never bound to a readonly type pa-
rameter). However, readonly and non-readonly aliases to the same
object may freely coexist: for example, applying readOnly to a vari-
able tree does not prohibit or restrict the subsequent use of tree, as
it would in systems based on access permissions [26, 38, 39]. Fur-
ther, unlike previous systems incorporating immutable types, the
compiler does not actually prohibit writes from occurring through
references of readonly type. Instead, the readonly annotation regu-
lates the use of the API, and the actual invariant is provided by the
API design and implementation. For example, a correct RegionTree
implementation must ensure that no operation on a readOnlyTree
modifies the tree. This allocation of responsibility keeps the user-
side type system very simple and minimally restrictive.
Barnes-Hut simulation. We have used the RegionTree API to write
the Barnes-Hut n-body simulation (BH) [17, 40]. BH simulates the
interaction between a number of massive bodies (for example, stars
or planets) in a series of time steps. At each time step, the algorithm
(1) constructs a region tree containing the bodies at the leaves; (2)
performs a bottom-up reduction on the tree to fill in the center-
of-mass coordinates for the inner nodes; (3) uses the region tree
to compute the forces on the bodies; and (4) uses the forces to
update the body positions. In our implementation, steps 2 and 3
are parallel. Step 1 could also be parallelized (by adding a parallel
tree build to our API), but we have not done that. The most time-
consuming part of the computation — and the best opportunity for
parallel speedup — occurs in step 3.

Figure 5 illustrates, in ML-like pseudocode, one time step of
our implementation. Function timeStep (line 15) accepts an array of
body objects and computes a new array with the updated positions
for that step. Lines 16–17 use the RegionTree API to insert the
bodies into the tree and fill in the center-of-mass coordinates. Lines
18–19 obtain read-only references to the tree and the array. Line 20
passes the read-only tree and array references to computeForces,
which returns a new array containing bodies with updated forces.
Lines 21–22 update the positions in place in that array and return
the array.

Lines 4 and following show the computeForces function. This
function accepts a pair (tree,bodies) of a read-only tree and a

1 (* body RegionTree . readOnlyTree *
2 body option Array. readOnlyArray ->
3 body option Array.array *)
4 fun computeForces (tree , bodies) =
5 l e t f = (* function taking (tree , bodies)
6 and index i to new body
7 with updated force *)
8 l e t m = ArrayModifier.modifier
9 (Array.length bodies , NONE) (tree ,bodies)

10 ArrayModifier.modifyi m f
11 ArrayModifier.getArray m
12

13 (* body option Array.array ->
14 body option Array.array *)
15 fun timeStep bodies =
16 l e t tree = (* insert bodies into fresh tree *)
17 computeCofM tree
18 l e t tree ’ = RegionTree.readOnly tree
19 l e t bodies ’ = Array.readOnly bodies
20 l e t bodies = computeForces (tree ’,bodies ’)
21 updatePositions (tree ’,bodies)
22 bodies

Figure 5. Pseudocode for one time step of Barnes-Hut.

read-only array. It constructs a function f that reads the tree and
array and computes a new body for each index position i. Because
the incoming tree and array types are read-only, this function
is constrained to call API functions that accept a readOnlyTree
or readOnlyArray as input. In particular, by the design of the
RegionTree API, there is no way for f to insert an element into the
tree. However, f can obtain read-only references to the tree nodes
and their children, to traverse the tree and read its data.

Lines 8–9 construct an ArrayModifier for use in generating the
new body array. This API, shown in relevant part in Figure 6,
encapsulates the pattern of modifying an array in place in parallel
while reading disjoint state. After Figure 5 line 9, m stores a
reference to an ArrayModifier.modifier containing a fresh body
array of the same length as bodies, and storing the read-only state
(tree,bodies).

In Figure 5 line 10, the call to ArrayModifier.modifyi uses f to
modify m’s array in place in parallel. As shown in Figure 6 lines
13–14, function modifyi has type

(’a,’b) modifier → (’a,’b) modifyiFn → unit.

The type modifyiFn is defined as follows:

type (’a, readonly ’b) modifyiFn = ’b → int → ’a.

Here ’a is the type of an array element, and ’b is the type of the state
being read during the computation of ’a at each index position of
the array. Notice that the readonly annotation on type variable ’b
ensures that only read-only state can go into the modifyiFn. Thus
the type system ensures that the only “modifying” here is done by
the modifier itself. Also, notice that the function f in Figure 5 line
5 satisfies this constraint, because the pair (tree,bodies) is a pair of
read-only types. Finally, Figure 5 line 11 gets the modified array
out of the ArrayModifier object and returns it.
Correctness argument. Again, we use the type system not to
make a complete correctness argument, but to provide enough
information so that a correctness argument is possible without
seeing any client code. In the BH example, we have used three APIs
that incorporate parallelism and/or type annotations: RegionTree,
Array, and ArrayModifier. For each API, we must check that (1) the
readonly type annotations are correctly placed; and (2) the parallel
constructs are noninterfering.

To perform the first check, we must ensure that for any API
function accepting a readonly type, the function does not modify

1 s i g n a t u r e ARRAY_MODIFIER =
2 s i g
3

4 mutable t y p e (’a, r e a d o n l y ’b) modifier
5

6 (* Create a new modifier from a fresh array
7 and read -only state *)
8 v a l modifier : (int * ’a) -> ’b ->
9 (’a,’b) modifier

10

11 (* Apply a modify function in parallel
12 to the array *)
13 v a l modifyi : (’a,’b) modifier ->
14 (’a,’b) modifyiFn -> unit
15

16 (* Get the array out of the modifier *)
17 v a l getArray : (’a,’b) modifier ->
18 ’a Array.array
19

20 ...
21

22 end

Figure 6. Signature for the ArrayModifier module (partial).

any data reachable from that type. While this kind of check can be
hard for a general shared-memory program, it seems quite tractable
given the closed-world assumption of our parallel APIs. For exam-
ple, in our RegionTree implementation, the operations that take a
readOnlyTree don’t write any memory at all; they just read data
out of arrays and ref fields. In the ArrayModifier implementation,
modifyi does accept read-only state and modify an array. However,
since the array is created inside the ArrayModifier implementation,
it cannot alias with any read-only state passed in by the user.

The second check must be done for each API function that is in-
ternally parallel; it is similar to the verification of the DisjointSlices
API discussed in Section 2.1. For example, to verify the paral-
lel reduction provided by RegionTree, we could use a technique
such as separation logic [37] or regional logic [11] to verify that
the tree build indeed produces a tree; and then we could use
the tree shape to prove disjointness for the parallel updates. For
ArrayModifier.modifyi, the verification should be easy, since the
only parallel modification is to write values into array cells with
disjoint indices.

3. Research Questions
In this section we pose some questions for further research sug-
gested by the examples discussed in Section 2.
How to formalize the type system. We would like to formalize the
semantics of the type annotations mutable and readonly. Specifi-
cally, we would like to write down a core calculus and work out
the rules for ensuring consistency (1) between type definitions in
signatures and modules and (2) between type variables and their
bindings. The type system we have in mind is very simple, so we
believe this formalization should be straightforward.
Whether the approach is sufficiently general. The approach we
have described is feasible only if we can design a set of parallel
APIs that is general enough to cover a broad range of parallel algo-
rithms. We believe we can do at least as well as type systems such
as DPJ, because for each parallel pattern that DPJ can express (such
as divide-and-conquer array updates) we can design a correspond-
ing API. However, to answer this question we must study further
examples.
How to verify the API implementations. Verifying the API im-
plementations poses several research questions. First, can we for-
malize the informal verification arguments sketched in Section 2?
Second, can the verification be partially or totally automated, for

example using an SMT solver? Automatic or semi-automatic proof,
where possible, can greatly lower the barrier to adoption of a veri-
fication technology. Third, how will the verification scale?
Whether the parallel performance is acceptable. We would like
to understand the performance impact of this approach compared
to approaches that rely on more powerful user type systems. We
can think of two potential impacts. First, since we are providing
high-level APIs, we are giving the user less control over exactly
how a parallel algorithm is constructed than if we were to provide
more fundamental constructs, such as parallel loops and direct
memory access. We believe with a suitably designed set of APIs
this problem should not be too severe.

Second, our approach does rely on immutability more than
some other approaches, such as DPJ. While our merge sort exam-
ple (Section 2.1) closely tracks the DPJ merge sort benchmark, our
Barnes Hut implementation (Section 2.2) relies on slightly more
copying of immutable values, instead of in-place updates. For ex-
ample, in the Java version, the force computation modifies the fields
of body objects in place, whereas the implementation shown here
generates a new array of bodies. In general, greater use of im-
mutable values simplifies the analysis, but by introducing more
copies it can also stress the allocator and garbage collector and in-
crease working set sizes in the cache.

To make a preliminary investigation into this question, we
ported the SML examples described in Section 2 to F#. We did
this because F# contains a subset that is close to SML, and it has
a parallel runtime, whereas SML is sequential. We ran the F# code
on a virtualized Windows XP platform (running in VMWare 3.1.4
on top of OS X). For merge sort on an array of size 227 we saw a
speedup of 1.5x on two cores and 2x on four cores. For Barnes-Hut
we measured each of the parallelized force computation, the par-
allelized center-of-mass computation, and the entire computation.
With an input size of 6400 bodies we saw a speedup of 1.2x on two
cores for each of the three measurements. When we increased the
input size to 64000 we saw no speedup.

The merge sort results are respectable, but not as good as the
speedups reported for the DPJ benchmarks [17]. The Barnes-Hut
results are disappointing. Further investigation is needed here. In
particular, it is not clear whether the reduced performance is inher-
ent in the API approach, or in some tuning issue in our code un-
related to our APIs (for example, the performance impact of stack-
allocated structs vs. heap-allocated records in F#), or in some inher-
ent limitation of the F# runtime versus the Java runtime. To explore
this issue further, we plan to re-implement the APIs and bench-
marks in either Java or Scala (both of which run on the JVM). This
should provide a more direct point of comparison with DPJ, and
give us a way to isolate and eliminate performance bottlenecks.

If it turns out that more in-place mutability is required for good
performance, then there are at least two approaches we could take.
The first one is simply to add more patterns. For example, instead of
an ArrayModifier that writes values into an array, we could support
an array with elements of type (’a,’b), where ’a represents the fields
being updated, and ’b represents the unmodified fields. This would
be similar to assigning different regions to different fields of the
same object in DPJ. The second approach would be to selectively
add uniqueness types (for example, an array of unique references)
to support additional in-place updates.

4. Related Work
Languages such as ML [36], OCaml [5], F# [4], C# [1], and
Scala [33] already enable the general style of programming we ex-
plore here, by supporting both higher-order functional abstractions
and imperative code. OCaml and F# in particular have a mutable
keyword for distinguishing mutable from immutable object fields
(Scala’s val and var are similar). However, these languages don’t

support the checking of safe parallelism, because they allow unre-
stricted use of aliases to mutable objects. Lime [10] is a Java-based
language that uses value types similar to ours; however, it is spe-
cialized to streaming and dataflow computations, whereas we aim
to capture more general patterns via APIs.

The monadic capabilities of Haskell [35] are similar to the ML
type system extensions we explore here: imperative computations
in Haskell must occur “inside a monad,” and this prevents muta-
ble state from entering a computation where it is not supposed
to. Haskell monads have been used to write elegant concurrent
APIs [30, 31]. However, Haskell monads, while powerful, are less
familiar to programmers than straightforward imperative updates
of data structures such as trees, arrays, and hash maps.

Languages such as Æminium [38] and HJp [39] provide simi-
lar safety guarantees to ours using types that express permissions
or capabilities such as uniqueness and/or immutability. Haller and
Odersky [27] have designed a simple capability system for guar-
anteeing race-safety in actor-based concurrency. Recent work by
Gordon et al. [26] is similar, but with a focus on parallelism. Para-
Sail [7] requires all references to globally visible mutable objects to
be unique, so (for example) references cannot be used to construct
cyclic data structures.

Uniqueness types are powerful, but they restrict aliasing of mu-
table objects. They also require the programmer to understand
sometimes subtle rules about how permissions are split, joined,
consumed, borrowed, etc. One of our goals here is to avoid ex-
plicit uniqueness types in user code, although uniqueness invari-
ants might be helpful in verifying API implementations. As a point
of comparison, lines 18–19 of Figure 5, which convert mutable
to readonly references, are reminiscent of the splitting rules in
permission-based systems [32]. But in our approach such splitting
is done with ordinary function calls; there are no extra typing rules
for splitting.

Effect systems such as FX [25], DPJ [17], and Liquid Ef-
fects [28] use effect annotations to achieve similar guarantees to
ours. However, in those systems the user has to write and under-
stand the effect annotations. For example, compare Figure 2 with
the DPJ implementation of merge sort [3], which uses region pa-
rameters, region constraints, and effect summaries to establish the
required disjointness and noninterference properties. In Kawaguchi
et al.’s system [28] many of the annotations are inferred, but the
overhead of writing and understanding the annotations still seems
nontrivial.

There has recently been much work on compiler and run-
time mechanisms for ensuring race freedom [9] and determin-
ism [12, 13, 21, 22, 34] in parallel programs. These mechanisms
are attractive because they generally require little or no program-
mer annotation. However, dynamic checks can add runtime over-
head, and they often provide a weaker guarantee than static checks
(e.g., throwing an exception when a race or determinism violation
is discovered). Further, they can be brittle (e.g., providing a seman-
tics that varies with small changes to the program). Compiler-based
techniques can also require complex and possibly obscure analy-
sis, leading to problems if programmers need to understand what is
going on in order to tune their code. In this work we use mostly-
functional APIs to obtain the transparency and strong guarantees of
simple, type-based static checking with annotation overhead that is
not much greater than the compiler and runtime approaches.

Finally, the idea of using abstractions to encapsulate parallel
patterns is of course not new. For example, Clojure [2] and Ga-
lois [29] provide APIs that encapsulate transactional operations,
and Cilk++ [24] has hyperobjects that support patterns such as re-
duction operations. However, to our knowledge we are the first to
explore the idea of verified parallel APIs for establishing a nonin-
terference property with a minimally-extended type system.

5. Future Work
In addition to addressing the questions posed in Section 3, we
would like to extend the work by developing APIs for different
kinds of parallel abstractions. The abstractions presented in this
paper focus on noninterfering parallelism, where concurrent access
to memory is either disjoint or read-only. However, we believe that
the idea is much more general. For example, one could easily add
abstractions representing atomic and commutative operations on
shared state [17]; atomic (not necessarily commutative) operations
on shared state in the manner of transactions [18, 29]; futures [23];
pipelines [16]; or actors [8]. We believe that recent ideas in parallel
programming such as concurrent revisions [20] and deterministic
reservations [14] can also be adapted to work with our approach.

While the details of these abstractions still have to be worked
out, the unifying idea is that all interactions between parallel tasks
should occur through parallel APIs. For example, in a language
with mutable objects o and arrays a, there should never be direct
reads or writes to o.f or a[i] for any o or a that is accessible
by multiple tasks. Task-local operations on o.f and a[i] are still
supported, as are localized cyclic data structures (e.g., a circular list
created in a single task). However, any inter-task communication,
or global data structures designed to be operated on in parallel,
must be managed by a safe parallel API. This is in contrast to an
approach like DPJ, which allows direct access to shared mutable
data, but requires region and effect annotations to prove safety.

Typically (as in the examples studied here) the API user would
write a higher-order function that operates on local state and pass
it into an abstraction; then the abstraction would orchestrate the
application of the function to global state. That way, all parallel
interaction through shared memory must be done in a way that the
API implementor can “see” and verify as safe.

Acknowledgments
We thank Joshua Sunshine, Alex Potanin, and the WoDet reviewers
for helpful comments. This work was supported by NSF grant
#CCF-1116907 and CMU|Portugal grant CMU-PT/SE/0038/2008.

References
[1] http://msdn.microsoft.com/en-us/library/618ayhy6.aspx.

[2] http://clojure.org.

[3] https://github.com/dpj/DPJ/.

[4] http://msdn.microsoft.com/en-us/library/dd233181.aspx.

[5] http://caml.inria.fr/pub/docs/manual-ocaml/ .

[6] https://github.com/bocchino/ParAbs/ , .

[7] http://parasail-programming-language.blogspot.com, .

[8] G. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-
01092-5.

[9] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC: Checking data
sharing strategies for multithreaded C. In PLDI, 2008.

[10] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: A Java-
compatible and synthesizable language for heterogeneous architec-
tures. OOPSLA, 2010.

[11] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for
local reasoning about global invariants. In ECOOP, 2008.

[12] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: A compiler and runtime system for deterministic multithreaded
execution. In ASPLOS, 2010.

[13] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multi-
threaded programming for C/C++. In OOPSLA, 2009.

[14] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally
deterministic parallel algorithms can be fast. In PPOPP, 2012.

[15] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel programming
must be deterministic by default. In HotPar, 2009.

[16] R. L. Bocchino and V. S. Adve. Types, regions, and effects for safe
programming with object-oriented parallel frameworks. In ECOOP,
2011.

[17] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for deterministic parallel Java. In OOPSLA,
2009.

[18] R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve, V. S.
Adve, A. Welc, and T. Shpeisman. Safe nondeterminism in a
deterministic-by-default parallel language. In POPL, 2011.

[19] J. Boyland. Checking interference with fractional permissions. In SAS,
2003.

[20] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent programming
with revisions and isolation types. In OOPSLA, 2010.

[21] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
shared memory multiprocessing. In ASPLOS, 2009.

[22] Y. h. Eom, S. Yang, J. C. Jenista, and B. Demsky. DOJ: Dynamically
parallelizing object-oriented programs. In PPOPP, PPoPP ’12, 2012.

[23] C. Flanagan and M. Felleisen. The semantics of future and an appli-
cation. Journal of Functional Programming, 9(1):1–31, 1999.

[24] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers
and other Cilk++ hyperobjects. In SPAA, 2009.

[25] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole.
Report on the FX-91 programming language. Technical Report
MIT/LCS/TR-531, 1992.

[26] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and J. Duffy.
Uniqueness and reference immutability for safe parallelism. In OOP-
SLA, 2012.

[27] P. Haller and M. Odersky. Capabilities for uniqueness and borrowing.
In ECOOP, 2010.

[28] M. Kawaguchi, P. Rondon, A. Bakst, and R. Jhala. Deterministic
parallelism via liquid effects. In PLDI, 2012.

[29] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew. Optimistic parallelism requires abstractions. In PLDI,
2007.

[30] D. Leijen, M. Fahndrich, and S. Burckhardt. Prettier concurrency:
purely functional concurrent revisions. In Haskell Symposium, 2011.

[31] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic
parallelism. In Haskell Symposium, 2011.

[32] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A type system for
borrowing permissions. In POPL, 2012.

[33] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A
Comprehensive Step-by-Step Guide. Artima Inc., 2008.

[34] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deter-
ministic multithreading in software. In ASPLOS, 2009.

[35] B. O’Sullivan, J. Goerzen, and D. Stewart. Real World Haskell.
O’Reilly Media, Inc., 1st edition, 2008.

[36] L. C. Paulson. ML for the working programmer (2nd ed.). Cambridge
University Press, New York, NY, USA, 1996.

[37] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. IEEE Symposium on Logic in Computer Science, 2002.

[38] S. Stork, P. Marques, and J. Aldrich. Concurrency by default: Using
permissions to express dataflow in stateful programs. In Onward!,
2009.

[39] E. Westbrook, J. Zhao, Z. Budimlı́c, and V. Sarkar. Practical permiss-
sions for race-free parallelism. In ECOOP, 2012.

[40] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In ISCA, 1995.

