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Abstract 
The right software architecture is critical to achieving 
essential quality attributes, but these qualities are only 
realized if the program as implemented conforms to its 
intended architecture.  Previous techniques for enforc-
ing architecture are either unsound or place signifi-
cant limitations on either architectural design or on 
implementation techniques. 

This paper presents the first system to statically en-
force complete structural conformance between a rich, 
dynamic architectural description and object-oriented 
implementation code.  We extend previous work to (1) 
explain what full structural conformance means in an 
object-oriented setting, and (2) enforce architectural 
structure in the presence of shared data.  We show 
that the resulting system can express and enforce im-
portant structural constraints of an architecture, while 
still supporting key object-oriented implementation 
techniques.  As a result of our conformance property, 
developers can be assured that their intended archi-
tecture is realized in code, so the system will exhibit 
the desired quality attributes. 
1. Introduction 
Designing the right software architecture [GS93, 
PW92] for a system is essential for achieving critical 
system-level quality attributes like evolvability, secu-
rity, and performance [BCK03].  Just as important, 
however, is ensuring that the implementation conforms 
to the designed architecture.   As a case in point, we 
worked with an enterprise that had just “bet the com-
pany” on a new product-line architecture, which was 
meant to enhance the agility, quality, and features of 
the company’s products through enhanced reuse.  The 
company’s worst nightmare was that, after a huge in-
vestment in building the product-line architecture, en-
gineers would be tempted to change to the code in 
ways that might be convenient for a single product but 
would degrade the overall architecture over time. 

As this example shows, it is all too easy for a well-
designed architecture to be subverted by a thousand 
little conveniences, each apparently harmless, but 
which together destroy the intended benefits of the 
architecture.  Because it is crucial to achieving desired 
architectural properties in practice, conformance is a 
critical issue for any architecture.  Better tools and 
methodologies are badly needed to enforce architec-
tural design. 

A system conforms to its architecture if the archi-
tecture is a conservative abstraction of the run-time 
behavior of the system.  The communication integrity 
property defines when run-time communication in the 
implementation conforms to architectural structure 
[MQR95,LV95]: 

Definition [Communication Integrity]: Each 
component in the implementation may only 
communicate directly with the components to 
which it is connected in the architecture. 

Effective static analysis approaches exist for checking 
communication integrity against a module view of ar-
chitecture [MNS01, LR03].  Checking conformance to 
a run-time, component and connector view of architec-
ture is much more challenging due to programming 
language mechanisms which support implicit commu-
nication, such as objects and mutable references.  One 
approach eliminates these implicit communication 
mechanisms entirely [ITU99, Cha01], which works 
well for very static systems such as embedded control 
circuits.  However, this approach is inapplicable to 
more dynamic systems and is unlikely to be accepted 
by practitioners used to the flexibility of object-
oriented languages and design patterns.  Other ap-
proaches postpone checks to run-time [Mad96], but 
this may be too late to avoid user-visible faults result-
ing from conformance problems. 

We have been investigating an approach, ArchJava, 
which embeds an architectural description in code us-
ing new programming language constructs [ACN02].  
As with any language-based approach, there are chal-
lenges to the industrial adoption of ArchJava.  How-
ever, ArchJava is similar to model-driven engineering 
approaches which are of current interest in industry, 
and lessons learned may be applicable in these sys-
tems.  More importantly, a direct expression of archi-
tecture in the programming language makes it feasible 
to, for the first time, enforce communication integrity 
with a dynamic, component and connector architec-
tural view.  Having solved the communication integrity 
problem in the simpler setting of ArchJava, in current 
work we are extending the approach to mainstream 
languages like Java [AA07]. 

Our previous work on ArchJava enforced commu-
nication integrity for function calls between compo-
nents, but it did not enforce integrity for communica-
tion through shared data.  This paper makes three pri-
mary technical contributions: 
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•  We give the first precise technical definition for 
communication integrity in object-oriented sys-
tems, giving architects a way of thinking about 
conformance in object-oriented settings. 

• We extend ArchJava to reason about communica-
tion through shared data, yielding the first ap-
proach that can statically enforce a run-time com-
ponent and connector view of architecture in the 
general object-oriented implementation setting. 

• We demonstrate that the resulting system can ex-
press architectural constraints that are directly 
relevant to quality attributes like performance and 
extensibility.  Furthermore, the system supports 
challenging object-oriented coding idioms like the 
Factory and Observer design patterns. 

Our approach uses ownership constructs from the Ali-
asJava [AKC02,AC04] system to declare what data is 
conceptually a part of each component, as well as to 
describe data that is passed linearly from one compo-
nent to another, or shared temporarily or persistently 
between components.  Ownership allows us to express 
a more general architectural shared data connector 
abstraction compared to previous work [MQR95]. 

In the next section, we review the alias control con-
structs of AliasJava. Section 3 shows how these con-
structs can be integrated into ArchJava to support a 
specification of data sharing in an architecture.  We 
show a number of architectures that illustrate common 
object-oriented implementation patterns, as well as 
highly dynamic architectural designs.  Section 4 de-
fines communication integrity precisely for ArchJava, 
explains how it is checked, and sketches a proof of 
conformance.  Finally, section 5 discusses related 
work, and section 6 concludes. 
2. AliasJava 
AliasJava is a type annotation system that extends Java 
to express how data is confined within, passed among, 
or shared between components and objects in a soft-
ware system [AKC02,AC04].  The ArchJava language, 
discussed in Section 3, builds on this foundation by 
adding constructs for describing software architecture. 
2.1. Aliasing Specification Model 
The goal of AliasJava is to enforce high-level specifi-
cations of aliasing relationships in object-oriented pro-
grams.  We achieve this goal by dividing objects into 
conceptual groups called ownership domains, and al-
lowing architects to specify high-level policies that 
govern references between ownership domains.  Own-
ership domains are hierarchical, allowing engineers to 
specify very high-level aliasing constraints in the sys-
tem architecture, then refine these constraints to spec-
ify aliasing within subsystems, modules, and individual 
objects. 

AliasJava supports abstract reasoning about data 
sharing by assigning each object in the system to a 
single ownership domain.  There is a top-level owner-
ship domain denoted by the keyword shared.  In 
addition, each object can declare one or more domains 
to hold its internal objects, supporting hierarchical 
aliasing specifications. 

For example, Figure 1 uses a Sequence abstract 
data type to illustrate the ownership model used in 
AliasJava.  The Sequence object and its clients are 
both part of the top-level shared ownership domain.  
Within the sequence, the iters ownership domain is 
used to hold iterator objects that clients use to traverse 
the sequence, and the owned ownership domain is used 
to hold the cons cells in the linked list that is used to 
represent the sequence. 

Each object can declare a policy describing the 
permitted aliasing among objects in its internal do-
mains, and between its internal domains and external 
domains.  AliasJava supports two kinds of policy 
specifications: 
• A link from one domain to another, denoted with a 
dashed arrow in the diagram, allows objects in the 
first domain to access objects in the second do-
main. 

• A domain can be declared public, denoted by a 
thinner dashed rectangle with no shading.  Per-
mission to access an object automatically implies 
permission to access its public domains. 

For example, in Figure 1 the Sequence object declares 
a link from its iters domain to its owned domain, al-
lowing the iterators to refer to objects in the linked list.  
The iters domain is public, allowing clients to access 
the iterators, but the owned domain is private, and so 

Sequence 
iters owned 

client 
objects 

shared 

Figure 1.   A conceptual view of the aliasing model 
used in AliasJava and ArchJava. The rounded, 
dashed rectangles represent ownership domains, with 
a gray fill for private domains.  Solid rectangles rep-
resent objects. The top-level shared domain contains 
the highest-level objects in the program.  Each object 
may define one or more domains that in turn contain 
other objects. 
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clients must access the elements of the sequence 
through the iterator interface rather than traversing the 
linked list directly. 

In addition to the explicit policy specifications 
mentioned above, our system includes the following 
implicit policy specifications: 
• An object has permission to access other objects 
in the same domain. 

• An object has permission to access objects in the 
domains that it declares. 

The first rule allows the clients to access the sequence 
(and vice versa), while the second rule allows the se-
quence to access its iterators and linked list.  Any ref-
erence not explicitly permitted by one of these rules is 
prohibited, according to the principle of least privi-
lege.  It is crucial to this example that there is no tran-
sitive access rule: for example, even though clients can 
refer to iterators and iterators can refer to the linked 
list, clients cannot access the linked list directly be-
cause the sequence has not given them permission to 
access the owned domain.  Thus, the policy specifica-
tions allow developers to specify that some objects are 
an internal part of an abstract data type’s representa-
tion, and the compiler enforces the policy, ensuring 
that this representation is not exposed. 
2.2. Alias Annotations 
Figure 2 shows how the Java code defining the se-
quence ADT can be annotated with aliasing informa-
tion to model the constraints expressed in Figure 1.  
The Sequence class is parameterized by the type T 
of its element objects, using Java version 1.5’s gener-
ics support. 

The first two lines of code within the class declare 
the owned domain and a reference to the head of the 
list.  For convenience, every object in our system de-
clares its own owned domain, and so we will omit this 
declaration from future examples.  The head field is 
of type owned Cons<T>, denoting a Cons linked 
list cell that holds an element of type T and resides in 
the owned domain.  The add member function con-
structs a new cons cell for the object passed in, and 
adds it to the head of the list. 

Skipping ahead to the definition of the Cons cell 
class, we see that it is also parameterized by the ele-
ment type T.  The class contains a field obj holding 
an element in the list, along with a next field refer-
ring to the next cons cell (or null, if this is the end of 
the list).  The next field has type owner Cons<T>, 
indicating that the next cell in the list has the same 
owner domain as the current cell (i.e., all the cells are 
part of the Sequence’s owned domain). 

Back in the Sequence class, a public iters domain 
is declared to hold the iterator objects.  Because the 
iterators need to refer to cons cells in the linked list, 

the sequence links the iter domain to the owned do-
main.  The getIter method creates a Sequen-
ceIter object (not shown), initializing the iterator to 
point to the first element of the linked list. 
 
Uniqueness and Lending.  While ownership is useful 
for representing persistent aliasing relationships, it 
cannot capture the common scenario of an object that 
is passed between objects without creating persistent 
aliases.  Objects to which there is only one reference 
(including newly-created objects) are annotated 
unique in AliasJava.  Unique objects can be passed 
from one ownership domain to another, as long as the 
reference to the object in the old ownership domain is 
destroyed when the new reference is created. 

We also allow one ownership domain to temporar-
ily lend an object to another ownership domain, with 
the constraint that the second ownership domain will 
only use the object in the course of a particular func-
tion call and will not create any persistent references to 
the object.  We annotate these temporary references 
with the keyword lent, and enforce the invariant that 
lent references cannot be stored in object fields. 
2.3. Properties 
AliasJava enforces a policy soundness property, ensur-
ing that the aliasing policy specifications in the pro-
gram text are obeyed at run time: 

class Sequence<T> { 
  domain owned; /* default */ 
  owned Cons<T> head; 
  void add(T o) { 
    head = new Cons<T>(o,head) 
  } 
 
  public domain iters; 
  link iters -> owned, owned -> T.owner, 
       iters -> T.owner; 
  iters Iterator<T> getIter() { 
    return new SequenceIter<T,owned>(head);} 
} 
 
class Cons<T> { 
  T obj; 
  owner Cons<T> next; 
 
  Cons(T obj, owner Cons<T> next) { 
    this.obj=obj; this.next=next; } 
} 

 
Figure 2. A Sequence abstract data type that uses a 
linked list for its internal representation.  The Sequence 
declares a publicly accessible iters domain representing 
its iterators, as well as a private owned domain to hold 
the linked list.  The link declarations specify that itera-
tors in the iter domain have permission to access objects 
in the owned domain, and that both domains can access 
owner of the type parameter T. 
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Definition [Policy Soundness]:  If an object 
that is part of ownership domain D1 refers to an 
object in domain D2, then there must be a policy 
specification allowing references from D1 to D2. 

Policy soundness is crucial to enforcing communica-
tion integrity in the presence of data sharing, as de-
scribed below, because it ensures that the data sharing 
declarations in a software architecture are obeyed at 
run time. 

Policy soundness is enforced statically by Alias-
Java’s type system, by ensuring consistency among 
ownership annotations and by making sure references 
between objects are legal given the policy specifica-
tions in scope.  In  previous work we proved a policy 
soundness property in a formal model of the AliasJava 
language [AC04]. 

 
Summary.  AliasJava uses type annotations to parti-
tion an object’s internal state into disjoint ownership 
domains.  Policy specifications constrain inter-domain 
aliasing, so that objects in one domain can only refer 
to objects in another domain if the policy allows these 
references.  In the next section, we show how 
ArchJava leverages AliasJava’s ownership domains in 
architectural specifications to control communication 
through shared data. 
3. ArchJava 
ArchJava extends the Java language with component 
classes, which describe objects that are part of an ar-
chitecture; connections, which allow components to 
communicate; and ports, which are the endpoints of 
connections.  Components are organized into a hierar-
chy using ownership domains, and ownership domains 
can be shared along connections, permitting the con-
nected components to communicate through shared 
data. This section introduces these concepts through 
two example architectures. 
3.1. Example: Pipeline Architecture 
Figure 3 shows the architecture of a graphics pipeline.  
The generate component generates shapes to be 
displayed in the current scene.  These shapes are 
passed on to the transform component, which ap-
plies the current transformation to each shape in turn.  
It then passes the shapes to the rasterize compo-
nent to be drawn. 

We want to enforce two architectural invariants that 
are important to the pipeline architectural style 
[GS93].  First, the components are arranged in a linear 
sequence, with each component getting information 
from its predecessor and sending it on to its successor.  
Second, no data is shared between components; in-
stead, shapes are handed off from one component to 
another.  These invariants support important quality 
attributes, such as the ability to add and remove com-

ponents from the pipeline, and the ability to use a con-
current thread in each component. As we introduce 
ArchJava through this example, we will discuss how 
these invariants are specified and enforced. 
3.2. Components and the Ownership Hier-

archy 
A component in ArchJava is a special kind of object 
whose communication patterns are declared explicitly 
using architectural declarations.  Figure 3 shows the 
code that defines the GraphicsPipeline and 
Transform component classes.  We assume that 
Generate and Rasterize are component classes 
defined elsewhere, and Trans3D and Shape are 
ordinary classes that are not part of the architecture. 

The GraphicsPipeline class contains three 
fields, one for each component in the pipeline.  The 
fields types are annotated with the implicit ownership 
domain owned, meaning that generate, trans-

GraphicsPipeline 
out in out in 

transform  rasterize  generate  
 

 

public component class GraphicsPipeline { 
  protected owned Generate generate = ... ; 
  protected owned Transform transform = ... ; 
  protected owned Rasterize rasterize = ... ; 
 
  connect pattern Generate.out, Transform.in; 
  connect pattern Transform.out,Rasterize.in; 
 
  public GraphicsPipeline() { 
    connect(generate.out, transform.in); 
    connect(transform.out, rasterize.in); 
  } 
} 
 
public component class Transform { 
  protected owned Trans3D currentTransform; 
 
  public port in { 
    provides void draw(unique Shape s); 
  } 
  public port out { 
    requires void draw(unique Shape s); 
  } 
 
  void draw(unique Shape s) { 
    currentTransform.apply(s); 
    out.draw(s); 
  } 
} 
 
Figure 3.  The architectural specification of a graphics 
pipeline in ArchJava.  GraphicsPipeline is made up 
of three subcomponents: Generate generates shapes, 
which are transformed by Transform and then dis-
played by Rasterize.  The Transform component 
accepts a unique Shape on its in port, transforms it 
according to the current transformation, and passes it on 
through the out port. 
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form, and rasterize are subcomponents of the 
GraphicsPipeline component instance that owns 
them. 
3.3. Ports and Unique Data 
Components communicate through explicitly declared 
ports.  A port is a communication endpoint declared by 
a component.  For example, the Transform compo-
nent class declares an in port that receives incoming 
shapes and an out port that passes transformed shapes 
on to the next component. 

Each port declares a set of required and provided 
methods.  A provided method is implemented by the 
component and is available to be called by other com-
ponents connected to this port.  Conversely, each re-
quired method is provided by some other component 
connected to this port. Each provided method must be 
implemented inside the component.  For example, the 
draw method’s implementation transforms its shape 
argument and then calls the required method draw on 
the out port.  As the example shows, a component can 
invoke one of its required methods by sending a mes-
sage to the port that defines the required method. 

Annotating the Shape objects as unique en-
forces the architectural invariant that shapes are 
handed off from one component to another.  
ArchJava’s type system ensures that no component 
may retain a reference to a shape after it passes it on to 
the next component.  This invariant allows the devel-
opers of each component to assume they have exclu-
sive access to the shape they are manipulating. 
3.4. Connections and Connect Patterns 
ArchJava requires developers to declare in the archi-
tecture the connection patterns that are permitted at run 
time.  The declaration connect pattern Gen-
erate.out, Transform.in permits the graph-
ics pipeline component to make connections between 
the out port of its Generate subcomponents and 
the in port of its Transform subcomponents.  The 
connect patterns declared in GraphicsPipeline 
constrain its subcomponents to communicate in a lin-
ear sequence, fulfilling the constraint of the pipeline 
architectural style. 

Once connect patterns have been declared, concrete 
connections can be made between components.  All 
connected components must be part of an ownership 
domain declared by the component making the con-
nection.  For example, the constructor for Graphic-
sPipeline connects the out port of the trans-
form component instance to the in port of the 
rasterize component instance.  This connection 
binds the required method draw in the out port of 
transform to a provided method with the same 
name and signature in the in port of rasterize 
(not shown).  Thus, when transform invokes draw 

on its out port, the corresponding implementation in 
rasterize will be invoked. 
3.5. Example: Repository Architecture 
Figure 4 shows the architecture of a software engineer-
ing environment.  The architecture is structured as a 
repository, with various tools accessing a central data-
base that stores the code base on which the tools oper-
ate [GS93].  In the architectural diagram, the oval 
represents an ownership domain holding the data that 
is shared between the database and all the components.  
The architectural invariant of the system is that tools 
communicate only through the shared data and via 
events that are mediated by the central database 
[SN92]. 

The SEEnvironment component class declares 
the code database as an owned component.  However, 
it doesn’t declare a fixed set of components at the ar-
chitectural level, because we would like the environ-
ment to be extensible, using dependency injection to 
load third-party tools at run time.  Therefore, the archi-
tecture declares a connect pattern between the event 
port of the database and the event port of the ab-
stract component class Tool. 

SEEnvironment 

event 

data 

database  
ruleCheck  

editor  
event 

event 

 
 

public component class SEEnvironment { 
  protected owned Database database = ... ; 
 
  connect pattern Database.event, Tool.event; 
 
  public void instantiateTool(Class tCls) { 
    owned Tool tool=(Tool)tCls.newInstance(); 
    connect(database.event, tool.event); 
    tool.initialize(); 
  } 
 
  //reads config file,calls instantiateTool.. 
} 
 
public abstract component class Tool { 
  public port event { 
    domain data; 
    requires void signal(unique Event e); 
   requires void register(unique EventType t, 
                           data Callback cb); 
  } 
} 
 
Figure 4.  The architectural specification of a software 
engineering environment.  The environment is made up 
of a central database that stores the code for the project, 
and a set of tools that communicate through events that 
are mediated by the database. 
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SEEnvironment reads a configuration file to de-
termine the set of installed components and then in-
stantiates them one by one using the instantiate-
Tool function.  This function takes a component class 
argument, creates a new component instance, and casts 
the instance to type Tool.  The tool is then connected 
to the database using a connect expression that 
matches the connect pattern in the architecture, and 
finally the tool is initialized. 

This design allows an arbitrary number of tools (de-
termined at run time) to be created and linked into the 
software engineering environment.  Thus ArchJava 
supports a level of dynamism similar to Darwin 
[MK96] but somewhat less dynamic than ArchWare 
[MKB+04], as ArchJava does not provide for changes 
to existing connections or the removal of components. 
3.6. Shared Data Connectors 
Components can share objects with connected compo-
nents by declaring ownership domains inside their 
ports. When the port is connected to a matching port, 
ownership domains with the same name that are de-
clared in both ports are merged, allowing both compo-
nents to access the objects in the shared domain.  
These shared ownership domains generalize the con-
cept of shared variable connectors introduced in SADL 
[MQR95] to allow much richer forms of object-
oriented interaction between components. 

For example, the event port in component class 
Tool shows how the tools communicate with the da-
tabase.  The data ownership domain describes the 
objects that are shared between the database and all the 
tools, including the code stored in the database and 
callback objects that react to events. 

Every tool can signal an event by invoking the 
signal function.  The event passed to signal is 
unique; it will be enqueued in the database event 
queue before being delivered to tools that have ex-
pressed interest in events of that type. 

Tools can also register for events of a particular 
type by passing in a unique event descriptor object, 
together with a callback that will be invoked when an 
event occurs.  The callback is expected to define a 
notify method that will be invoked with the event 
argument. 

The event port of Database (not shown) is the 
mirror of the event port of Tool.  It also declares 
the data domain and defines provided methods sig-
nal and register that match the methods declared 
in the port of Tool. 

 
An Example Tool.  The RuleChk component in Fig-
ure 5 is intended to ensure that the code base obeys a 
set of user-defined coding rules.  It stores the set of 
rules in some internal format in the ruleSet object.  
When initialized, it registers a callback to be invoked 
whenever any change to the code occurs. 

The callback object needs to access the set of rules, 
so the class is parameterized by the domain that holds 
the rules, which is instantiated with the owned domain 
of RuleChk.  It stores the ruleSet internally in a 
field annotated with this domain. 

When a code change event is fired, the notify 
method of the RuleCB callback will be invoked.  We 
assume that the database owns the events in the sys-
tem, but callback objects need to have temporary ac-
cess to the event object in order to get information 
about the event.  Therefore, the database passes the 
event to the callback as a lent reference.  The call-
back checks to see if the event leads to a rule violation, 
and notifies the user if a violation is detected. 

This example illustrates ArchJava’s support for 
event callback objects, an important object-oriented 
idiom that is challenging to reason about in conven-
tional implementation languages.  ArchJava ensures 
that tool components in the SE environment can only 
communicate through event callbacks and through 
modifications to shared data, ensuring the efficient 
communication and ease of adding/modifying tools 
that are the quality attribute goals of the reposi-
tory/mediator architectural style [SN92,GS93]. 
3.7. Implementation 
An open-source compiler (based on Barat [BS98]) 
from ArchJava to Java bytecode is available for 
download at the ArchJava web site [Arc02].  ArchJava 
code can link with Java libraries, but communication 

public component class RuleChk extends Tool { 
  protected owned Set<owned> ruleSet; 
 
  public port event { 
    domain data; 
    requires void signal(unique Event e); 
   requires void register(unique EventType t, 
                           data Callback cb); 
  } 
 
  public void initialize() { 
  event.register(new EventType(“codeChange”), 
                 new RuleCB<owned>(ruleSet)); 
  } 
} 
 
class RuleCB<rules> implements Callback { 
  protected rules Set<rules> ruleSet; 
 
  RuleCB(rules Set<rules> rs) { ruleSet=rs; } 
 
  void notify(lent Event e) { 
    // generates an error on rule violations 
  } 
} 
 
Figure 5.  The RuleChk component stores a set of se-
mantic rules, and registers a callback to receive code 
change events.  Whenever the callback is invoked with an 
event, it checks if any of the rules are violated, and if so it 
generates an error. 
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integrity is only guaranteed if all code is run through 
the ArchJava compiler.  Both typechecking and compi-
lation are local, so when a source file is updated, only 
files dependent on its interface need be typechecked 
and recompiled.  We have also implemented a tool that 
can generate ArchJava code from an architectural de-
scription in the Acme language, and a tool that auto-
matically compares and synchronizes Acme and 
ArchJava architectures [AAN+06]. 

ArchJava’s type system is as static as Java’s: most 
checks are done at compile time, but run-time checks 
are performed at downcasts and array writes (the same 
places Java already does dynamic checks) to ensure 
that the domain parameters of an object match the pa-
rameters declared in the type of the cast or array.1  
Other papers provide additional details about the type 
system and the implementation techniques used in the 
compiler [AKC02,Ald03]. 
3.8. Experience 
This paper focuses on how the extended ArchJava 
system is able to use types to capture architectural data 
sharing constraints, and thereby enforce full communi-
cation integrity.  We have previously reported experi-
ence showing that ArchJava and AliasJava can be ap-
plied to nontrivial programs (10+ kLOC) with only 
moderate effort, and can provide benefits such as en-
forcing important architectural constraints, encourag-
ing loose coupling, easing defect repair, and making 
communication more explicit [ACN02, AKC02, 
AAC07].  Our experience has also shown that captur-
ing certain highly dynamic designs in ArchJava can be 
awkward, motivating our current work enforcing archi-
tecture in pure Java [AA07]. 

We have found ArchJava useful as a teaching tool, 
because it makes the often-abstract aspects of software 
architecture very concrete for students. Curricular ma-
terial on using ArchJava to teach software architecture 
is available at the ArchJava web site [Arc02]. 
3.9. Summary 
ArchJava allows developers to specify the software 
architecture of a system as a hierarchy of component 
instances.  Connections describe which components 
within the architecture communicate, and the methods 
and ownership domains declared in ports show the 
details of communication through method calls and 
shared data. 
4. Communication Integrity 
Communication integrity is critical to ensuring that a 
system achieves the benefits designed into the archi-

                                                           
1 Although ArchJava’s type system is statically check-
able, the language can still express dynamic architec-
tures. 

tecture.  While the intuition behind communication 
integrity is straightforward, making this intuition pre-
cise in the presence of complex object-oriented de-
signs is difficult.  Here we define communication in-
tegrity in the ArchJava component model, but we be-
lieve the definition can be applied (with minor modifi-
cations) in broader settings as well. 

Before defining communication integrity, we must 
define inter-component communication.  To do so, we 
need the concept of an object’s architectural domain, 
which can be found by ascending the ownership tree 
until an ownership domain declared in a component is 
reached.  If an object is unique, it has no architec-
tural domain. 
 
Definition [Inter-component communication]:  Two 
components communicate whenever: 
1. Direct call: Component instance A or an object in 

one of its ownership domains invokes a method 
directly on component instance B, or 

2. Connection call: Component instance A invokes 
a method of component instance B through a con-
nection, or 

3. Shared data: An object in architectural domain A 
accesses (invokes a method or reads or writes a 
field of) a non-component object B which is in a 
different architectural domain. 

We now state the communication integrity theorem for 
ArchJava: 
 
Theorem [Communication Integrity]:  All run-time 
inter-component communication falls into one of the 
following categories of communication, each of which 
is documented explicitly or implicitly in the architec-
ture: 
1. Unique communication: Object/Component A 

invokes a method on a unique component B, or 
2. Parent-child communication:  Ob-

ject/Component A invokes a method on a compo-
nent B owned by A, or 

3. Connection communication:  Component A in-
vokes a method on component B through a con-
nection that matches a connect pattern in the com-
ponent instance that directly owns (or is equal to) 
A and B, or 

4. Lent communication:  Component or object A 
invokes a method on an object or component B 
that has been temporarily lent to A, or 

5. Shared domain communication:  Object A ac-
cesses some object B in a different domain, and 
the architectural domain of A is linked to that of B. 
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Discussion.  Although the principle of communication 
integrity has a universally clear meaning, the way in 
which communication integrity is documented will 
vary from system to system.  We believe that the defi-
nition above is appropriate for ArchJava because it 
permits only local communication between compo-
nents—the essence of communication integrity—yet 
allows that local communication to occur through a 
number of important object-oriented patterns and idi-
oms. 

Each of the forms of communication above is es-
sential in an object-oriented setting.  Unique commu-
nication is important in order to allow implementations 
of loosely-coupled systems such as the pipeline exam-
ple above.  Although in principle we could have re-
quired parent-child communication to be done through 
explicit ports, our experience with ArchJava has 
shown that this would be awkward.  Connection com-
munication through explicitly declared ports is of 
course the standard architectural case for communica-
tion.  Lent communication is necessary to support li-
brary code and efficient parameter passing, providing 
an escape hatch from the constraints of ownership 
while still allowing local reasoning about communica-
tion.  Finally, shared domain communication supports 
communication through persistent shared objects, a 
common idiom in many object-oriented systems. 

Our definition of communication integrity is not 
perfect; some aspects of the system (such as the global 
domain shared) give up locality in order to support 
standard Java idioms like static fields.  However, we 
believe that the definition is a good compromise given 
the goal of supporting existing Java programs with few 
changes.  Furthermore, we argue that any definition of 
communication integrity that is intended to be general-
purpose will have to support the categories of commu-
nication described here in some way. 

The author’s dissertation includes a formal model 
of the ArchJava language, a formal statement of the 
communication integrity theorem described above, and 
a rigorous proof that ArchJava’s type system statically 
enforces communication integrity [Ald03].  Below, we 
outline the structure of the proof and provide an intui-
tion for how the property is enforced. 
 
Enforcement.  Enforcing communication integrity is 
essentially ensuring that all instances of inter-
component communication fall into one of the archi-
tecturally documented categories.  Consider the cases 
of inter-component communication: 
1. Direct call case.  ArchJava’s type system ensures 

if the receiver of a method call is a component, 
then either the receiver is this, or the receiver is 
unique or part of a locally declared ownership 
domain.  In the case of this, the communication 
is within a component.  In the cases of unique 
and local domains, the communication is unique 

communication and parent-child communication, 
respectively. 

2. Connection call case.  The type system must en-
sure that the component which owns both the 
sender and the receiver declared a connection be-
tween them.  When a connection is made, the 
compiler verifies that the components in the con-
nection are owned by the current component, and 
that the current component declares a connect pat-
tern that matches the components being con-
nected. 

3. Shared data case.  Consider the annotation on the 
object B being accessed.  If the annotation is 
unique, there is no inter-component communi-
cation occurring—instead, the calling component 
is modifying one of its own unique data structures.  
If the annotation is owned, again, there is no in-
ter-component communication, because the re-
ceiver of the access is part of the same component 
as the sender.  If the annotation is a lent domain 
parameter, the communication is lent communica-
tion. 

The remaining case is when the accessed object 
is annotated with some other, non-owned, owner-
ship domain.  We wish to show that this case is 
shared domain communication.  This will be true 
if and only if architectural domain of the accessing 
object can access the target object’s domain ac-
cording to the aliasing policy.  But this is guaran-
teed by the policy soundness property, so we are 
done. 

 
Discussion.  The theoretical framework described 
above is quite general—for example, communication 
through static fields or native methods can be modeled 
as shared domain communication, where the fields and 
native methods are conceptually part of the globally 
accessible shared domain.  In practice, however, 
excessive communication through the shared do-
main makes reasoning more difficult, and so develop-
ers should avoid it, just as good engineers typically 
avoid using global variables in today’s programming 
languages.  We would prefer to omit the global 
shared domain entirely, but this would be impracti-
cal given that many existing Java libraries use global 
data structures.  A compromise would be to issue a 
warning when the shared domain is used. 

Communication integrity means that all communi-
cation between components must be declared at the 
architectural level—either through required and pro-
vided methods in connected ports, or through an own-
ership domain declared in connected ports.  The 
ArchJava compiler enforces conformance via local 
rules governing how references with different alias 
annotations can be used.  Because integrity is enforced 
through the type system, programmers can develop 
applications much as they do today, but gain the assur-
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ance that architectural properties are maintained during 
implementation and evolution. 
5. Related Work 
ArchJava.  The initial ArchJava system enforced ar-
chitectural conformance only for control flow between 
components, not for communication though shared 
data [ACN02].  Although our initial experience sug-
gested that control-flow integrity is useful in practice, 
rigorous reasoning about general architectural proper-
ties requires understanding communication though 
shared data.  This paper’s extension of ArchJava to 
enforce communication integrity in the case of shared 
data is much more challenging, due to the ubiquitous 
and complex uses of shared data structures in object-
oriented systems. 

In addition, the system we describe here is more 
flexible and more consistent than our previous system.  
For example, the component hierarchy is specified 
using ownership domains, rather than the ad-hoc and 
inflexible syntactic criterion used before.  One benefit 
is that we can now support the factory pattern 
[GHJ+94] for components: a factory component cre-
ates and initializes components, which are then passed 
as a unique component to their final place in the 
architecture, where they become owned by their par-
ent component.  Another benefit is that Java constructs 
like inner classes, interface inheritance, and native 
methods fit more cleanly into our current framework, 
as discussed elsewhere [Ald03]. 
Architecture Description Languages.  A number of 
architecture description languages (ADLs) have been 
defined to describe, model, check, and implement soft-
ware architectures [MT00].  The C2 system provides a 
framework for implementing software architectures, 
but does not automatically ensure that the code instan-
tiating the framework respects architectural constraints 
[MOR+96].  The SADL system formalizes architec-
tures in terms of theories, providing a framework for 
proving that communication integrity is maintained 
when refining an abstract architecture into a concrete 
one [MQR95].  However, the system did not provide 
automated support for enforcing communication integ-
rity.  The Rapide system includes a tool that dynami-
cally monitors the execution of a program, checking 
for communication integrity violations [Mad96].  The 
Rapide papers also suggest that integrity could be en-
forced statically if system implementers follow style 
guidelines, such as never sharing mutable data between 
components [LV95].  However, the guideline forbid-
ding shared data prohibits many useful programs, and 
the guidelines are not enforced automatically. 
Enforcing Design.  Lam and Rinard have developed a 
type system for describing and enforcing design 
[LR03].  Their designs describe communication be-
tween subsystems (corresponding to ArchJava’s com-

ponents) that is mediated through shared objects that 
are labeled with tokens (corresponding to ownership 
domains).  Their system does not model architectural 
hierarchy, and the set of subsystems and tokens is 
statically fixed rather than dynamically determined, as 
in ArchJava.  Furthermore, their system does not de-
scribe data sharing as precisely, omitting constructs 
like uniqueness and ownership-based encapsulation.  
However, they do describe a number of useful analyses 
which would complement ArchJava’s more detailed 
architectural descriptions. 

Design structure can also be supported with analy-
sis.  For example, the Reflexion Model system uses a 
call graph construction analysis in order to find incon-
sistencies between an architectural model and source 
code [MNS01].  This analysis-based approach is more 
lightweight than ArchJava’s type system, but does not 
support hierarchical, dynamic architectures or precise 
data sharing constraints. 
CASE Tools.  Several CASE tools support the SDL 
language, which allows developers to describe archi-
tectural structure within the implementation of an em-
bedded system [ITU99]. The language enforces archi-
tectural conformance, but only by prohibiting shared 
references between components.  The SPARK system 
takes a similar approach, supporting a subset of Ada 
without references in order to rigorously guarantee 
information flow properties [Cha01].  The prohibition 
of references is reasonable and even desirable for the 
telecommunications and other embedded systems for 
which SDL and SPARK were designed, but is inap-
propriate for the highly dynamic, object-oriented ap-
plications that ArchJava targets.  Other CASE tools 
such as Rational Rose RealTime [RSC00] also allow 
developers to specify the design of a system, but in the 
presence of shared objects and references they do not 
enforce architectural conformance.  Our approach 
could be used to enforce conformance in these sys-
tems. 
Ownership and Uniqueness.  Ownership was intro-
duced in the Flexible Alias Protection paper, which 
uses ownership polymorphism to strike a balance be-
tween guaranteeing aliasing properties and allowing 
flexible programming idioms [NVP98].  More recent 
work formalized ownership as a type system and 
showed how to increase its expressiveness [CNP01].  
Our uniqueness concept is based on Boyland’s work 
[Boy01]. 

ArchJava’s support for ownership and uniqueness is 
most closely based on the author’s previous work on 
AliasJava, which includes substantial experience 
showing that the system is practical [AKC02].  Alias-
Java’s ownership model was extended in a later paper 
to support multiple ownership domains per object and 
the detailed policy specifications described in section 2 
above, providing both more expressiveness and 
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stronger aliasing guarantees compared to previous 
ownership systems [AC04]. 

No previous work, however, has applied ownership 
and uniqueness to the problem of architectural con-
formance.  A contribution of this paper is showing how 
the concept of shared variable connectors, formally 
introduced in the SADL system [MQR95], can be gen-
eralized to shared ownership domains that allow rich 
object-oriented sharing relationships while retaining a 
strong guarantee of communication integrity.  Our 
system also demonstrates that flexible policy specifica-
tions and multiple ownership domains are essential for 
modeling sharing constraints in software architectures. 
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