
 1

Using Types to Enforce Architectural Structure

Jonathan Aldrich
Carnegie Mellon University
jonathan.aldrich@cs.cmu.edu

Abstract
The right software architecture is critical to achieving
essential quality attributes, but these qualities are only
realized if the program as implemented conforms to its
intended architecture. Previous techniques for enforc-
ing architecture are either unsound or place signifi-
cant limitations on either architectural design or on
implementation techniques.

This paper presents the first system to statically en-
force complete structural conformance between a rich,
dynamic architectural description and object-oriented
implementation code. We extend previous work to (1)
explain what full structural conformance means in an
object-oriented setting, and (2) enforce architectural
structure in the presence of shared data. We show
that the resulting system can express and enforce im-
portant structural constraints of an architecture, while
still supporting key object-oriented implementation
techniques. As a result of our conformance property,
developers can be assured that their intended archi-
tecture is realized in code, so the system will exhibit
the desired quality attributes.
1. Introduction
Designing the right software architecture [GS93,
PW92] for a system is essential for achieving critical
system-level quality attributes like evolvability, secu-
rity, and performance [BCK03]. Just as important,
however, is ensuring that the implementation conforms
to the designed architecture. As a case in point, we
worked with an enterprise that had just “bet the com-
pany” on a new product-line architecture, which was
meant to enhance the agility, quality, and features of
the company’s products through enhanced reuse. The
company’s worst nightmare was that, after a huge in-
vestment in building the product-line architecture, en-
gineers would be tempted to change to the code in
ways that might be convenient for a single product but
would degrade the overall architecture over time.

As this example shows, it is all too easy for a well-
designed architecture to be subverted by a thousand
little conveniences, each apparently harmless, but
which together destroy the intended benefits of the
architecture. Because it is crucial to achieving desired
architectural properties in practice, conformance is a
critical issue for any architecture. Better tools and
methodologies are badly needed to enforce architec-
tural design.

A system conforms to its architecture if the archi-
tecture is a conservative abstraction of the run-time
behavior of the system. The communication integrity
property defines when run-time communication in the
implementation conforms to architectural structure
[MQR95,LV95]:

Definition [Communication Integrity]: Each
component in the implementation may only
communicate directly with the components to
which it is connected in the architecture.

Effective static analysis approaches exist for checking
communication integrity against a module view of ar-
chitecture [MNS01, LR03]. Checking conformance to
a run-time, component and connector view of architec-
ture is much more challenging due to programming
language mechanisms which support implicit commu-
nication, such as objects and mutable references. One
approach eliminates these implicit communication
mechanisms entirely [ITU99, Cha01], which works
well for very static systems such as embedded control
circuits. However, this approach is inapplicable to
more dynamic systems and is unlikely to be accepted
by practitioners used to the flexibility of object-
oriented languages and design patterns. Other ap-
proaches postpone checks to run-time [Mad96], but
this may be too late to avoid user-visible faults result-
ing from conformance problems.

We have been investigating an approach, ArchJava,
which embeds an architectural description in code us-
ing new programming language constructs [ACN02].
As with any language-based approach, there are chal-
lenges to the industrial adoption of ArchJava. How-
ever, ArchJava is similar to model-driven engineering
approaches which are of current interest in industry,
and lessons learned may be applicable in these sys-
tems. More importantly, a direct expression of archi-
tecture in the programming language makes it feasible
to, for the first time, enforce communication integrity
with a dynamic, component and connector architec-
tural view. Having solved the communication integrity
problem in the simpler setting of ArchJava, in current
work we are extending the approach to mainstream
languages like Java [AA07].

Our previous work on ArchJava enforced commu-
nication integrity for function calls between compo-
nents, but it did not enforce integrity for communica-
tion through shared data. This paper makes three pri-
mary technical contributions:

 2

• We give the first precise technical definition for
communication integrity in object-oriented sys-
tems, giving architects a way of thinking about
conformance in object-oriented settings.

• We extend ArchJava to reason about communica-
tion through shared data, yielding the first ap-
proach that can statically enforce a run-time com-
ponent and connector view of architecture in the
general object-oriented implementation setting.

• We demonstrate that the resulting system can ex-
press architectural constraints that are directly
relevant to quality attributes like performance and
extensibility. Furthermore, the system supports
challenging object-oriented coding idioms like the
Factory and Observer design patterns.

Our approach uses ownership constructs from the Ali-
asJava [AKC02,AC04] system to declare what data is
conceptually a part of each component, as well as to
describe data that is passed linearly from one compo-
nent to another, or shared temporarily or persistently
between components. Ownership allows us to express
a more general architectural shared data connector
abstraction compared to previous work [MQR95].

In the next section, we review the alias control con-
structs of AliasJava. Section 3 shows how these con-
structs can be integrated into ArchJava to support a
specification of data sharing in an architecture. We
show a number of architectures that illustrate common
object-oriented implementation patterns, as well as
highly dynamic architectural designs. Section 4 de-
fines communication integrity precisely for ArchJava,
explains how it is checked, and sketches a proof of
conformance. Finally, section 5 discusses related
work, and section 6 concludes.
2. AliasJava
AliasJava is a type annotation system that extends Java
to express how data is confined within, passed among,
or shared between components and objects in a soft-
ware system [AKC02,AC04]. The ArchJava language,
discussed in Section 3, builds on this foundation by
adding constructs for describing software architecture.
2.1. Aliasing Specification Model
The goal of AliasJava is to enforce high-level specifi-
cations of aliasing relationships in object-oriented pro-
grams. We achieve this goal by dividing objects into
conceptual groups called ownership domains, and al-
lowing architects to specify high-level policies that
govern references between ownership domains. Own-
ership domains are hierarchical, allowing engineers to
specify very high-level aliasing constraints in the sys-
tem architecture, then refine these constraints to spec-
ify aliasing within subsystems, modules, and individual
objects.

AliasJava supports abstract reasoning about data
sharing by assigning each object in the system to a
single ownership domain. There is a top-level owner-
ship domain denoted by the keyword shared. In
addition, each object can declare one or more domains
to hold its internal objects, supporting hierarchical
aliasing specifications.

For example, Figure 1 uses a Sequence abstract
data type to illustrate the ownership model used in
AliasJava. The Sequence object and its clients are
both part of the top-level shared ownership domain.
Within the sequence, the iters ownership domain is
used to hold iterator objects that clients use to traverse
the sequence, and the owned ownership domain is used
to hold the cons cells in the linked list that is used to
represent the sequence.

Each object can declare a policy describing the
permitted aliasing among objects in its internal do-
mains, and between its internal domains and external
domains. AliasJava supports two kinds of policy
specifications:
• A link from one domain to another, denoted with a
dashed arrow in the diagram, allows objects in the
first domain to access objects in the second do-
main.

• A domain can be declared public, denoted by a
thinner dashed rectangle with no shading. Per-
mission to access an object automatically implies
permission to access its public domains.

For example, in Figure 1 the Sequence object declares
a link from its iters domain to its owned domain, al-
lowing the iterators to refer to objects in the linked list.
The iters domain is public, allowing clients to access
the iterators, but the owned domain is private, and so

Sequence
iters owned

client
objects

shared

Figure 1. A conceptual view of the aliasing model
used in AliasJava and ArchJava. The rounded,
dashed rectangles represent ownership domains, with
a gray fill for private domains. Solid rectangles rep-
resent objects. The top-level shared domain contains
the highest-level objects in the program. Each object
may define one or more domains that in turn contain
other objects.

 3

clients must access the elements of the sequence
through the iterator interface rather than traversing the
linked list directly.

In addition to the explicit policy specifications
mentioned above, our system includes the following
implicit policy specifications:
• An object has permission to access other objects
in the same domain.

• An object has permission to access objects in the
domains that it declares.

The first rule allows the clients to access the sequence
(and vice versa), while the second rule allows the se-
quence to access its iterators and linked list. Any ref-
erence not explicitly permitted by one of these rules is
prohibited, according to the principle of least privi-
lege. It is crucial to this example that there is no tran-
sitive access rule: for example, even though clients can
refer to iterators and iterators can refer to the linked
list, clients cannot access the linked list directly be-
cause the sequence has not given them permission to
access the owned domain. Thus, the policy specifica-
tions allow developers to specify that some objects are
an internal part of an abstract data type’s representa-
tion, and the compiler enforces the policy, ensuring
that this representation is not exposed.
2.2. Alias Annotations
Figure 2 shows how the Java code defining the se-
quence ADT can be annotated with aliasing informa-
tion to model the constraints expressed in Figure 1.
The Sequence class is parameterized by the type T
of its element objects, using Java version 1.5’s gener-
ics support.

The first two lines of code within the class declare
the owned domain and a reference to the head of the
list. For convenience, every object in our system de-
clares its own owned domain, and so we will omit this
declaration from future examples. The head field is
of type owned Cons<T>, denoting a Cons linked
list cell that holds an element of type T and resides in
the owned domain. The add member function con-
structs a new cons cell for the object passed in, and
adds it to the head of the list.

Skipping ahead to the definition of the Cons cell
class, we see that it is also parameterized by the ele-
ment type T. The class contains a field obj holding
an element in the list, along with a next field refer-
ring to the next cons cell (or null, if this is the end of
the list). The next field has type owner Cons<T>,
indicating that the next cell in the list has the same
owner domain as the current cell (i.e., all the cells are
part of the Sequence’s owned domain).

Back in the Sequence class, a public iters domain
is declared to hold the iterator objects. Because the
iterators need to refer to cons cells in the linked list,

the sequence links the iter domain to the owned do-
main. The getIter method creates a Sequen-
ceIter object (not shown), initializing the iterator to
point to the first element of the linked list.

Uniqueness and Lending. While ownership is useful
for representing persistent aliasing relationships, it
cannot capture the common scenario of an object that
is passed between objects without creating persistent
aliases. Objects to which there is only one reference
(including newly-created objects) are annotated
unique in AliasJava. Unique objects can be passed
from one ownership domain to another, as long as the
reference to the object in the old ownership domain is
destroyed when the new reference is created.

We also allow one ownership domain to temporar-
ily lend an object to another ownership domain, with
the constraint that the second ownership domain will
only use the object in the course of a particular func-
tion call and will not create any persistent references to
the object. We annotate these temporary references
with the keyword lent, and enforce the invariant that
lent references cannot be stored in object fields.
2.3. Properties
AliasJava enforces a policy soundness property, ensur-
ing that the aliasing policy specifications in the pro-
gram text are obeyed at run time:

class Sequence<T> {
 domain owned; /* default */
 owned Cons<T> head;
 void add(T o) {
 head = new Cons<T>(o,head)
 }

 public domain iters;
 link iters -> owned, owned -> T.owner,
 iters -> T.owner;
 iters Iterator<T> getIter() {
 return new SequenceIter<T,owned>(head);}
}

class Cons<T> {
 T obj;
 owner Cons<T> next;

 Cons(T obj, owner Cons<T> next) {
 this.obj=obj; this.next=next; }
}

Figure 2. A Sequence abstract data type that uses a
linked list for its internal representation. The Sequence
declares a publicly accessible iters domain representing
its iterators, as well as a private owned domain to hold
the linked list. The link declarations specify that itera-
tors in the iter domain have permission to access objects
in the owned domain, and that both domains can access
owner of the type parameter T.

 4

Definition [Policy Soundness]: If an object
that is part of ownership domain D1 refers to an
object in domain D2, then there must be a policy
specification allowing references from D1 to D2.

Policy soundness is crucial to enforcing communica-
tion integrity in the presence of data sharing, as de-
scribed below, because it ensures that the data sharing
declarations in a software architecture are obeyed at
run time.

Policy soundness is enforced statically by Alias-
Java’s type system, by ensuring consistency among
ownership annotations and by making sure references
between objects are legal given the policy specifica-
tions in scope. In previous work we proved a policy
soundness property in a formal model of the AliasJava
language [AC04].

Summary. AliasJava uses type annotations to parti-
tion an object’s internal state into disjoint ownership
domains. Policy specifications constrain inter-domain
aliasing, so that objects in one domain can only refer
to objects in another domain if the policy allows these
references. In the next section, we show how
ArchJava leverages AliasJava’s ownership domains in
architectural specifications to control communication
through shared data.
3. ArchJava
ArchJava extends the Java language with component
classes, which describe objects that are part of an ar-
chitecture; connections, which allow components to
communicate; and ports, which are the endpoints of
connections. Components are organized into a hierar-
chy using ownership domains, and ownership domains
can be shared along connections, permitting the con-
nected components to communicate through shared
data. This section introduces these concepts through
two example architectures.
3.1. Example: Pipeline Architecture
Figure 3 shows the architecture of a graphics pipeline.
The generate component generates shapes to be
displayed in the current scene. These shapes are
passed on to the transform component, which ap-
plies the current transformation to each shape in turn.
It then passes the shapes to the rasterize compo-
nent to be drawn.

We want to enforce two architectural invariants that
are important to the pipeline architectural style
[GS93]. First, the components are arranged in a linear
sequence, with each component getting information
from its predecessor and sending it on to its successor.
Second, no data is shared between components; in-
stead, shapes are handed off from one component to
another. These invariants support important quality
attributes, such as the ability to add and remove com-

ponents from the pipeline, and the ability to use a con-
current thread in each component. As we introduce
ArchJava through this example, we will discuss how
these invariants are specified and enforced.
3.2. Components and the Ownership Hier-

archy
A component in ArchJava is a special kind of object
whose communication patterns are declared explicitly
using architectural declarations. Figure 3 shows the
code that defines the GraphicsPipeline and
Transform component classes. We assume that
Generate and Rasterize are component classes
defined elsewhere, and Trans3D and Shape are
ordinary classes that are not part of the architecture.

The GraphicsPipeline class contains three
fields, one for each component in the pipeline. The
fields types are annotated with the implicit ownership
domain owned, meaning that generate, trans-

GraphicsPipeline
out in out in

transform rasterize generate

public component class GraphicsPipeline {
 protected owned Generate generate = ... ;
 protected owned Transform transform = ... ;
 protected owned Rasterize rasterize = ... ;

 connect pattern Generate.out, Transform.in;
 connect pattern Transform.out,Rasterize.in;

 public GraphicsPipeline() {
 connect(generate.out, transform.in);
 connect(transform.out, rasterize.in);
 }
}

public component class Transform {
 protected owned Trans3D currentTransform;

 public port in {
 provides void draw(unique Shape s);
 }
 public port out {
 requires void draw(unique Shape s);
 }

 void draw(unique Shape s) {
 currentTransform.apply(s);
 out.draw(s);
 }
}

Figure 3. The architectural specification of a graphics
pipeline in ArchJava. GraphicsPipeline is made up
of three subcomponents: Generate generates shapes,
which are transformed by Transform and then dis-
played by Rasterize. The Transform component
accepts a unique Shape on its in port, transforms it
according to the current transformation, and passes it on
through the out port.

 5

form, and rasterize are subcomponents of the
GraphicsPipeline component instance that owns
them.
3.3. Ports and Unique Data
Components communicate through explicitly declared
ports. A port is a communication endpoint declared by
a component. For example, the Transform compo-
nent class declares an in port that receives incoming
shapes and an out port that passes transformed shapes
on to the next component.

Each port declares a set of required and provided
methods. A provided method is implemented by the
component and is available to be called by other com-
ponents connected to this port. Conversely, each re-
quired method is provided by some other component
connected to this port. Each provided method must be
implemented inside the component. For example, the
draw method’s implementation transforms its shape
argument and then calls the required method draw on
the out port. As the example shows, a component can
invoke one of its required methods by sending a mes-
sage to the port that defines the required method.

Annotating the Shape objects as unique en-
forces the architectural invariant that shapes are
handed off from one component to another.
ArchJava’s type system ensures that no component
may retain a reference to a shape after it passes it on to
the next component. This invariant allows the devel-
opers of each component to assume they have exclu-
sive access to the shape they are manipulating.
3.4. Connections and Connect Patterns
ArchJava requires developers to declare in the archi-
tecture the connection patterns that are permitted at run
time. The declaration connect pattern Gen-
erate.out, Transform.in permits the graph-
ics pipeline component to make connections between
the out port of its Generate subcomponents and
the in port of its Transform subcomponents. The
connect patterns declared in GraphicsPipeline
constrain its subcomponents to communicate in a lin-
ear sequence, fulfilling the constraint of the pipeline
architectural style.

Once connect patterns have been declared, concrete
connections can be made between components. All
connected components must be part of an ownership
domain declared by the component making the con-
nection. For example, the constructor for Graphic-
sPipeline connects the out port of the trans-
form component instance to the in port of the
rasterize component instance. This connection
binds the required method draw in the out port of
transform to a provided method with the same
name and signature in the in port of rasterize
(not shown). Thus, when transform invokes draw

on its out port, the corresponding implementation in
rasterize will be invoked.
3.5. Example: Repository Architecture
Figure 4 shows the architecture of a software engineer-
ing environment. The architecture is structured as a
repository, with various tools accessing a central data-
base that stores the code base on which the tools oper-
ate [GS93]. In the architectural diagram, the oval
represents an ownership domain holding the data that
is shared between the database and all the components.
The architectural invariant of the system is that tools
communicate only through the shared data and via
events that are mediated by the central database
[SN92].

The SEEnvironment component class declares
the code database as an owned component. However,
it doesn’t declare a fixed set of components at the ar-
chitectural level, because we would like the environ-
ment to be extensible, using dependency injection to
load third-party tools at run time. Therefore, the archi-
tecture declares a connect pattern between the event
port of the database and the event port of the ab-
stract component class Tool.

SEEnvironment

event

data

database
ruleCheck

editor
event

event

public component class SEEnvironment {
 protected owned Database database = ... ;

 connect pattern Database.event, Tool.event;

 public void instantiateTool(Class tCls) {
 owned Tool tool=(Tool)tCls.newInstance();
 connect(database.event, tool.event);
 tool.initialize();
 }

 //reads config file,calls instantiateTool..
}

public abstract component class Tool {
 public port event {
 domain data;
 requires void signal(unique Event e);
 requires void register(unique EventType t,
 data Callback cb);
 }
}

Figure 4. The architectural specification of a software
engineering environment. The environment is made up
of a central database that stores the code for the project,
and a set of tools that communicate through events that
are mediated by the database.

 6

SEEnvironment reads a configuration file to de-
termine the set of installed components and then in-
stantiates them one by one using the instantiate-
Tool function. This function takes a component class
argument, creates a new component instance, and casts
the instance to type Tool. The tool is then connected
to the database using a connect expression that
matches the connect pattern in the architecture, and
finally the tool is initialized.

This design allows an arbitrary number of tools (de-
termined at run time) to be created and linked into the
software engineering environment. Thus ArchJava
supports a level of dynamism similar to Darwin
[MK96] but somewhat less dynamic than ArchWare
[MKB+04], as ArchJava does not provide for changes
to existing connections or the removal of components.
3.6. Shared Data Connectors
Components can share objects with connected compo-
nents by declaring ownership domains inside their
ports. When the port is connected to a matching port,
ownership domains with the same name that are de-
clared in both ports are merged, allowing both compo-
nents to access the objects in the shared domain.
These shared ownership domains generalize the con-
cept of shared variable connectors introduced in SADL
[MQR95] to allow much richer forms of object-
oriented interaction between components.

For example, the event port in component class
Tool shows how the tools communicate with the da-
tabase. The data ownership domain describes the
objects that are shared between the database and all the
tools, including the code stored in the database and
callback objects that react to events.

Every tool can signal an event by invoking the
signal function. The event passed to signal is
unique; it will be enqueued in the database event
queue before being delivered to tools that have ex-
pressed interest in events of that type.

Tools can also register for events of a particular
type by passing in a unique event descriptor object,
together with a callback that will be invoked when an
event occurs. The callback is expected to define a
notify method that will be invoked with the event
argument.

The event port of Database (not shown) is the
mirror of the event port of Tool. It also declares
the data domain and defines provided methods sig-
nal and register that match the methods declared
in the port of Tool.

An Example Tool. The RuleChk component in Fig-
ure 5 is intended to ensure that the code base obeys a
set of user-defined coding rules. It stores the set of
rules in some internal format in the ruleSet object.
When initialized, it registers a callback to be invoked
whenever any change to the code occurs.

The callback object needs to access the set of rules,
so the class is parameterized by the domain that holds
the rules, which is instantiated with the owned domain
of RuleChk. It stores the ruleSet internally in a
field annotated with this domain.

When a code change event is fired, the notify
method of the RuleCB callback will be invoked. We
assume that the database owns the events in the sys-
tem, but callback objects need to have temporary ac-
cess to the event object in order to get information
about the event. Therefore, the database passes the
event to the callback as a lent reference. The call-
back checks to see if the event leads to a rule violation,
and notifies the user if a violation is detected.

This example illustrates ArchJava’s support for
event callback objects, an important object-oriented
idiom that is challenging to reason about in conven-
tional implementation languages. ArchJava ensures
that tool components in the SE environment can only
communicate through event callbacks and through
modifications to shared data, ensuring the efficient
communication and ease of adding/modifying tools
that are the quality attribute goals of the reposi-
tory/mediator architectural style [SN92,GS93].
3.7. Implementation
An open-source compiler (based on Barat [BS98])
from ArchJava to Java bytecode is available for
download at the ArchJava web site [Arc02]. ArchJava
code can link with Java libraries, but communication

public component class RuleChk extends Tool {
 protected owned Set<owned> ruleSet;

 public port event {
 domain data;
 requires void signal(unique Event e);
 requires void register(unique EventType t,
 data Callback cb);
 }

 public void initialize() {
 event.register(new EventType(“codeChange”),
 new RuleCB<owned>(ruleSet));
 }
}

class RuleCB<rules> implements Callback {
 protected rules Set<rules> ruleSet;

 RuleCB(rules Set<rules> rs) { ruleSet=rs; }

 void notify(lent Event e) {
 // generates an error on rule violations
 }
}

Figure 5. The RuleChk component stores a set of se-
mantic rules, and registers a callback to receive code
change events. Whenever the callback is invoked with an
event, it checks if any of the rules are violated, and if so it
generates an error.

 7

integrity is only guaranteed if all code is run through
the ArchJava compiler. Both typechecking and compi-
lation are local, so when a source file is updated, only
files dependent on its interface need be typechecked
and recompiled. We have also implemented a tool that
can generate ArchJava code from an architectural de-
scription in the Acme language, and a tool that auto-
matically compares and synchronizes Acme and
ArchJava architectures [AAN+06].

ArchJava’s type system is as static as Java’s: most
checks are done at compile time, but run-time checks
are performed at downcasts and array writes (the same
places Java already does dynamic checks) to ensure
that the domain parameters of an object match the pa-
rameters declared in the type of the cast or array.1
Other papers provide additional details about the type
system and the implementation techniques used in the
compiler [AKC02,Ald03].
3.8. Experience
This paper focuses on how the extended ArchJava
system is able to use types to capture architectural data
sharing constraints, and thereby enforce full communi-
cation integrity. We have previously reported experi-
ence showing that ArchJava and AliasJava can be ap-
plied to nontrivial programs (10+ kLOC) with only
moderate effort, and can provide benefits such as en-
forcing important architectural constraints, encourag-
ing loose coupling, easing defect repair, and making
communication more explicit [ACN02, AKC02,
AAC07]. Our experience has also shown that captur-
ing certain highly dynamic designs in ArchJava can be
awkward, motivating our current work enforcing archi-
tecture in pure Java [AA07].

We have found ArchJava useful as a teaching tool,
because it makes the often-abstract aspects of software
architecture very concrete for students. Curricular ma-
terial on using ArchJava to teach software architecture
is available at the ArchJava web site [Arc02].
3.9. Summary
ArchJava allows developers to specify the software
architecture of a system as a hierarchy of component
instances. Connections describe which components
within the architecture communicate, and the methods
and ownership domains declared in ports show the
details of communication through method calls and
shared data.
4. Communication Integrity
Communication integrity is critical to ensuring that a
system achieves the benefits designed into the archi-

1 Although ArchJava’s type system is statically check-
able, the language can still express dynamic architec-
tures.

tecture. While the intuition behind communication
integrity is straightforward, making this intuition pre-
cise in the presence of complex object-oriented de-
signs is difficult. Here we define communication in-
tegrity in the ArchJava component model, but we be-
lieve the definition can be applied (with minor modifi-
cations) in broader settings as well.

Before defining communication integrity, we must
define inter-component communication. To do so, we
need the concept of an object’s architectural domain,
which can be found by ascending the ownership tree
until an ownership domain declared in a component is
reached. If an object is unique, it has no architec-
tural domain.

Definition [Inter-component communication]: Two
components communicate whenever:
1. Direct call: Component instance A or an object in

one of its ownership domains invokes a method
directly on component instance B, or

2. Connection call: Component instance A invokes
a method of component instance B through a con-
nection, or

3. Shared data: An object in architectural domain A
accesses (invokes a method or reads or writes a
field of) a non-component object B which is in a
different architectural domain.

We now state the communication integrity theorem for
ArchJava:

Theorem [Communication Integrity]: All run-time
inter-component communication falls into one of the
following categories of communication, each of which
is documented explicitly or implicitly in the architec-
ture:
1. Unique communication: Object/Component A

invokes a method on a unique component B, or
2. Parent-child communication: Ob-

ject/Component A invokes a method on a compo-
nent B owned by A, or

3. Connection communication: Component A in-
vokes a method on component B through a con-
nection that matches a connect pattern in the com-
ponent instance that directly owns (or is equal to)
A and B, or

4. Lent communication: Component or object A
invokes a method on an object or component B
that has been temporarily lent to A, or

5. Shared domain communication: Object A ac-
cesses some object B in a different domain, and
the architectural domain of A is linked to that of B.

 8

Discussion. Although the principle of communication
integrity has a universally clear meaning, the way in
which communication integrity is documented will
vary from system to system. We believe that the defi-
nition above is appropriate for ArchJava because it
permits only local communication between compo-
nents—the essence of communication integrity—yet
allows that local communication to occur through a
number of important object-oriented patterns and idi-
oms.

Each of the forms of communication above is es-
sential in an object-oriented setting. Unique commu-
nication is important in order to allow implementations
of loosely-coupled systems such as the pipeline exam-
ple above. Although in principle we could have re-
quired parent-child communication to be done through
explicit ports, our experience with ArchJava has
shown that this would be awkward. Connection com-
munication through explicitly declared ports is of
course the standard architectural case for communica-
tion. Lent communication is necessary to support li-
brary code and efficient parameter passing, providing
an escape hatch from the constraints of ownership
while still allowing local reasoning about communica-
tion. Finally, shared domain communication supports
communication through persistent shared objects, a
common idiom in many object-oriented systems.

Our definition of communication integrity is not
perfect; some aspects of the system (such as the global
domain shared) give up locality in order to support
standard Java idioms like static fields. However, we
believe that the definition is a good compromise given
the goal of supporting existing Java programs with few
changes. Furthermore, we argue that any definition of
communication integrity that is intended to be general-
purpose will have to support the categories of commu-
nication described here in some way.

The author’s dissertation includes a formal model
of the ArchJava language, a formal statement of the
communication integrity theorem described above, and
a rigorous proof that ArchJava’s type system statically
enforces communication integrity [Ald03]. Below, we
outline the structure of the proof and provide an intui-
tion for how the property is enforced.

Enforcement. Enforcing communication integrity is
essentially ensuring that all instances of inter-
component communication fall into one of the archi-
tecturally documented categories. Consider the cases
of inter-component communication:
1. Direct call case. ArchJava’s type system ensures

if the receiver of a method call is a component,
then either the receiver is this, or the receiver is
unique or part of a locally declared ownership
domain. In the case of this, the communication
is within a component. In the cases of unique
and local domains, the communication is unique

communication and parent-child communication,
respectively.

2. Connection call case. The type system must en-
sure that the component which owns both the
sender and the receiver declared a connection be-
tween them. When a connection is made, the
compiler verifies that the components in the con-
nection are owned by the current component, and
that the current component declares a connect pat-
tern that matches the components being con-
nected.

3. Shared data case. Consider the annotation on the
object B being accessed. If the annotation is
unique, there is no inter-component communi-
cation occurring—instead, the calling component
is modifying one of its own unique data structures.
If the annotation is owned, again, there is no in-
ter-component communication, because the re-
ceiver of the access is part of the same component
as the sender. If the annotation is a lent domain
parameter, the communication is lent communica-
tion.

The remaining case is when the accessed object
is annotated with some other, non-owned, owner-
ship domain. We wish to show that this case is
shared domain communication. This will be true
if and only if architectural domain of the accessing
object can access the target object’s domain ac-
cording to the aliasing policy. But this is guaran-
teed by the policy soundness property, so we are
done.

Discussion. The theoretical framework described
above is quite general—for example, communication
through static fields or native methods can be modeled
as shared domain communication, where the fields and
native methods are conceptually part of the globally
accessible shared domain. In practice, however,
excessive communication through the shared do-
main makes reasoning more difficult, and so develop-
ers should avoid it, just as good engineers typically
avoid using global variables in today’s programming
languages. We would prefer to omit the global
shared domain entirely, but this would be impracti-
cal given that many existing Java libraries use global
data structures. A compromise would be to issue a
warning when the shared domain is used.

Communication integrity means that all communi-
cation between components must be declared at the
architectural level—either through required and pro-
vided methods in connected ports, or through an own-
ership domain declared in connected ports. The
ArchJava compiler enforces conformance via local
rules governing how references with different alias
annotations can be used. Because integrity is enforced
through the type system, programmers can develop
applications much as they do today, but gain the assur-

 9

ance that architectural properties are maintained during
implementation and evolution.
5. Related Work
ArchJava. The initial ArchJava system enforced ar-
chitectural conformance only for control flow between
components, not for communication though shared
data [ACN02]. Although our initial experience sug-
gested that control-flow integrity is useful in practice,
rigorous reasoning about general architectural proper-
ties requires understanding communication though
shared data. This paper’s extension of ArchJava to
enforce communication integrity in the case of shared
data is much more challenging, due to the ubiquitous
and complex uses of shared data structures in object-
oriented systems.

In addition, the system we describe here is more
flexible and more consistent than our previous system.
For example, the component hierarchy is specified
using ownership domains, rather than the ad-hoc and
inflexible syntactic criterion used before. One benefit
is that we can now support the factory pattern
[GHJ+94] for components: a factory component cre-
ates and initializes components, which are then passed
as a unique component to their final place in the
architecture, where they become owned by their par-
ent component. Another benefit is that Java constructs
like inner classes, interface inheritance, and native
methods fit more cleanly into our current framework,
as discussed elsewhere [Ald03].
Architecture Description Languages. A number of
architecture description languages (ADLs) have been
defined to describe, model, check, and implement soft-
ware architectures [MT00]. The C2 system provides a
framework for implementing software architectures,
but does not automatically ensure that the code instan-
tiating the framework respects architectural constraints
[MOR+96]. The SADL system formalizes architec-
tures in terms of theories, providing a framework for
proving that communication integrity is maintained
when refining an abstract architecture into a concrete
one [MQR95]. However, the system did not provide
automated support for enforcing communication integ-
rity. The Rapide system includes a tool that dynami-
cally monitors the execution of a program, checking
for communication integrity violations [Mad96]. The
Rapide papers also suggest that integrity could be en-
forced statically if system implementers follow style
guidelines, such as never sharing mutable data between
components [LV95]. However, the guideline forbid-
ding shared data prohibits many useful programs, and
the guidelines are not enforced automatically.
Enforcing Design. Lam and Rinard have developed a
type system for describing and enforcing design
[LR03]. Their designs describe communication be-
tween subsystems (corresponding to ArchJava’s com-

ponents) that is mediated through shared objects that
are labeled with tokens (corresponding to ownership
domains). Their system does not model architectural
hierarchy, and the set of subsystems and tokens is
statically fixed rather than dynamically determined, as
in ArchJava. Furthermore, their system does not de-
scribe data sharing as precisely, omitting constructs
like uniqueness and ownership-based encapsulation.
However, they do describe a number of useful analyses
which would complement ArchJava’s more detailed
architectural descriptions.

Design structure can also be supported with analy-
sis. For example, the Reflexion Model system uses a
call graph construction analysis in order to find incon-
sistencies between an architectural model and source
code [MNS01]. This analysis-based approach is more
lightweight than ArchJava’s type system, but does not
support hierarchical, dynamic architectures or precise
data sharing constraints.
CASE Tools. Several CASE tools support the SDL
language, which allows developers to describe archi-
tectural structure within the implementation of an em-
bedded system [ITU99]. The language enforces archi-
tectural conformance, but only by prohibiting shared
references between components. The SPARK system
takes a similar approach, supporting a subset of Ada
without references in order to rigorously guarantee
information flow properties [Cha01]. The prohibition
of references is reasonable and even desirable for the
telecommunications and other embedded systems for
which SDL and SPARK were designed, but is inap-
propriate for the highly dynamic, object-oriented ap-
plications that ArchJava targets. Other CASE tools
such as Rational Rose RealTime [RSC00] also allow
developers to specify the design of a system, but in the
presence of shared objects and references they do not
enforce architectural conformance. Our approach
could be used to enforce conformance in these sys-
tems.
Ownership and Uniqueness. Ownership was intro-
duced in the Flexible Alias Protection paper, which
uses ownership polymorphism to strike a balance be-
tween guaranteeing aliasing properties and allowing
flexible programming idioms [NVP98]. More recent
work formalized ownership as a type system and
showed how to increase its expressiveness [CNP01].
Our uniqueness concept is based on Boyland’s work
[Boy01].

ArchJava’s support for ownership and uniqueness is
most closely based on the author’s previous work on
AliasJava, which includes substantial experience
showing that the system is practical [AKC02]. Alias-
Java’s ownership model was extended in a later paper
to support multiple ownership domains per object and
the detailed policy specifications described in section 2
above, providing both more expressiveness and

 10

stronger aliasing guarantees compared to previous
ownership systems [AC04].

No previous work, however, has applied ownership
and uniqueness to the problem of architectural con-
formance. A contribution of this paper is showing how
the concept of shared variable connectors, formally
introduced in the SADL system [MQR95], can be gen-
eralized to shared ownership domains that allow rich
object-oriented sharing relationships while retaining a
strong guarantee of communication integrity. Our
system also demonstrates that flexible policy specifica-
tions and multiple ownership domains are essential for
modeling sharing constraints in software architectures.
References
[AA07] Marwan Abi-Antoun and Jonathan Aldrich. Com-

pile-Time Views of Execution Structure Based on
Ownership. International Workshop on Aliasing, Con-
finement and Ownership at ECOOP, July 2007.

[AAC07] Marwan Abi-Antoun, Jonathan Aldrich, and
Wesley Coelho. A Case Study in Re-engineering to
Enforce Architectural Control Flow and Data Sharing.
Journal of Systems and Software 80(2), 240-264, 2007.

[AAN+06] Marwan Abi-Antoun, Jonathan Aldrich, Nagi
Nahas, Bradley Schmerl, and David Garlan. Differenc-
ing and Merging of Architectural Views. Proc. of
Automated Software Engineering, September 2006.

[AC04] Jonathan Aldrich and Craig Chambers. Ownership
Domains: Separating Aliasing Policy from Mechanism.
Proc. European Conference on Object-Oriented Pro-
gramming, Oslo, Norway, June 2004.

[ACN02] Jonathan Aldrich, Craig Chambers, and David
Notkin. ArchJava: Connecting Software Architecture
to Implementation. Proc. International Conference on
Software Engineering, Orlando, Florida, May 2002.

[AKC02] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias Annotations for Program Understand-
ing. Proc. Object-Oriented Programming Systems,
Languages and Applications, Seattle, Washington, No-
vember 2002.

[Ald03] Jonathan Aldrich. Using Types to Enforce Archi-
tectural Structure. Ph.D. Thesis, University of Wash-
ington, August 2003. See http://www.archjava.org/.

[Arc02] ArchJava web site. http://www.archjava.org/
[BCK03] Len Bass, Paul Clements, Rick Kazman. Software

Architecture in Practice. Addison-Wesley, 2003.
[Boy01] John Boyland. Alias Burying: Unique Variables

Without Destructive Reads. Software Practice & Ex-
perience, 6(31):533-553, May 2001.

[BS98] Boris Bokowski and André Spiegel. Barat—A
Front-End for Java. Freie Universität Berlin Technical
Report B-98-09, December 1998.

[Cha01] Rod Chapman. SPARK – a state-of-the-practice
approach to the Common Criteria implementation re-
quirements. Proc. International Common Criteria Con-
ference, July 2001.

[CNP01] David G. Clarke, James Noble, and John M. Pot-
ter. Simple Ownership Types for Object Containment.
Proc. European Conference on Object-Oriented Pro-
gramming, Budapest, Hungary, June 2001.

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, Massachusetts:
Addison-Wesley, 1994.

[GS93] David Garlan and Mary Shaw. An Introduction to
Software Architecture. In Advances in Software Engi-
neering and Knowledge Engineering, I (Ambriola V,
Tortora G, Eds.) World Scientific Publishing Company,
1993.

[ITU99] ITU-T. Recommendation Z.100, Specification and
Description Language (SDL). Geneva, Switzerland,
November 1999.

[LR03] Patrick Lam and Martin Rinard. A Type System and
Analysis for the Automatic Extraction and Enforcement
of Design Information. Proc. European Conference on
Object-Oriented Programming, Darmstadt, Germany,
July 2003.

[LV95] David C. Luckham and James Vera. An Event Based
Architecture Definition Language. IEEE Trans. Soft-
ware Engineering 21(9), September 1995.

[Mad96] Testing Ada 95 Programs for Conformance to
Rapide Architectures. Proc. Reliable Software Tech-
nologies - Ada Europe 96, Montreux, Switzerland, June
1996.

[MK96] Jeff Magee and Jeff Kramer. Dynamic Structure in
Software Architectures. Proc. Foundations of Software
Engineering, San Francisco, California, October 1996.

[MKB+04] R Morrison, G. Kirby, D. Balasubramaniam, K.
Mickan, F. Oquendo, S. Cîmpan, B. Warboys, B.
Snowdon, and R. Greenwood. Support for Evolving
Software Architectures in the ArchWare ADL. Proc.
Working IEEE/IFIP Conference on Software Architec-
ture, 2004.

[MNS01] Gail C. Murphy, David Notkin, and Kevin J. Sul-
livan. Software Reflexion Models: Bridging the Gap
Between Design and Implementation. IEEE Trans.
Software Engineering, 27(4), April 2001.

[MOR+96] Nenad Medvidovic, Peyman Oreizy, Jason E.
Robbins, and Richard N. Taylor. Using Object-
Oriented Typing to Support Architectural Design in the
C2 Style. Proc. Foundations of Software Engineering,
San Francisco, California, October 1996.

[MQR95] Mark Moriconi, Xiaolei Qian, and Robert A.
Riemenschneider. Correct Architecture Refinement.
IEEE Trans. Software Engineering, 21(4), April 1995.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Clas-
sification and Comparison Framework for Software Ar-
chitecture Description Languages. IEEE Trans. Soft-
ware Engineering, 26(1), January 2000.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible
Alias Protection. Proc. European Conference on Ob-
ject-Oriented Programming, Brussels, Belgium, 1998.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Founda-
tions for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, 17:40-52, Oc-
tober 1992.

[RSC00] Rational Software Corporation. Rational Rose
RealTime. http://www.rational.com/, 2000

[SN92] Kevin Sullivan and David Notkin. Reconciling En-
vironment Integration and Component Independence.
Trans. Software Engineering and Methodology
1(3):229-268, July 1992.

