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ABSTRACT 
Developing dependable software systems requires enforcing 
conformance between architecture and implementation during 
software development and evolution. We address this problem 
with a multi-pronged approach: (a) automated refinement of a 
component-and-connector (C&C) architectural view into an 
initial implementation, (b) enforcement of architectural structure 
at the programming language level, (c) automated abstraction of 
a C&C view from an implementation, and (d) semi-automated 
incremental synchronization between the architectural and the 
implementation C&C views. 

We use an Architecture Description Language (ADL), Acme, to 
describe the architecture, and ArchJava, an implementation 
language which embeds a C&C architecture specification within 
Java implementation code. Although both Acme and ArchJava 
specify C&C views, a number of structural differences may arise. 
Our approach can detect structural differences which correspond 
directly to implementation-level violations of the well thought-
out architectural intent. Furthermore, supplementing the C&C 
view extracted from the implementation with architectural types 
and styles can uncover additional violations.  

Categories and Subject Descriptors 
D.2.11 [Software Architecture]: Languages 

General Terms 
Documentation, Design, Languages, Verification. 

1. Introduction 
The software architecture of a system defines its high-level 
organization as a collection of interacting components, 
connectors, and constraints on interaction, along with additional 
properties defining the expected behavior. Over the past decade, 
various software architecture models and analyses, studying 
reliability [9, 20], performance [4] or graceful degradation [24], 
have been developed and applied to real-world systems. 
However, dependability analyses at the architectural level are 
accurate in their predictions of actual dependability in the 
realized system only if the system is implemented and maintained 
according to its architecture. The development of a dependable 

software system therefore calls for fault-prevention and fault-
removal [3] of violations of the architectural intent. Koopman 
[11] notes that few system architectures are completely 
elaborated when the first implementation is built; sometimes, 
developers produce an implementation before even documenting 
the architecture. More often, developers work on the 
implementation without maintaining the architectural model, 
which quickly becomes outdated. In some cases, developers may 
introduce subtle structural differences that invalidate key 
architectural design intent. As a result, architects often deal in 
their analyses with incomplete and incorrect knowledge due to 
documentation or implementation defects. 

We address detecting and correcting such differences, and 
ensuring conformance between architecture and implementation 
with a multi-pronged approach: (a) automated refinement of an 
architectural component-and-connector (C&C) view into an 
initial implementation, (b) enforcement of architectural structure 
at the programming language level, (c) automated abstraction of 
a C&C view from an existing implementation, and (d) semi-
automated incremental synchronization between the architectural 
C&C view and the one extracted from the implementation. 

We use Acme [8] as an example of a mature general purpose 
Architecture Description Language (ADL) to describe the 
architecture, taking advantage of Acme's support for extensible, 
domain-specific architectural styles as well as extensible 
properties and architectural analyses. We assume the 
implementation is represented in ArchJava [1], which embeds a 
C&C specification within Java code. Any changes made by the 
engineers are at least reflected in ArchJava's representation of 
architectural structure. However, ArchJava does not currently 
enforce other important architectural attributes such as 
architectural style. Using ArchJava greatly facilitates extracting a 
C&C view from an existing implementation. However, C&C 
views can also be extracted from implementation-constraining 
ADLs with code generation capabilities or implementation 
independent ADLs such as C2 [13] that provide an 
implementation framework for code generation. Incremental 
synchronization, the primary contribution of our approach, could 
in principle be applied in any of these settings. 

Structural comparison of the architectural C&C view and the 
implementation C&C view only detects implementation-level 
violations of architectural structure. Setting applicable 
architectural types and styles on the implementation C&C view 
can uncover additional violations. The architect can further 
enrich the up-to-date architectural model with additional 
constraints, heuristics and properties. Having an up-to-date 
architectural model increases the accuracy of architectural 
analyses to predict various dependability attributes in the 
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implemented system. For instance, some analyses can statically 
detect architectural mismatches during development; only 
handling mismatches at runtime requires designing more fault-
tolerance into the system [6], resulting in additional complexity. 
Having an up-to-date C&C view of the implementation also 
enables the architect to incorporate new requirements and new 
insights into the architecture, and perform a change impact 
analysis by re-running the synchronization, viewing differences, 
and stopping short of making any changes to the implementation. 

We are interested in both how the implementation-level C&C 
view differs from the architectural C&C view, and how the 
architectural C&C view differs from the implementation C&C 
view. Since Acme and ArchJava both encode C&C views, one 
might suspect that synchronization is trivial. However, with the 
similarities come a number of crucial differences that make 
synchronization non-trivial. Acme is an architecture description 
language, whereas ArchJava is primarily an implementation 
language. This requires a notion of conformance or 
correspondence, where not all ArchJava elements are carried 
over to the Acme model and vice versa, as well as being able to 
account for a large number of name differences between the two 
representations. Some of the technical challenges include: 
• Acme views types as logical predicates over an architecture 

(many of which ArchJava cannot currently express), and 
ArchJava views types as a particular interface of provided 
and required functionality; this requires matching and 
synchronizing types in addition to instances; 

• ArchJava does not have named connectors or roles, whereas 
Acme does; this requires matching them modulo renaming; 

• Acme’s type system can mandate ports with specific types 
and names on instances of a given component type, whereas 
ArchJava is more flexible with the naming of ports and does 
not declare port types; this requires forbidding some port 
renames and complicates assigning architectural types to 
ArchJava ports; the same problem arises with connector 
types and roles;  

• Acme requires types for roles, whereas ArchJava does not 
even have first-class roles; this requires inferring types of 
roles whenever possible; 

• Acme can leave out required and provided methods on 
ports, whereas ArchJava's type system mandates that each 
required method is bound to a provided method with the 
same name and signature; therefore conformance should not 
always require that information to avoid false positives; 

• Acme’s type system is very flexible; ArchJava’s type system 
mandates that a component subtype cannot require more 
methods than its supertype to preserve component 
substitutability; this prohibits generating ArchJava 
component types corresponding directly to Acme 
component types defined in Acme’s architectural families 
intended to be shared across systems;  

• Acme views hierarchy as design-time composition, while 
nesting in ArchJava has implications for component lifetime 
and data sharing; this requires detecting moves across 
hierarchy levels.  

The differences between Acme and ArchJava are typical of those 
one might find between any design and implementation language. 
And some of the challenges, such as mapping both types and 
instances, are typical of issues involved in representing 
architectures using multiple views or models such as UML [10]. 

2. Structural Conformance 
Tool support for our approach uses AcmeStudio [22], a domain-
neutral architecture modeling environment for Acme, and 
ArchJava's development environment, both implemented as 
plugins in the Eclipse tool integration platform [17]. Our code 
generation capability can generate ArchJava skeleton code from 
the architectural model to prevent early structural differences 
which will likely deepen as the system evolves. Merely generating 
skeleton implementation code is not enough: it would be ideal to 
be able to regenerate code without overwriting any manual 
changes to existing files. In that case, code generation becomes a 
special case of incremental synchronization. More generally, at 
any point during development or maintenance, we would like to 
incrementally synchronize the C&C views between architecture 
and implementation. We have completed initial tool support to 
make an Acme model incrementally consistent with an ArchJava 
implementation. We still need to change the ArchJava 
infrastructure to support making incremental changes to an 
existing ArchJava implementation. 

Incremental synchronization proceeds as follows: 1) convert the 
architectural C&C view into tree-structured data, 2) retrieve a 
C&C view from the ArchJava implementation and convert it to 
tree-structured data, 3) use a tree-to-tree correction algorithm 
for unordered labeled trees to identify matches and structural 
differences (classified as inserts, deletes, and renames), and 
obtain an edit script to make one view more consistent with the 
other 4) supplement the edit script with information that cannot 
be derived from the architecture or the implementation, and 5) 
optionally apply the edit script to the underlying representation 
(e.g., the Acme model or the ArchJava implementation). The 
final step is optional because the architect may consider the 
differences innocuous, or may want to avoid changing the 

 

Figure 1: Acme model for the CaPiTaLiZe system. 

public component class Capitalize { 
    private final Upper upper = new Upper(); 
    private final Lower lower = new Lower(); 
    private final Split split = new Split(); 
    private final Merge merge = new Merge(); 
 
    public port portIn { 
        requires char getChar();} 
    public port portOut { 
      provides char getChar();} 
 
    connect lower.portOut, merge.portIn1; 
    connect split.portOut2, lower.portIn; 
    connect upper.portIn, split.portOut1; 
    connect merge.portIn2, upper.portOut; 
 
    glue portOut to merge.portOut; 
    glue portIn to split.portIn; 
} 
Figure 2: ArchJava implementation of component capitalize. 
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implementation and performing regression tests, or may simply 
be interested in a change impact analysis. 

We illustrate our approach using a simple but instructive pipe-
and-filter system, presented in Figure 1, which consists of a data 
source component (source), a data sink component (sink), a filter 
component (capitalize), and two connectors (character pipes) 
connecting them. Component capitalize converts characters it 
receives from component source alternatively to upper or lower 
case before passing them on to component sink. Component 
capitalize is further decomposed into a sub-architecture 
consisting of another pipe-and-filter system (shown as an Acme 
representation in Figure 1). Figure 2 shows how developers 
specify components, connectors, and port constructs in 
ArchJava, and relate object instances to these architectural 
constructs, while completing the implementation using the Java 
programming language. 

2.1 Bridging the Gap 
We synchronize architectural type and instance information (such 
as components, ports, methods, connectors, roles, attachments, 
and bindings). The information is represented as a cross-linked 
tree structure instead of a graph to emphasize the notion of 
hierarchy inherently present in nested sub-architectures and to 
keep the visualization manageable. 

Obtaining the architectural tree-structured data is simply a matter 
of converting the Acme architectural graph into the cross-linked 
tree structure. We also add information to the view to improve 
the accuracy of the structural comparison. For instance, the sub-
tree of a node corresponding to a port or role includes all the 
port’s or the role’s involvements, i.e., all components or 
connectors reachable from that port or role through attachments 
or bindings. This information is also useful for processing 
renames and deletes in the edit script, e.g., to delete any dangling 
attachments when a port is deleted. 

The tree-structured data from the implementation is obtained by 
traversing the ArchJava compilation units, ignoring non-
architecturally relevant Java classes or fields that are not of type 
component or connector. Not all information is readily available: 
(a) ArchJava does not have named connectors or connector 
roles; they are named after the components and ports they 
connect; (b) the ArchJava top-level component can have ports, 
whereas the top-level component in Acme, i.e., the system, 
cannot; one option is to create a top-level component in Acme to 
correspond to ArchJava’s top-level component; (c) ArchJava 
ports can be private, whereas all Acme ports are public; one 
option is to represent ArchJava private ports as Acme ports on 
an internal component instance; (d) Acme does not have a first-
class construct for required and provided methods; in keeping 
with Acme’s model for extensible properties, we create 
properties on ports to represent methods, as well as other 
properties retrieved from the source code (e.g., visibility, 
dynamism, synchronization, …). 

2.2 Tree-to-Tree Correction 
We then use tree-to-tree correction between the tree-structured 
data from the architecture and from the implementation views to 
find structural differences and produce an edit script. We can 
restrict the comparison to user-defined subsets of the two views: 
if the Acme model does not specify some information that exists 
in ArchJava (such as method signatures), this information can be 

excluded from the comparison to avoid false positives. The 
structural comparison finds matches, and classifies differences as 
inserts, deletes and renames.  

Detecting renames (i.e., not treating a rename as an insert-delete 
pair) is crucial, as there will always be name differences between 
Acme and ArchJava. For instance, a port can be named “in” in 
ArchJava, a reserved keyword in Acme; furthermore, names of 
Acme connectors and roles are lost when generating ArchJava 
code; in addition, port names in Acme are used to typecheck the 
model. Detecting renames is important for the general 
comprehension of an existing implementation. Names are often 
modified during software development and maintenance: a name 
may be turn out to be inappropriate or misleading due to either 
careless initial choice or name conflicts from separately 
developed modules [2]. Furthermore, developers tend to avoid 
using names that may be confused with names in use by an 
implementation framework or library, a minor detail as far as the 
architect is concerned. 

The problem domain clearly calls for treating the tree-structured 
information as unordered labeled trees, since there is no ordering 
between subcomponents of a given component. We initially 
implemented an exact polynomial time tree-to-tree correction 
 

 

Figure 3: Comparing an Acme model without a 
representation for component capitalize to an ArchJava 
implementation with an implementation of the capitalize 
component. Ports shown in italics are inherited from the 
component type. Nodes shown in bold indicate differences in 
the subtrees. With selection tracking, the matching element 
of a renamed element is automatically selected and made 
visible in the other tree (highlighted nodes). 
Symbols: Match ( ), Insert ( ), Delete ( ), Rename ( ) 
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algorithm for ordered labeled trees based on [23], simply 
ordering nodes by name. We evaluated it and confirmed that it 
fares poorly when renames change the ordering of sibling nodes. 
Most approaches for comparing tree-structured data have paid 
little attention to the unordered comparison since it has been 
shown to be MAX SNP-hard [28]. Our current implementation 
for unordered labeled trees, a polynomial-time approximation 
algorithm based on [25], produces accurate results even on non-
trivial test cases exhibiting a large number of differences (see 
Figure 4), while offering interactive performance. For maximum 
generality, our approach is stateless and does not associate 
unique identifiers with architectural or implementation-level 
elements. In particular, it can be used even if the implementation 
was not based on skeleton code produced by automatic code 
generation from the architectural model. 

2.3 Architectural Completeness 
We next illustrate how our approach can uncover various 
architectural defects, such as those identified and classified by 
Roshandel et al in [21]. Many architectural defects fall into the 
class of usage or completeness. For instance, in Figure 3, we 
detect that ArchJava components dataSource and dataSink 
match Acme components source and sink respectively. 
Furthermore, if we remove the representation for the capitalize 
component in Acme and compare the resulting architecture to 
the same implementation, the comparison reveals the missing 
sub-architecture, namely components lower, merge, split, and 
upper: applying the edit script creates an Acme representation 
for component capitalize with the additional components, ports, 
connectors, roles, attachments, and bindings (parts of the edit 
script are shown in Figure 8). 

2.4 Element-Level Conformity 
Structural comparison can detect unintended structural 
differences in the implementation of specific architectural 
elements. For instance, when we compare one of our earliest 
ArchJava implementation of a CaPiTaLiZe system (which 
predates the Acme model) to the Acme model in Figure 1, the 
tool correctly detects a large number of differences. Structural 
comparison correctly identified the additional component 
(character buffer b) in ArchJava, and matched many of the 
renames, e.g., it matched ArchJava m to Acme merge. However, 
it did not initially match ArchJava components s, u and l to Acme 
components split, upper, and lower respectively. Upon further 
analysis, we discovered that ArchJava component s was 
implemented with one input port and one output port, whereas 
Acme split component has one input and two output ports. This 
made ArchJava component s structurally undistinguishable from 
ArchJava components u and l. Although it would have been 
acceptable to match lower to u and upper to l since components 
u and l are architecturally equivalent (i.e., have the same 
architectural type), clearly component s was incorrectly 
implemented. Since we do not yet provide the ability to manually 
force a match between Acme component split and an incorrectly 
implemented ArchJava component s (with one output port) 
without leaving the synchronization tool, the architect has to 
cancel the synchronization, correct the implementation of 
ArchJava component s using ArchJava’s development 
environment, and resume the synchronization. With the above 
change, the structural comparison can now correctly match all 
the renames (See Figure 4). 

We think there are cases where manual overrides will still be 
required, and we are planning on implementing that feature. 

2.5 Behavioral Conformance 
Our work to date addresses only a few of the behavioral defects 
listed in the taxonomy of architectural defects [21], namely 
interfaces and signatures. For instance, we retrieve signatures of 
required and provided methods on component ports from 
ArchJava and from architectural properties on component ports 
in Acme (if available), and include that information in the 
structural comparison. Currently, we do not perform additional 
static analyses of the ArchJava source code. However, there 
could be value in retrieving and representing as architectural 
properties, certain source code properties (e.g., thrown and 
handled exceptions), and design architectural analyses to use 
them. For instance, Ferreira et al. [7] argue that representing 
exception handling at the architectural level is important in the 
development of dependable systems. 

2.6 Hierarchical Decomposition 
The tree-to-tree correction algorithm currently treats a move as 
an insert and delete pair, and is being enhanced to recognize 
elements that have been moved across levels of the hierarchy. 
This situation can occur when a component or a connector is 
replaced with its representation. In some cases, the architect may 
want the implementation to respect the chosen hierarchical 
decomposition to insulate parts of the system from certain 
changes using the principle of information hiding [19]. If the 
outer component simply delegates to its inner components, 

 

Figure 4: Comparing an early implementation of 
CaPiTaLiZe to the Acme model in Figure 1 after correcting 
ArchJava component s. Despite a large number of 
differences, unordered tree-to-tree correction correctly 
detects the inserted component b, and correctly matches 
renamed components source, sink, s, u, l, m to dataSource, 
dataSink, split, upper, lower, and merge respectively. 
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efficiency considerations may dictate replacing the component 
with its representation in the implementation. However, in the 
interest of managing complexity, the architect may still want a 
hierarchical architectural model to modularly reason about the 
properties of a given element. 

3. Styles and Types Conformance 
As discussed earlier, structural comparison between the C&C 
views retrieved from architecture and implementation can only 
find violations of architectural structure. Architectural types and 
styles are used to further validate the implementation against the 
architectural intent. Architectural types and styles have to be 
explicitly provided by the architect or inferred if possible. 

3.1 Setting Types and Styles 
Assigning architectural styles and types to implementation-level 
elements clarifies the architectural intent by enforcing any 
constraints (e.g., invariants and heuristics) associated with those 
types. For instance, a constraint on a component type may 
specify that all instances of that type must have exactly two 
ports, a constraint that cannot be directly enforced by ArchJava. 
Similarly, setting architectural styles on the overall system (and 
on each representation in that system, if applicable) enforces any 
constraints associated with the style. For instance, the pipe-and-
filter style can prohibit cycles, a constraint that ArchJava, as a 
general purpose implementation language, does not directly 
enforce. Specifying architectural types and styles is optional; in 
that case, the synchronized elements will be untyped. Setting the 
types can still be done at a later point in AcmeStudio. Although 
setting types during synchronization seems like duplicating 
functionality already present in AcmeStudio, it is important since 
types affects the processing of the edit script. For instance, when 
a component instance is assigned a type, it may inherit ports from 
its assigned type, so the edit script need not create additional 
ports on the component instance. Finally, the visualization of 
architectural elements in AcmeStudio is heavily type- and style- 
dependent. When the architect views the edited architectural 
model, AcmeStudio flags violations and provides user-assistance 
to resolve errors and warnings representing violations of 
constraints and heuristics [14]. 

Assigning architectural types to each implemental-level element 
during synchronization can be laborious. To reduce the burden 
on the architect, we provide an optional step for matching types. 
When the architect matches a specific ArchJava component type 
with one or more Acme component types; all ArchJava 
component instances of the ArchJava type are assigned the 
corresponding Acme types. Since ArchJava ports are not typed, 
ports on the component types are individually assigned Acme 
port types (Figure 5). We also support a limited form of 
wildcards: assigning Acme types (e.g., Pipe) to the wildcard 
ArchJava connector type ANY assigns those types to all ArchJava 
connector instances. In order to further reduce the burden on the 
architect, we infer architectural types whenever possible: if the 
architect assigns types to components, ports and connectors, we 
use AcmeStudio’s connection patterns defined for each 
architectural style to infer the type of the connector roles (e.g., 
sourceT) based on the source component type (e.g., Filter), 
source port type (e.g., inputT), and connector type (e.g., Pipe). 
Changing the types of existing elements, and overriding 
automatically inferred types are also supported (See Figure 6). 

 

Figure 6: Changing type assignments: elements are now 
using the same visualization as AcmeStudio. Unchecking 
an element cancels the corresponding edit actions. 

 

Figure 5: Matching ArchJava types with Acme types: 
multiple selection is used to match individual ports on 
ArchJava component types to Acme port types.  

 

Figure 7: Checking the edit script for errors and warnings. 
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3.2 Validation of the Edit Script 
The edit script is validated to ensure it will produce a valid 
architectural model. For instance, the tool raises warnings, such 
as having an architectural element without an assigned type, or 
errors, such as having an element name corresponding to a 
reserved Acme keyword. In many cases, the tool suggests ways 
to fix the problem; it can rename a port to match the name of the 
port declared in the component type (See Figure 7). If the 
architect accepts the corrective actions, the tool finds and 
updates all the cross-references in the edit script. The architect 
can also cancel unwanted edit actions, e.g., cancel the deletion of 
recent additions to the Acme model that are not yet reflected in 
the ArchJava implementation. 

4. Related Work 
Many researchers have studied ensuring conformance between 
architecture and implementation. Murphy et al. [15] also follow 
an incremental approach to check the actual architecture against 
the idealized one. The work on Reflexion Models and 
Hierarchical Reflexion Models [12] appears to be mostly 
concerned with module views, and not with C&C views. Unlike 
Reflexion Models, we do not currently maintain a mapping 
between the implementation C&C view elements and the 
corresponding elements in the source code (module view); we 
may add that mapping to support applying the edit script to an 
implementation. There are additional similarities with the 
Extended Reflexion Models that support typing and tagging [16]. 
In Reflexion Models, the source model and the high-level models 
can be typed, partially typed or un-typed; similarly, assigning 
types is an optional step in our approach. Having the user match 
Acme and ArchJava types or specify additional types on the edit 
script during synchronization supports the same “goal of a 
lightweight technique by reducing the burden on the engineer to 
define a type for each high-level model interaction” with a “focus 
on those parts of the model where typing will provide the most 
benefit” – in our case, implementation-level violations of 
architectural intent. In Reflexion Models, a minimal 
representation of types is used, i.e., names, whereas Acme types 
have additional semantics and constraints associated with them. 
Just as Reflexion Models permit inconsistencies to remain, we 
allow the user to cancel any unwanted edit actions. Reflexion 
Models let the user elide information from view; we can also 
restrict the structural comparison to a subset of the underlying 
tree-structured data. 

Work on finding differences between inheritance trees [26] and 
class diagrams [18] inspired the use of tree-to-tree correction 
algorithms. However, most approaches use variants of tree-to-
tree correction for ordered labeled trees. We discussed earlier 
how mapping between architecture and implementation has to 
potentially take into account a large number of name differences, 
even if the implementation is in complete structural conformance 
with the architecture. Reliably detecting renames requires using 
unordered tree-to-tree correction. 

ArchDiff (Dashofy et al. [5]), an extension schema and tool for 
xADL 2.0, only compares two architectural models in xADL. 
Furthermore, ArchDiff detects inserts and deletes, but not 
renames nor moves, and seems to be using a simpler comparison 
algorithm. Our more general implementation can be readily 
adapted to compare and synchronize two architectural models. 

5. Limitations 
As mentioned earlier, we do not yet support applying the edit 
script to an existing ArchJava implementation. Retrieving a C&C 
view from ArchJava without abstracting any information enables 
us to make incremental changes to the ArchJava implementation. 
However, it may not be feasible to make incremental changes to 
an implementation in a programming language that does not 
encode architectural structure, or if the C&C view is obtained by 
instrumenting a running system [27], or in some cases of 
architectural dynamism. We only addressed synchronizing C&C 
views without any architectural dynamism; in particular, Acme 
has limited expressiveness for architectural dynamism and cannot 
currently express the dynamic constructs ArchJava can. We also 
did not address behavioral conformance between architecture and 
implementation, a crucial element for system dependability. 

The tree-to-tree correction algorithm we chose supports only 
low-level operations, such as inserts, deletes, renames, and 
potentially moves. For instance, we do not support detecting 
components or ports that have been split or merged during 
restructuring of the architecture or the implementation. 

6. Future Work 
Tool support for the proposed approach is still under 
development. We are adding various features to allow for more 
user control and minimize the amount of data entry. First, we 
want to let the user manually guide the comparison by forcing 
matches between elements without leaving the synchronization 
tool, and have the tool persist the user’s overrides. Second, we 
want to let the user specify a hierarchical mapping from elements 
in the architectural C&C view to elements in the implementation 
C&C view (including using regular expressions) to handle a large 
number of naming differences more elegantly. Finally, we would 
like to also support a stateful mode in which persistent unique 
identifiers are assigned to Acme and ArchJava elements, so the 
comparison algorithm can quickly match elements that do not 
change between invocations, or simply ignore known differences 
in a large architectural model to speed up the comparison. The 
identifiers will not be persisted in the Acme model or in the 
ArchJava source code, to keep the synchronization as 
unobtrusive as possible.  

Rename AcmeComponent : Current Name= 'source'  
 -> New Name = 'dataSource'. 
... 
Create Representation 'repcapitalize' on 
 Component 'capitalize'. 
... 
Create Port 'input' on Component 'split'. 
... 
Create Connector 'conn_split_ouput__lower_input'. 
Create Role 'sink' on Connector 
 'conn_split_ouput__lower_input'. 
... 
Create Binding from Component 'split'  
 at Port 'input' to Component 'capitalize' 
 at Port 'input'. 
... 
Create Attachment from Component 'split'  
 at Port 'output' to  
 Connector 'conn_split_ouput__lower_input' 
 at Role 'sink'. 
... 

Figure 8: Parts of the edit script corresponding to Figure 3. 
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We also plan on applying the lessons learned from this research 
to propose changes to both Acme and ArchJava to streamline 
synchronizing the two representations: for instance, we consider 
Acme’s type system overly restrictive to require a port on a 
component instance to have a specific name and specific types; 
we are also considering adding explicit types to ArchJava ports 
to simplify matching them with Acme ports.  

The main purpose of incremental synchronization, when used 
during software development and evolution, is to facilitate and 
encourage the continuous use of architectural views and analyses 
throughout the software life cycle, in order to identify 
implementation-level violations of architectural structure that 
may adversely impact system dependability. 
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