
Improving System Dependability by
Enforcing Architectural Intent

Marwan Abi-Antoun Jonathan Aldrich David Garlan Bradley Schmerl
Nagi Nahas Tony Tseng

Institute for Software Research International, Carnegie Mellon University, Pittsburgh, PA 15213 USA
mabianto+@cs.cmu.edu aldrich+@cs.cmu.edu garlan+@cs.cmu.edu schmerl+@cs.cmu.edu

nnahas@acm.org ttt@alumni.carnegiemellon.edu

ABSTRACT
Developing dependable software systems requires enforcing
conformance between architecture and implementation during
software development and evolution. We address this problem
with a multi-pronged approach: (a) automated refinement of a
component-and-connector (C&C) architectural view into an
initial implementation, (b) enforcement of architectural structure
at the programming language level, (c) automated abstraction of
a C&C view from an implementation, and (d) semi-automated
incremental synchronization between the architectural and the
implementation C&C views.

We use an Architecture Description Language (ADL), Acme, to
describe the architecture, and ArchJava, an implementation
language which embeds a C&C architecture specification within
Java implementation code. Although both Acme and ArchJava
specify C&C views, a number of structural differences may arise.
Our approach can detect structural differences which correspond
directly to implementation-level violations of the well thought-
out architectural intent. Furthermore, supplementing the C&C
view extracted from the implementation with architectural types
and styles can uncover additional violations.

Categories and Subject Descriptors
D.2.11 [Software Architecture]: Languages

General Terms
Documentation, Design, Languages, Verification.

1. Introduction
The software architecture of a system defines its high-level
organization as a collection of interacting components,
connectors, and constraints on interaction, along with additional
properties defining the expected behavior. Over the past decade,
various software architecture models and analyses, studying
reliability [9, 20], performance [4] or graceful degradation [24],
have been developed and applied to real-world systems.
However, dependability analyses at the architectural level are
accurate in their predictions of actual dependability in the
realized system only if the system is implemented and maintained
according to its architecture. The development of a dependable

software system therefore calls for fault-prevention and fault-
removal [3] of violations of the architectural intent. Koopman
[11] notes that few system architectures are completely
elaborated when the first implementation is built; sometimes,
developers produce an implementation before even documenting
the architecture. More often, developers work on the
implementation without maintaining the architectural model,
which quickly becomes outdated. In some cases, developers may
introduce subtle structural differences that invalidate key
architectural design intent. As a result, architects often deal in
their analyses with incomplete and incorrect knowledge due to
documentation or implementation defects.

We address detecting and correcting such differences, and
ensuring conformance between architecture and implementation
with a multi-pronged approach: (a) automated refinement of an
architectural component-and-connector (C&C) view into an
initial implementation, (b) enforcement of architectural structure
at the programming language level, (c) automated abstraction of
a C&C view from an existing implementation, and (d) semi-
automated incremental synchronization between the architectural
C&C view and the one extracted from the implementation.

We use Acme [8] as an example of a mature general purpose
Architecture Description Language (ADL) to describe the
architecture, taking advantage of Acme's support for extensible,
domain-specific architectural styles as well as extensible
properties and architectural analyses. We assume the
implementation is represented in ArchJava [1], which embeds a
C&C specification within Java code. Any changes made by the
engineers are at least reflected in ArchJava's representation of
architectural structure. However, ArchJava does not currently
enforce other important architectural attributes such as
architectural style. Using ArchJava greatly facilitates extracting a
C&C view from an existing implementation. However, C&C
views can also be extracted from implementation-constraining
ADLs with code generation capabilities or implementation
independent ADLs such as C2 [13] that provide an
implementation framework for code generation. Incremental
synchronization, the primary contribution of our approach, could
in principle be applied in any of these settings.

Structural comparison of the architectural C&C view and the
implementation C&C view only detects implementation-level
violations of architectural structure. Setting applicable
architectural types and styles on the implementation C&C view
can uncover additional violations. The architect can further
enrich the up-to-date architectural model with additional
constraints, heuristics and properties. Having an up-to-date
architectural model increases the accuracy of architectural
analyses to predict various dependability attributes in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
WADS'05, May 17, 2005, St. Louis, MO, USA.
Copyright 2005 ACM 1-59593-124-4/05/0005...$5.00.

1

implemented system. For instance, some analyses can statically
detect architectural mismatches during development; only
handling mismatches at runtime requires designing more fault-
tolerance into the system [6], resulting in additional complexity.
Having an up-to-date C&C view of the implementation also
enables the architect to incorporate new requirements and new
insights into the architecture, and perform a change impact
analysis by re-running the synchronization, viewing differences,
and stopping short of making any changes to the implementation.

We are interested in both how the implementation-level C&C
view differs from the architectural C&C view, and how the
architectural C&C view differs from the implementation C&C
view. Since Acme and ArchJava both encode C&C views, one
might suspect that synchronization is trivial. However, with the
similarities come a number of crucial differences that make
synchronization non-trivial. Acme is an architecture description
language, whereas ArchJava is primarily an implementation
language. This requires a notion of conformance or
correspondence, where not all ArchJava elements are carried
over to the Acme model and vice versa, as well as being able to
account for a large number of name differences between the two
representations. Some of the technical challenges include:
• Acme views types as logical predicates over an architecture

(many of which ArchJava cannot currently express), and
ArchJava views types as a particular interface of provided
and required functionality; this requires matching and
synchronizing types in addition to instances;

• ArchJava does not have named connectors or roles, whereas
Acme does; this requires matching them modulo renaming;

• Acme’s type system can mandate ports with specific types
and names on instances of a given component type, whereas
ArchJava is more flexible with the naming of ports and does
not declare port types; this requires forbidding some port
renames and complicates assigning architectural types to
ArchJava ports; the same problem arises with connector
types and roles;

• Acme requires types for roles, whereas ArchJava does not
even have first-class roles; this requires inferring types of
roles whenever possible;

• Acme can leave out required and provided methods on
ports, whereas ArchJava's type system mandates that each
required method is bound to a provided method with the
same name and signature; therefore conformance should not
always require that information to avoid false positives;

• Acme’s type system is very flexible; ArchJava’s type system
mandates that a component subtype cannot require more
methods than its supertype to preserve component
substitutability; this prohibits generating ArchJava
component types corresponding directly to Acme
component types defined in Acme’s architectural families
intended to be shared across systems;

• Acme views hierarchy as design-time composition, while
nesting in ArchJava has implications for component lifetime
and data sharing; this requires detecting moves across
hierarchy levels.

The differences between Acme and ArchJava are typical of those
one might find between any design and implementation language.
And some of the challenges, such as mapping both types and
instances, are typical of issues involved in representing
architectures using multiple views or models such as UML [10].

2. Structural Conformance
Tool support for our approach uses AcmeStudio [22], a domain-
neutral architecture modeling environment for Acme, and
ArchJava's development environment, both implemented as
plugins in the Eclipse tool integration platform [17]. Our code
generation capability can generate ArchJava skeleton code from
the architectural model to prevent early structural differences
which will likely deepen as the system evolves. Merely generating
skeleton implementation code is not enough: it would be ideal to
be able to regenerate code without overwriting any manual
changes to existing files. In that case, code generation becomes a
special case of incremental synchronization. More generally, at
any point during development or maintenance, we would like to
incrementally synchronize the C&C views between architecture
and implementation. We have completed initial tool support to
make an Acme model incrementally consistent with an ArchJava
implementation. We still need to change the ArchJava
infrastructure to support making incremental changes to an
existing ArchJava implementation.

Incremental synchronization proceeds as follows: 1) convert the
architectural C&C view into tree-structured data, 2) retrieve a
C&C view from the ArchJava implementation and convert it to
tree-structured data, 3) use a tree-to-tree correction algorithm
for unordered labeled trees to identify matches and structural
differences (classified as inserts, deletes, and renames), and
obtain an edit script to make one view more consistent with the
other 4) supplement the edit script with information that cannot
be derived from the architecture or the implementation, and 5)
optionally apply the edit script to the underlying representation
(e.g., the Acme model or the ArchJava implementation). The
final step is optional because the architect may consider the
differences innocuous, or may want to avoid changing the

Figure 1: Acme model for the CaPiTaLiZe system.

public component class Capitalize {
 private final Upper upper = new Upper();
 private final Lower lower = new Lower();
 private final Split split = new Split();
 private final Merge merge = new Merge();

 public port portIn {
 requires char getChar();}
 public port portOut {
 provides char getChar();}

 connect lower.portOut, merge.portIn1;
 connect split.portOut2, lower.portIn;
 connect upper.portIn, split.portOut1;
 connect merge.portIn2, upper.portOut;

 glue portOut to merge.portOut;
 glue portIn to split.portIn;
}
Figure 2: ArchJava implementation of component capitalize.

2

implementation and performing regression tests, or may simply
be interested in a change impact analysis.

We illustrate our approach using a simple but instructive pipe-
and-filter system, presented in Figure 1, which consists of a data
source component (source), a data sink component (sink), a filter
component (capitalize), and two connectors (character pipes)
connecting them. Component capitalize converts characters it
receives from component source alternatively to upper or lower
case before passing them on to component sink. Component
capitalize is further decomposed into a sub-architecture
consisting of another pipe-and-filter system (shown as an Acme
representation in Figure 1). Figure 2 shows how developers
specify components, connectors, and port constructs in
ArchJava, and relate object instances to these architectural
constructs, while completing the implementation using the Java
programming language.

2.1 Bridging the Gap
We synchronize architectural type and instance information (such
as components, ports, methods, connectors, roles, attachments,
and bindings). The information is represented as a cross-linked
tree structure instead of a graph to emphasize the notion of
hierarchy inherently present in nested sub-architectures and to
keep the visualization manageable.

Obtaining the architectural tree-structured data is simply a matter
of converting the Acme architectural graph into the cross-linked
tree structure. We also add information to the view to improve
the accuracy of the structural comparison. For instance, the sub-
tree of a node corresponding to a port or role includes all the
port’s or the role’s involvements, i.e., all components or
connectors reachable from that port or role through attachments
or bindings. This information is also useful for processing
renames and deletes in the edit script, e.g., to delete any dangling
attachments when a port is deleted.

The tree-structured data from the implementation is obtained by
traversing the ArchJava compilation units, ignoring non-
architecturally relevant Java classes or fields that are not of type
component or connector. Not all information is readily available:
(a) ArchJava does not have named connectors or connector
roles; they are named after the components and ports they
connect; (b) the ArchJava top-level component can have ports,
whereas the top-level component in Acme, i.e., the system,
cannot; one option is to create a top-level component in Acme to
correspond to ArchJava’s top-level component; (c) ArchJava
ports can be private, whereas all Acme ports are public; one
option is to represent ArchJava private ports as Acme ports on
an internal component instance; (d) Acme does not have a first-
class construct for required and provided methods; in keeping
with Acme’s model for extensible properties, we create
properties on ports to represent methods, as well as other
properties retrieved from the source code (e.g., visibility,
dynamism, synchronization, …).

2.2 Tree-to-Tree Correction
We then use tree-to-tree correction between the tree-structured
data from the architecture and from the implementation views to
find structural differences and produce an edit script. We can
restrict the comparison to user-defined subsets of the two views:
if the Acme model does not specify some information that exists
in ArchJava (such as method signatures), this information can be

excluded from the comparison to avoid false positives. The
structural comparison finds matches, and classifies differences as
inserts, deletes and renames.

Detecting renames (i.e., not treating a rename as an insert-delete
pair) is crucial, as there will always be name differences between
Acme and ArchJava. For instance, a port can be named “in” in
ArchJava, a reserved keyword in Acme; furthermore, names of
Acme connectors and roles are lost when generating ArchJava
code; in addition, port names in Acme are used to typecheck the
model. Detecting renames is important for the general
comprehension of an existing implementation. Names are often
modified during software development and maintenance: a name
may be turn out to be inappropriate or misleading due to either
careless initial choice or name conflicts from separately
developed modules [2]. Furthermore, developers tend to avoid
using names that may be confused with names in use by an
implementation framework or library, a minor detail as far as the
architect is concerned.

The problem domain clearly calls for treating the tree-structured
information as unordered labeled trees, since there is no ordering
between subcomponents of a given component. We initially
implemented an exact polynomial time tree-to-tree correction

Figure 3: Comparing an Acme model without a
representation for component capitalize to an ArchJava
implementation with an implementation of the capitalize
component. Ports shown in italics are inherited from the
component type. Nodes shown in bold indicate differences in
the subtrees. With selection tracking, the matching element
of a renamed element is automatically selected and made
visible in the other tree (highlighted nodes).
Symbols: Match (), Insert (), Delete (), Rename ()

3

algorithm for ordered labeled trees based on [23], simply
ordering nodes by name. We evaluated it and confirmed that it
fares poorly when renames change the ordering of sibling nodes.
Most approaches for comparing tree-structured data have paid
little attention to the unordered comparison since it has been
shown to be MAX SNP-hard [28]. Our current implementation
for unordered labeled trees, a polynomial-time approximation
algorithm based on [25], produces accurate results even on non-
trivial test cases exhibiting a large number of differences (see
Figure 4), while offering interactive performance. For maximum
generality, our approach is stateless and does not associate
unique identifiers with architectural or implementation-level
elements. In particular, it can be used even if the implementation
was not based on skeleton code produced by automatic code
generation from the architectural model.

2.3 Architectural Completeness
We next illustrate how our approach can uncover various
architectural defects, such as those identified and classified by
Roshandel et al in [21]. Many architectural defects fall into the
class of usage or completeness. For instance, in Figure 3, we
detect that ArchJava components dataSource and dataSink
match Acme components source and sink respectively.
Furthermore, if we remove the representation for the capitalize
component in Acme and compare the resulting architecture to
the same implementation, the comparison reveals the missing
sub-architecture, namely components lower, merge, split, and
upper: applying the edit script creates an Acme representation
for component capitalize with the additional components, ports,
connectors, roles, attachments, and bindings (parts of the edit
script are shown in Figure 8).

2.4 Element-Level Conformity
Structural comparison can detect unintended structural
differences in the implementation of specific architectural
elements. For instance, when we compare one of our earliest
ArchJava implementation of a CaPiTaLiZe system (which
predates the Acme model) to the Acme model in Figure 1, the
tool correctly detects a large number of differences. Structural
comparison correctly identified the additional component
(character buffer b) in ArchJava, and matched many of the
renames, e.g., it matched ArchJava m to Acme merge. However,
it did not initially match ArchJava components s, u and l to Acme
components split, upper, and lower respectively. Upon further
analysis, we discovered that ArchJava component s was
implemented with one input port and one output port, whereas
Acme split component has one input and two output ports. This
made ArchJava component s structurally undistinguishable from
ArchJava components u and l. Although it would have been
acceptable to match lower to u and upper to l since components
u and l are architecturally equivalent (i.e., have the same
architectural type), clearly component s was incorrectly
implemented. Since we do not yet provide the ability to manually
force a match between Acme component split and an incorrectly
implemented ArchJava component s (with one output port)
without leaving the synchronization tool, the architect has to
cancel the synchronization, correct the implementation of
ArchJava component s using ArchJava’s development
environment, and resume the synchronization. With the above
change, the structural comparison can now correctly match all
the renames (See Figure 4).

We think there are cases where manual overrides will still be
required, and we are planning on implementing that feature.

2.5 Behavioral Conformance
Our work to date addresses only a few of the behavioral defects
listed in the taxonomy of architectural defects [21], namely
interfaces and signatures. For instance, we retrieve signatures of
required and provided methods on component ports from
ArchJava and from architectural properties on component ports
in Acme (if available), and include that information in the
structural comparison. Currently, we do not perform additional
static analyses of the ArchJava source code. However, there
could be value in retrieving and representing as architectural
properties, certain source code properties (e.g., thrown and
handled exceptions), and design architectural analyses to use
them. For instance, Ferreira et al. [7] argue that representing
exception handling at the architectural level is important in the
development of dependable systems.

2.6 Hierarchical Decomposition
The tree-to-tree correction algorithm currently treats a move as
an insert and delete pair, and is being enhanced to recognize
elements that have been moved across levels of the hierarchy.
This situation can occur when a component or a connector is
replaced with its representation. In some cases, the architect may
want the implementation to respect the chosen hierarchical
decomposition to insulate parts of the system from certain
changes using the principle of information hiding [19]. If the
outer component simply delegates to its inner components,

Figure 4: Comparing an early implementation of
CaPiTaLiZe to the Acme model in Figure 1 after correcting
ArchJava component s. Despite a large number of
differences, unordered tree-to-tree correction correctly
detects the inserted component b, and correctly matches
renamed components source, sink, s, u, l, m to dataSource,
dataSink, split, upper, lower, and merge respectively.

4

efficiency considerations may dictate replacing the component
with its representation in the implementation. However, in the
interest of managing complexity, the architect may still want a
hierarchical architectural model to modularly reason about the
properties of a given element.

3. Styles and Types Conformance
As discussed earlier, structural comparison between the C&C
views retrieved from architecture and implementation can only
find violations of architectural structure. Architectural types and
styles are used to further validate the implementation against the
architectural intent. Architectural types and styles have to be
explicitly provided by the architect or inferred if possible.

3.1 Setting Types and Styles
Assigning architectural styles and types to implementation-level
elements clarifies the architectural intent by enforcing any
constraints (e.g., invariants and heuristics) associated with those
types. For instance, a constraint on a component type may
specify that all instances of that type must have exactly two
ports, a constraint that cannot be directly enforced by ArchJava.
Similarly, setting architectural styles on the overall system (and
on each representation in that system, if applicable) enforces any
constraints associated with the style. For instance, the pipe-and-
filter style can prohibit cycles, a constraint that ArchJava, as a
general purpose implementation language, does not directly
enforce. Specifying architectural types and styles is optional; in
that case, the synchronized elements will be untyped. Setting the
types can still be done at a later point in AcmeStudio. Although
setting types during synchronization seems like duplicating
functionality already present in AcmeStudio, it is important since
types affects the processing of the edit script. For instance, when
a component instance is assigned a type, it may inherit ports from
its assigned type, so the edit script need not create additional
ports on the component instance. Finally, the visualization of
architectural elements in AcmeStudio is heavily type- and style-
dependent. When the architect views the edited architectural
model, AcmeStudio flags violations and provides user-assistance
to resolve errors and warnings representing violations of
constraints and heuristics [14].

Assigning architectural types to each implemental-level element
during synchronization can be laborious. To reduce the burden
on the architect, we provide an optional step for matching types.
When the architect matches a specific ArchJava component type
with one or more Acme component types; all ArchJava
component instances of the ArchJava type are assigned the
corresponding Acme types. Since ArchJava ports are not typed,
ports on the component types are individually assigned Acme
port types (Figure 5). We also support a limited form of
wildcards: assigning Acme types (e.g., Pipe) to the wildcard
ArchJava connector type ANY assigns those types to all ArchJava
connector instances. In order to further reduce the burden on the
architect, we infer architectural types whenever possible: if the
architect assigns types to components, ports and connectors, we
use AcmeStudio’s connection patterns defined for each
architectural style to infer the type of the connector roles (e.g.,
sourceT) based on the source component type (e.g., Filter),
source port type (e.g., inputT), and connector type (e.g., Pipe).
Changing the types of existing elements, and overriding
automatically inferred types are also supported (See Figure 6).

Figure 6: Changing type assignments: elements are now
using the same visualization as AcmeStudio. Unchecking
an element cancels the corresponding edit actions.

Figure 5: Matching ArchJava types with Acme types:
multiple selection is used to match individual ports on
ArchJava component types to Acme port types.

Figure 7: Checking the edit script for errors and warnings.

5

3.2 Validation of the Edit Script
The edit script is validated to ensure it will produce a valid
architectural model. For instance, the tool raises warnings, such
as having an architectural element without an assigned type, or
errors, such as having an element name corresponding to a
reserved Acme keyword. In many cases, the tool suggests ways
to fix the problem; it can rename a port to match the name of the
port declared in the component type (See Figure 7). If the
architect accepts the corrective actions, the tool finds and
updates all the cross-references in the edit script. The architect
can also cancel unwanted edit actions, e.g., cancel the deletion of
recent additions to the Acme model that are not yet reflected in
the ArchJava implementation.

4. Related Work
Many researchers have studied ensuring conformance between
architecture and implementation. Murphy et al. [15] also follow
an incremental approach to check the actual architecture against
the idealized one. The work on Reflexion Models and
Hierarchical Reflexion Models [12] appears to be mostly
concerned with module views, and not with C&C views. Unlike
Reflexion Models, we do not currently maintain a mapping
between the implementation C&C view elements and the
corresponding elements in the source code (module view); we
may add that mapping to support applying the edit script to an
implementation. There are additional similarities with the
Extended Reflexion Models that support typing and tagging [16].
In Reflexion Models, the source model and the high-level models
can be typed, partially typed or un-typed; similarly, assigning
types is an optional step in our approach. Having the user match
Acme and ArchJava types or specify additional types on the edit
script during synchronization supports the same “goal of a
lightweight technique by reducing the burden on the engineer to
define a type for each high-level model interaction” with a “focus
on those parts of the model where typing will provide the most
benefit” – in our case, implementation-level violations of
architectural intent. In Reflexion Models, a minimal
representation of types is used, i.e., names, whereas Acme types
have additional semantics and constraints associated with them.
Just as Reflexion Models permit inconsistencies to remain, we
allow the user to cancel any unwanted edit actions. Reflexion
Models let the user elide information from view; we can also
restrict the structural comparison to a subset of the underlying
tree-structured data.

Work on finding differences between inheritance trees [26] and
class diagrams [18] inspired the use of tree-to-tree correction
algorithms. However, most approaches use variants of tree-to-
tree correction for ordered labeled trees. We discussed earlier
how mapping between architecture and implementation has to
potentially take into account a large number of name differences,
even if the implementation is in complete structural conformance
with the architecture. Reliably detecting renames requires using
unordered tree-to-tree correction.

ArchDiff (Dashofy et al. [5]), an extension schema and tool for
xADL 2.0, only compares two architectural models in xADL.
Furthermore, ArchDiff detects inserts and deletes, but not
renames nor moves, and seems to be using a simpler comparison
algorithm. Our more general implementation can be readily
adapted to compare and synchronize two architectural models.

5. Limitations
As mentioned earlier, we do not yet support applying the edit
script to an existing ArchJava implementation. Retrieving a C&C
view from ArchJava without abstracting any information enables
us to make incremental changes to the ArchJava implementation.
However, it may not be feasible to make incremental changes to
an implementation in a programming language that does not
encode architectural structure, or if the C&C view is obtained by
instrumenting a running system [27], or in some cases of
architectural dynamism. We only addressed synchronizing C&C
views without any architectural dynamism; in particular, Acme
has limited expressiveness for architectural dynamism and cannot
currently express the dynamic constructs ArchJava can. We also
did not address behavioral conformance between architecture and
implementation, a crucial element for system dependability.

The tree-to-tree correction algorithm we chose supports only
low-level operations, such as inserts, deletes, renames, and
potentially moves. For instance, we do not support detecting
components or ports that have been split or merged during
restructuring of the architecture or the implementation.

6. Future Work
Tool support for the proposed approach is still under
development. We are adding various features to allow for more
user control and minimize the amount of data entry. First, we
want to let the user manually guide the comparison by forcing
matches between elements without leaving the synchronization
tool, and have the tool persist the user’s overrides. Second, we
want to let the user specify a hierarchical mapping from elements
in the architectural C&C view to elements in the implementation
C&C view (including using regular expressions) to handle a large
number of naming differences more elegantly. Finally, we would
like to also support a stateful mode in which persistent unique
identifiers are assigned to Acme and ArchJava elements, so the
comparison algorithm can quickly match elements that do not
change between invocations, or simply ignore known differences
in a large architectural model to speed up the comparison. The
identifiers will not be persisted in the Acme model or in the
ArchJava source code, to keep the synchronization as
unobtrusive as possible.

Rename AcmeComponent : Current Name= 'source'
 -> New Name = 'dataSource'.
...
Create Representation 'repcapitalize' on
 Component 'capitalize'.
...
Create Port 'input' on Component 'split'.
...
Create Connector 'conn_split_ouput__lower_input'.
Create Role 'sink' on Connector
 'conn_split_ouput__lower_input'.
...
Create Binding from Component 'split'
 at Port 'input' to Component 'capitalize'
 at Port 'input'.
...
Create Attachment from Component 'split'
 at Port 'output' to
 Connector 'conn_split_ouput__lower_input'
 at Role 'sink'.
...

Figure 8: Parts of the edit script corresponding to Figure 3.

6

We also plan on applying the lessons learned from this research
to propose changes to both Acme and ArchJava to streamline
synchronizing the two representations: for instance, we consider
Acme’s type system overly restrictive to require a port on a
component instance to have a specific name and specific types;
we are also considering adding explicit types to ArchJava ports
to simplify matching them with Acme ports.

The main purpose of incremental synchronization, when used
during software development and evolution, is to facilitate and
encourage the continuous use of architectural views and analyses
throughout the software life cycle, in order to identify
implementation-level violations of architectural structure that
may adversely impact system dependability.

7. Acknowledgments
This work is supported by a 2004 IBM Eclipse Innovation Grant
and NSF grant CCR-0204047, and was performed as part of a
joint research project in Strategic Partnership between Carnegie
Mellon University and Jet Propulsion Laboratory. We also thank
the anonymous reviewers for their constructive comments.

8. References
[1] Aldrich, J., Chambers, C., and Notkin, D. ArchJava:

Connecting Software Architecture to Implementation.
Proc. International Conf. on Software Engineering, 2002.

[2] Ammann, M. M., and Cameron, R.D. Inter-Module
Renaming and Reorganizing: Examples of Program
Manipulation-in-the-Large. In Proc. International
Conference on Software Maintenance, 1994.

[3] Avizienis, A., Laprie, J.-C., and Randell, B. Fundamental
Concepts of Dependability, Research Report N01145,
LAAS-CNRS, 2001.

[4] Balsamo, S., Di Marco, A., Inverardi, P., and Marzolla, M.
Experimenting different Software Architectures Per-
formance Techniques: A Case Study. In Proc. Workshop on
Software and Performance, 2004.

[5] Dashofy, E. M., van der Hoek, A., and Taylor, R. N.
Towards Architecture-Based Self-Healing Systems. In Proc.
Workshop on Self-Healing Systems, 2002.

[6] de Lemos, R., Gacek, C., and Romanovsky, A.
Architectural Mismatch Tolerance. In Architecting
Dependable Systems, de Lemos, R., Gacek, C., and
Romanovsky, A., Eds., Springer-Verlag, 2003.

[7] Ferreira, G. R. M., Rubira, C.M. F., and de Lemos, R.
Explicit Representation of Exception Handling in the
Development of Dependable Component-Based Systems. In
Proc. Sixth IEEE International Symposium on High
Assurance Systems Engineering, 2001.

[8] Garlan, D., Monroe, R., and Wile, D. Acme: Architectural
Description of Component-Based Systems. In Foundations
of Component-Based Systems, Leavens, G.T., and
Sitaraman, M., Eds., Cambridge University Press, 2000.

[9] Goseva-Popstojanova K., Mathur A.P., Trivedi K.S.,
Comparison of Architecture-Based Software Reliability
Models. In Proc. 12th IEEE International Symposium on
Software Reliability Engineering, 2001.

[10] Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B.
and Silva, J.O. Documenting Component and Connector
Views with UML 2.0. Technical Report CMU/SEI-2004-
TR-008, Software Engineering Institute, 2004.

[11] Koopman, P. Elements of the self-healing system problem
space. In Proc. Workshop on Architecting Dependable
Systems, 2003.

[12] Koschke, R., and Simon, D. Hierarchical Reflexion Models.
In Working Conf. on Reverse Engineering, 2003.

[13] Medvidovic, N., and Taylor, R. N. A Classification and
Comparison Framework for Software Architecture
Description Languages. In IEEE Transactions on Software
Engineering, vol. 26, no. 1, pp.70–93, 2000.

[14] Monroe, R.T. Capturing software architecture design
expertise with Armani. Technical Report No. CMU-CS-98-
163, Carnegie Mellon University, 1998.

[15] Murphy, G. C., Notkin D., and Sullivan K. Software
Reflexion Models: Bridging the Gap Between Design and
Implementation. In IEEE Transactions on Software
Engineering, vol. 27, no. 4, pp. 364–380, 2001.

[16] Murphy, G. C., Notkin D., and Sullivan K. Extending and
Managing Software Reflexion Models. Technical Report,
TR-97-15, University of British Columbia, 1997.

[17] Object Technology International, Inc. Eclipse Platform
Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

[18] Ohst, D., Welle, M., and Kelter, U. Differences between
Versions of UML Diagrams. In ESEC/SIGSOFT Symp.
Foundations of Software Engineering, pp. 227–236, 2003.

[19] Parnas, D. On the Criteria for Decomposing Systems into
Modules. In Communications of the ACM, vol. 15, no. 12,
pp. 1053–1058, 1972.

[20] Roshandel, R., and Medvidovic, N. Toward Architecture-
Based Reliability Estimation. In Proc. Twin Workshops on
Architecting Dependable Systems, 2004.

[21] Roshandel, R., Schmerl, B., Medvidovic, N., Garlan, D.,
and Zhang, D. Understanding Tradeoffs among Different
Architectural Modeling Approaches. In Proc. 4th Working
IEEE/IFIP Conference on Software Architecture, 2004.

[22] Schmerl, B. and Garlan, D. AcmeStudio: Supporting Style-
Centered Architecture Development. In Proc. International
Conference on Software Engineering, 2004.

[23] Shasha, D., Zhang, K. Approximate Tree Pattern Matching,
in Pattern Matching Algorithms, Apostolico, A. and Galil,
Z., Eds., chapter 14. Oxford University Press, 1997.

[24] Shelton, C. and Koopman, P. Using Architectural Properties
to Model and Measure Graceful Degradation. In
Architecting Dependable Systems, de Lemos, R., Gacek,
C., and Romanovsky, A., Eds., Springer-Verlag, 2003.

[25] Torsello, A., Hidovic, D., and Pelillo, M. Polynomial-Time
Metrics for Attributed Trees. Technical Report No. CS-
2003-19, Università Ca’ Foscari di Venezia, 2003.

[26] Xing, Z., and Stroulia, E. Understanding Object-Oriented
Architecture Evolution via Change Detection. Technical
Report TR03-20, University of Alberta, 2003.

[27] Yan, H., Garlan, D., Schmerl, B., Aldrich, J. and Kazman,
R. DiscoTect: A System for Discovering Architectures from
Running Systems. In Proc. 26th International Conference
on Software Engineering, 2004.

[28] Zhang, K., and Jiang, T. Some MAX SNP-hard results
concerning unordered labeled trees. In Information
Processing Letters, 49, pp. 249–254, 1994.

7

