
A Course-Based Usability Analysis of Cilk Plus and
OpenMP

Michael Coblenz1, Robert Seacord2, Brad Myers1, Joshua Sunshine1, and Jonathan Aldrich1

1 School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
{mcoblenz, bam, sunshine, jonathan.aldrich}@cs.cmu.edu

2 Secure Coding Institute
600 Tivoli Drive

Gibsonia, PA, USA
rcs@securecodinginstitute.com

Abstract—Cilk Plus and OpenMP are parallel language ex-
tensions for the C and C++ programming languages. The
CPLEX Study Group of the ISO/IEC C Standards Committee is
developing a proposal for a parallel programming extension to C
that combines ideas from Cilk Plus and OpenMP. We conducted
a preliminary comparison of Cilk Plus and OpenMP in a mas-
ter’s level course on security to evaluate the design tradeoffs in
the usability and security of these two approaches. The eventual
goal is to inform decision-making within the committee. We
found several usability problems worthy of further investigation
based on student performance, including declaring and using
reductions, multi-line compiler directives, and the understanda-
bility of task assignment to threads.

Keywords—API usability, empirical studies of programmers,
parallel programming, OpenMP, Cilk Plus

I. INTRODUCTION
Now that multicore machines are widely available, it is

particularly important to provide programming models that
enable users to take advantage of multiple cores without intro-
ducing programming errors. By 1989, there was significant
work on programming languages to make parallel program-
ming easier [1], and many other researchers have investigated
the usability tradeoffs in the design of parallel programming
languages in general (see §V). Although the versions of the
ISO/IEC standards for C and C++ that were published in 2011
provided support for multithreaded programs, it was clear that
additional extensions were necessary for programmers to effec-
tively make use of modern processors. As a result, ISO/IEC
JTC1/SC22/WG14, the international standardization working
group for the programming language C, formed the C parallel
language extensions (CPLEX) study group.

Cilk Plus [2][3] and OpenMP [4][5] are language exten-
sions for parallel programming in C and C++. Cilk Plus pro-
vides a set of keywords and OpenMP provides a set of prag-
mas that programmers can use to instruct the compiler to par-
allelize their programs. For example, Cilk Plus provides
cilk_for, which instructs the compiler to perform the itera-
tions of a for loop in parallel. CPLEX is currently evaluating
and harmonizing these language extensions. CPLEX’s goal is
to produce a standard or technical specification that explains
how the proposed extension will work for both C and C++.
(Note that although OpenMP addresses multiple languages,
such as C++ and FORTRAN, our study only examined the C
interfaces.)

Many questions must be resolved in the process of devel-
oping a standard approach to parallel programming for C. Cilk
Plus provides a small set of language keywords: cilk_for,
cilk_spawn, and cilk_sync. In contrast, OpenMP makes
use of #pragma statements to support parallelization capabili-
ties such as critical sections and fine-grained control for as-
signing work to threads. OpenMP seems to be the more popu-
lar of the two interfaces, possibly because the use of pragmas
allows the code to be compiled and serially executed by im-
plementations that do not support OpenMP. We have been
working to provide data to the CPLEX Study Group on the
usability and correctness tradeoffs of these approaches. In
particular, we were asked which language extension was most
effective at helping programmers avoid errors that could po-
tentially lead to safety or security concerns and we have re-
ceived feedback from the study group that the information we
have provided to them (and discussed in this paper) is useful.

Although the two language extensions provide significant-
ly different features and expose them in different ways, they
both support shared-memory fork-join parallel computation.
Shared-memory parallelism involves multiple threads of exe-
cution sharing one memory space (in contrast to message-
passing parallelism, in which data are shared by passing mes-
sages explicitly). Fork-join parallelism involves specifying
portions of the program that run in parallel. When encounter-
ing a parallel portion of the program, control is forked into
multiple threads of execution; when the parallel portion is
complete, the threads join together and the program continues
with a single thread of execution.

Our study focuses on the APIs for defining and using re-
ducers because they are an interesting and important part of
both language extensions. Reducers combine partial results in
fork-join parallel programs. For example, consider a for loop
that is parallelized with cilk_for, where the loop iterates
over a set of inputs and stores results in an accumulator. The
runtime computes how many iterations will be performed in
the loop (Cilk Plus and OpenMP do not allow the loop counter
to be modified inside the loop body of a parallel loop) and
divides the iterations among threads. Each thread accumulates
results in its own private copy of the accumulator. Then, the
results from threads are reduced in pairs until all the results
are combined in a single accumulator.

As a starting point to investigating the usability and cor-
rectness tradeoffs of parallel programming, we focused on
learnability of the approaches in a classroom. Although some

Fig. 1. Speedups by parallel language extension.

Each column represents one student.

prior research has evaluated performance gains of parallel pro-
grams, our study focuses on the ability of programmers to learn
how to write correct code that still achieves a significant
speedup from parallelism. Although this initial study only in-
cluded eight students, we were able to gather interesting data
that may inform standards development and guide future stud-
ies. The main contributions of this paper are the identification
of potential usability problems in Cilk Plus and OpenMP that
may be addressed by the design of a unified standard for par-
allel programming in C, along with an exploration of issues
that students face when learning parallel programming.

II. METHOD
We recruited participants from a master’s-level course on

Secure Coding taught by Robert Seacord, the second author.
The study was part of the students’ final homework, at which
point there were nine students in the class. The homework
required completing the same programming task twice: once
using OpenMP and once using Cilk Plus. We randomly chose
five of the nine students in the class to do the task in OpenMP
first and the rest to do the task in Cilk Plus first. Eight students
submitted the assignment for grading and all of them agreed to
participate in the study. Before assigning the programming
task to the students, the instructor gave lectures on parallel
programming and both Cilk Plus and OpenMP, providing
code examples and API explanations. Similar class time was
spent on each extension. The teaching and study materials are
available at http://www.cs.cmu.edu/~mcoblenz/vlhcc2015/.

To focus the students on the problem of writing parallel
code and not on algorithm design, we chose the simple task of
parallelizing an existing (serial) implementation of a program
that finds anagrams. The students were instructed to use the C
APIs for both language extensions. The provided serial im-
plementation included a recursive function that permuted a
string in a buffer and, for each permutation, did a lookup to
determine whether that string was in a dictionary. The students
were instructed to not change the algorithm, as there are much
more efficient ways of generating anagram lists, and we did
not want changes in the algorithm to affect performance.

We provided the students with a virtual machine image
with Ubuntu 14.04 and Eclipse 4.4.2 pre-installed. Eclipse
was configured with two projects: one for OpenMP and one
for Cilk Plus. The OpenMP project used gcc 4.9.2, which sup-
ported OpenMP 4.0. Because gcc 4.9.2 did not include support
for cilk_for, we configured the Cilk Plus project to build
with a branch of clang 3.4.1 that included support for Cilk
Plus. Each project included a serial implementation and driver
code that called the serial implementation, a parallel imple-
mentation that just called the serial implementation, and tim-
ing code to report the speedup, that is, the ratio of serial time
to parallel time. In addition, we preinstalled Fluorite [6] so
students who participated in research could send us editing
logs for analysis. We received editing logs from all students.

We graded the assignment on the basis of correctness and
performance; we required students to achieve a speedup of at
least 1.5 on a dual-core system and awarded additional points
for the top three speedups in each programming task and for
any speedups above 1.5. In addition, because we wanted stu-
dents to learn how to use reducers and because we wanted to

study how successful students were at using reducers, we re-
quired students to use reducers with both language extensions.
We deducted points for incorrect or unsafe results; for failure
to use reducers; and for failure to achieve speedup goals. After
the assignment was submitted and graded, we asked the stu-
dents to answer some retrospective questions so we could
learn more about their experiences.

III. RESULTS
Eight students each submitted two programs. The results

are summarized in Table 1.

TABLE 1: SUMMARY OF RESULTS

n = 8 OpenMP Cilk Plus

Number of correct programs 3 5
Average speedup 1.2 1.5
Speedup standard deviation 0.9 0.6
Number of programs with
speedup at least 1.5 2 4

A. Correctness
Although all of the solutions used a correct algorithm,

many of the solutions included race conditions, which affected
correctness. Of the eight OpenMP solutions, only four at-
tempted to use a reducer even though the assignment explicit-
ly required it. Of those four, one did not actually use the re-
ducer: although the student declared the reducer, a different
accumulator was used to accumulate the results concurrently
in multiple threads. The remaining three were thread-safe. Of
the four submissions that did not use reducers, one used #omp
critical, which specifies that the annotated code is a critical
section, but failed to include the critical section in a block, so
that only the first statement in the critical section was protect-
ed by the directive. As a result, this program contained a race
condition. Logs for two of the other non-reducer submissions
indicated that those students attempted to use reducers, but
could not figure out how to use them and deleted their reduc-
ers before submission.

All of the eight Cilk Plus submissions attempted to use re-
ducers, but one student did not actually use the reducer be-
cause, although the reducer was declared, the results were
accumulated in an unprotected, shared accumulator. This bug

was analogous to a similar mistake in OpenMP, although dif-
ferent students made the mistake. Additionally, another stu-
dent called REDUCER_VIEW on the reducer outside the parallel

region, resulting in all parallel threads accessing the same re-
ducer, which is unsafe. The other six students made safe use
of the reducer, although one incorrectly shared the input
across multiple threads (because the threads concurrently
permuted the input in place).

The most common mistake in Cilk Plus was neglecting to
free memory allocated in the reducer; although the Cilk Plus
API for declaring reducers requires specifying a function to
destroy the reducer, five of the eight submitted solutions used
a function that specifies that nothing need be done to destroy
a reducer. Although students presumably found this approach
in sample code, it results in a memory leak in this case. A sim-
ilar bug existed in OpenMP solutions as well, but we did not
deduct points for it in that case because the documentation
does not explain how to manage memory correctly and we did
not discuss it in class. By default, OpenMP initializes reducers
by copying from an initial reducer; students got lucky because
this happened to work due to the implementation details of the
particular accumulator included by the starter code.

Six of the eight Cilk Plus submissions declared reducers in
global variables even though there was no need for the reduc-
ers to be in the global scope. This may be because available
sample code used this approach and because the students may
have been unaware of the problems with global variables, such
as the obstacles they present to modularity [7].

B. Performance
Performance results are summarized in Fig. 1. Four of the

five correct Cilk Plus solutions and two of the three correct
OpenMP solutions achieved a speedup of at least 1.5. The
correct solutions that did not achieve a speedup were slowed
down by recursively allocating reducers and recursively using
parallel for loops. Although with two cores an optimal solution
would have generated approximately two tasks, recursively
using cilk_for or #pragma omp parallel for resulted
in dividing the problem into an exponential number of tasks
with an exponential number of reducers. One student made
this error with both language extensions, achieving a perfor-
mance of 0.08x the serial time on OpenMP and 0.4 on Cilk
Plus. Excluding this student and the unsafe solutions, the av-
erage speedup on OpenMP was 1.72, and the average speedup
on Cilk Plus was 1.75.

C. Time spent on task
We analyzed the log files that Fluorite generated to estimate
time spent working on the tasks (see Table 2). To avoid count-
ing time spent taking breaks, we only included times between
pairs of Eclipse commands that were less than two standard
deviations above the mean time between commands.

TABLE 2: ESTIMATED TIMES SPENT ON TASKS (MINUTES)

 OpenMP average
task time

Cilk Plus average
task time

OpenMP-first students 675 210
Cilk Plus-first students 158 557

Based on these estimates, we observed a large learning ef-

fect of the first task on the second task. OpenMP took longer

if it was first, but shorter if it was second. This could mean
that Cilk Plus has a lower barrier to entry and teaches students
more so that they can do OpenMP more easily. However, with
such a small sample, we cannot eliminate the possibility that
the Cilk Plus-first students were just better programmers.

D. Student Opinions
After the assignment was complete, we asked students to

reflect on their experience. Only three students replied, and one
would use Cilk Plus in a future project if given a choice; one
would use OpenMP; and one would use standard thread
libraries to do parallel programming manually. However, all
three students said they liked Cilk Plus better for the home-
work, with some saying it was easier and the others saying it
was simpler. Two of the students suggested providing more
material on Cilk Plus and OpenMP, including more examples
and practice problems.

IV. DISCUSSION

A. Implications
Although correct solutions in both systems were of similar

performance, the number of correct solutions varied, with five
correct Cilk Plus solutions but only three correct OpenMP
solutions. The difference pertained primarily to the successful
use of reducers. We believe that Cilk Plus’s mechanism for
defining reducers is more usable than OpenMP’s. One possi-
ble cause is that although the Cilk Plus syntax for defining a
reducer is similar to that of a function call, OpenMP uses a
different syntax. For example, an OpenMP reducer might be
defined as follows:

#pragma omp declare reduction
 (results_reduction :

 results_t :
 results_reduce(&omp_out, &omp_in))
 initializer(results_init(&omp_priv))

whereas a Cilk Plus example might be:
CILK_C_DECLARE_REDUCER(results_t)
 my_results_reducer =
 CILK_C_INIT_REDUCER(
 results_t, reduce,
 identity, destroy);

The Cilk Plus approach specifies all the relevant argu-
ments in one construct that looks like a function call. In con-
trast, the OpenMP approach uses colons to delimit arguments,
which is not standard in C. In addition, how to correctly use
OpenMP’s initializer is not described in the examples that
could be easily found online. Only one of the students includ-
ed an initializer clause, and that student found out about it by
asking the course staff. Finally, one must read documentation
to discover the predefined OpenMP variables, omp_in and
omp_out, and their types. In contrast, Cilk Plus’s mechanism
for initializing a reducer, CILK_C_INIT_REDUCER, takes a
function name, not a function call, so users do not need to be
aware of the names of the inputs. The CPLEX proposed re-
duction syntax is closer to Cilk Plus than to OpenMP.

In both Cilk Plus and OpenMP, there were solutions that
declared a reducer but failed to use it properly. One way of
minimizing the chances that users will use a reducer incorrect-

ly is to pass whole reducers rather than accumulators, which
would be of distinct type from the reducers. In Cilk Plus, for
example, a typedef for CILK_C_DECLARE_REDUCER(T)
produces a type that is distinct from T. If the programmer in-
advertently passes an accumulator instead of a reducer, the
compiler can give an error.

In Cilk Plus, REDUCER_VIEW(reducer) returns an object
of the accumulator type, and if this is called outside a parallel
region, the correct thread-specific reducer is not used. A better
language design is to allow the reducer to be passed as an ar-
gument and have the compiler infer (due to the implicit type
conversion) when the thread-specific reducer is appropriate.
Then, the language and runtime might be able to infer which
instances of a reducer should implicitly get the thread-specific
accumulator and which are actually passing the whole reducer.
It would help if the compiler warned when it could not be sure
that a given call to REDUCER_VIEW was always inside a paral-
lel context; however, this analysis would need to be conserva-
tive and might give spurious warnings.

Overall, we find the difficulty our master’s students had in
writing correct parallel code using these tools very discourag-
ing. Despite the simplicity of the task, the instruction that was
designed to prepare them to complete it, and their prior aca-
demic background, many students submitted solutions with
race conditions. This suggests that if we intend to have com-
puter science graduates write correct parallel software, we will
need new instructional techniques, new tools, or both.

B. Limitations
This preliminary study was not intended to represent the

full range of use cases for either language extension; instead,
it was intended to generate hypotheses and inform future stud-
ies. External validity may be limited by participants being
novices at both Cilk Plus and OpenMP; by the short duration
of the study and the simplicity of the programming task; and
by the specific instructions that the students received before
beginning their work. Construct validity may be limited by the
instruction the students received; by the example and starter
code the students were given; by the small number of partici-
pants; by the students’�apparent lack of understanding of race
conditions (as evidenced by the large number of solutions that
included unprotected access to shared variables); and by an
erroneous inclusion in the OpenMP starter code, though we
believe this did not affect the results. Finally, the grading pro-
cess in large part involved manual inspection of student code,
so it is possible that some errors were not found, but this risk
is mitigated by the small task size and low code complexity.

C. Summary of Hypotheses
We hypothesize that inconsistent and complex reducer

syntax in OpenMP impedes programmers; giving reducers
distinct types from their values would reduce error rates; and
reducers and parallel language extensions in general do not
obviate the need for programmer understanding of concurren-
cy, but education can increase the chances of success.

V. RELATED WORK
The problem of designing programming languages for par-

allel programming is a long-studied area. In 1989, Bal, Stei-

ner, and Tanenbaum [1] published a survey of over 300 pro-
gramming languages for distributed systems. Although their
paper predated both Cilk and OpenMP, it catalogued issues
pertaining to the design of parallel programming systems,
such as the question of message-passing versus shared-
memory systems, and explained how numerous languages
addressed the issues. Wilson proposed a set of programming
problems for use in evaluating the usability of parallel pro-
gramming systems [8]. However, in our study, for the students
to focus on the parallelization and not on the overall problem,
we chose an algorithmically much simpler problem.

Sadowski and Shewmaker argued for more research into
usability of parallel programming systems in a position paper
[9], finding that most of the research to date had been incon-
clusive but that parallel programming has been shown to be
hard. They identified five challenges in measuring program-
mer productivity in parallel programming, such as the fact that
one must target usability for a particular kind of programmers.

Some researchers have conducted comparisons between
parallel programming languages. Nanz, West, da Silveira, and
Meyer [10] used one experienced programmer to implement
solutions to problems in Chapel, Cilk, Go, and Threading
Building Blocks, and then had experts in each language evalu-
ate the programmer’s work. In contrast, our study focused on
novice programmers; though this exposes different kinds of
issues, our paper has the advantage of including more than one
user. Hochstein, Basili, Vishkin, and Gilbert compared mes-
sage-passing and PRAM-like models (PRAM is similar to a
shared-memory system, but the processors execute iterations
of parallel loops synchronously) with students in a course
[11], finding that PRAM-like programs required less effort to
write but were not significantly more correct.

VI. CONCLUSIONS
We conducted a course-based experiment with eight mas-

ter’s students, who each parallelized a simple program using
reducers in both Cilk Plus and OpenMP. We observed that
although only three of eight students wrote thread-safe
OpenMP solutions, five did so in Cilk Plus, leading to a hy-
pothesis that students are more likely to develop thread-safe
reductions in Cilk Plus, but this hypothesis should be tested
further. We identified several avenues for future research and
for consideration in the design of a C parallel language exten-
sion, including issues pertaining to syntax and types. We also
identified ways of improving our course content pertaining to
parallel programming, including improving available exam-
ples and ensuring students have a better general understanding
of race conditions and memory management.

ACKNOWLEDGMENTS
This material is based upon work funded and supported in

part by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center, in part by the NSA lablet contract
#H98230-14-C-0140, and in part by NSF grant CNS-1423054.
This material has been approved for public release and unlimited
distribution. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect those of any of the sponsors.

REFERENCES
1. Bal, H. E., Steiner, J. G., & Tanenbaum, A. S. (1989). Programming

languages for distributed computing systems. ACM Computing Surveys,
21(3), 261–322. http://doi.org/10.1145/72551.72552

2. Intel (2015, May 11). Intel® Cilk™ Plus Language Extension Specifica-
tion Version 1.2 (2013-09-06) Available:
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cil
k_plus_lang_spec_1.2.htm

3. Intel (no date). A Brief History of Cilk. Available:
https://www.cilkplus.org/cilk-history

4. OpenMP Application Program Interface (2015, May 11). OpenMP: The
OpenMP API Specification for Parallel Programming. Available:
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

5. Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for
shared-memory programming. IEEE Computational Science and Engi-
neering, 5(1), 46–55. http://doi.org/10.1109/99.660313

6. Yoon, Y., & Myers, B. A. (2011). Capturing and analyzing low-level
events from the code editor. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Evaluation and Usability of Programming Languages and

Tools�PLATEAU ’11 (p. 25). New York, USA: ACM Press.
http://doi.org/10.1145/2089155.2089163

7. Wulf, W., Shaw, M. (1973) Global variable considered harmful. ACM
Sigplan notices 8(2), 28-34

8. Gregory V. Wilson, R. B. I. (1995). Assessing and Comparing the Usa-
bility of Parallel Programming Systems. Technical Report. Retrieved
from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4614

9. Sadowski, C., & Shewmaker, A. (2010). The Last Mile. In Proceedings
of the FSE/SDP Workshop on Future of Software Engineering Re-
search�FoSER �10 (p. 309). New York, USA: ACM Press.
http://doi.org/10.1145/1882362.1882426

10. Nanz, S., West, S., Silveira, K. S. da, & Meyer, B. (2013). Benchmark-
ing Usability and Performance of Multicore Languages. In 2013 ACM /
IEEE International Symposium on Empirical Software Engineering and
Measurement (pp. 183–192). IEEE.
http://doi.org/10.1109/ESEM.2013.10

11. Hochstein, L., Basili, V. R., Vishkin, U., & Gilbert, J. (2008). A pilot
study to compare programming effort for two parallel programming
models. Journal of Systems and Software, 81(11), 1920�1930.
http://doi.org/10.1016/j.jss.2007.12.798

