
Open Modules:
Reconciling Extensibility and Information Hiding

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

jonathan.aldrich@cs.cmu.edu

ABSTRACT
Aspect-oriented programming systems provide powerful
mechanisms for separating concerns, but understanding
how these concerns interact can be challenging. In partic-
ular, many aspect-oriented programming constructs can vio-
late encapsulation, creating dependencies between concerns
that make software evolution more difficult and error-prone.

In this paper, we introduce Open Modules, a mechanism
for enforcing a strong form of encapsulation while support-
ing much of the extensibility provided by languages like
AspectJ. Open Modules provide extensibility by allowing
clients to advise the interface of a module, but enforce encap-
sulation by protecting function calls made within the mod-
ule from external advice. A module can expose semantically
important internal events to client aspects through pointcuts
in its interface. The module’s implementation can change
without affecting client advice as long as the semantics of the
methods and pointcuts in its interface are preserved. Thus,
open modules preserve much of the expressiveness of exist-
ing aspect-oriented programming techniques, while provid-
ing strong encapsulation guarantees even in the presence of
aspects.

1. Solution Name: Open Modules

2. Problem: Encapsulation for Aspects
In his seminal paper, Parnas laid out the classic theory of

information hiding: developers should break a system into
modules in order to hide information that is likely to change
[10]. Thus if change is anticipated with reasonable accuracy,
the system can be evolved with local rather than global sys-
tem modifications, easing many software maintenance tasks.
Furthermore, the correctness of each module can be veri-
fied in isolation from other modules, allowing developers to
work independently on different sub-problems.

Unfortunately, developers do not always respect the in-
formation hiding boundaries of modules–it is often tempt-
ing to reach across the boundary for temporary convenience,
while causing more serious long-term evolution problems.
Thus, encapsulation mechanisms such as Java’s packages
and public/private data members were developed to give
programmers compiler support for enforcing information
hiding boundaries.

The central insight behind aspect-oriented programming
is that conventional modularity and encapsulation mecha-

nisms are not flexible enough to capture many concerns that
are likely to change. These concerns cannot be effectively
hidden behind information-hiding boundaries, because they
are scattered in many placed throughout the system and
tangled together with unrelated code. Aspect-oriented pro-
gramming systems provide mechanisms for modularizing a
more diverse set of concerns. However, few aspect-oriented
programming projects have addressed the problem of pro-
viding an encapsulation facility for aspect-oriented program-
ming.

2.1 Existing Encapsulation Approaches
The most widely-used AOP system, AspectJ, leaves Java’s

existing encapsulation mechanisms largely unchanged [7].
AspectJ provides new programming mechanisms that cap-
ture concerns which crosscut Java’s class and package struc-
ture. Because these mechanisms can reach across encapsula-
tion boundaries, AspectJ does not enforce information hiding
between aspects and other code.

For example, Figure 1 shows how an aspect can depend
on the implementation details of another module. The fig-
ure shows two different Shape subclasses, one represent-
ing points and another representing rectangles. Both classes
have a method moveBy, which moves the rectangles on the
screen. An assurance aspect checks certain invariants of
the scene every time a shape moves. The aspect is trig-
gered by a pointcut made up of all calls to the moveBy func-
tion in shapes. We assume the assurance aspect is checking
application-level invariants, rather than invariants specific to
the shape package, and therefore it is defined in a package
of its own.

Unfortunately, this aspect depends on the implementation
details of the shape package, and will break if these imple-
mentation details are changed. For example, consider what
happens if the rectangle is modified to store its coordinates as
a pair of points, rather than two pairs of integer values. The
body of Rectangle.moveBy would be changed to read:

p1.moveBy(dx, dy);
p2.moveBy(dx, dy);

Now the moves pointcut will be invoked not only when
the Rectangle moves, but also when its constituent points
move. Thus, the scene invariants will be checked in the mid-
dle of the rectangle’s moveBy operation. Since the scene in-
variants need not be true in the intermediate state of motion,
this additional checking could lead to spurious invariant fail-
ures.

1

package shape;

public class Point extends Shape {
public void moveBy(int dx, int dy) {

x += dx; y += dy;
...

}

public class Rectangle extends Shape {
public void moveBy(int dx, int dy) {

p1x += dx; p1y += dy;
p2x += dx; p2y += dy;

...
}

package assure;

aspect AssureShapeInvariants {
pointcut moves():

call(void shape.Shape+.moveBy(..));

after(): moves() {
scene.checkInvariants();

}
}

Figure 1: In this AspectJ code, the correctness of the
shape invariants aspect depends on the implementation
of the shapes. If the implementation is changed so that
Rectangle uses Point to hold its coordinates, then the
invariants will be checked in the middle of a moveBy oper-
ation, possibly leading to a spurious invariant failure.

The aspect in Figure 1 violates the information hiding
boundary of the shape package by placing advice on
method calls within the package. This means that the imple-
mentor of shape cannot freely switch between semantically
equivalent implementations of Rectangle, because the ex-
ternal aspect may break if the implementation is changed.
Because the aspect violates information hiding, evolving the
shape package becomes more difficult and error prone.

AspectJ is not the only system in which aspects can violate
information hiding boundaries. Other aspect-oriented pro-
gramming systems that support method interception, such
as Hyper/J [14] and ComposeJ [15], share the issue. Even
recent proposals describing module systems for AOP allow
these kinds of violations [8, 4].

Clearly the programmer of the assurance aspect could
have written the aspect to be more robust to this kind of
change. However, the whole point of an encapsulation sys-
tem is to protect the programmer from violating information
hiding boundaries. In the rest of this paper, we explore a
proposed module system that is able to enforce information
hiding, while preserving much of the expressiveness of ex-
isting aspect-oriented programming systems.

2.2 Encapsulation Goals
What should be the goals of an encapsulation system for

aspects?
The motivation for encapsulation mechanisms is to allow

programmers to express their information-hiding intent to

the compiler, so that the compiler can help them ensure that
clients of a module do not take advantage of hidden informa-
tion. Since we are working in the domain of aspect-oriented
programming, it is important that the system can be used to
hide information in crosscutting concerns.

The encapsulation system should also ensure that module
clients do not rely on hidden information. Reynolds’ abstrac-
tion theorem is a way of stating this goal more precisely: no
client should be able to distinguish two modules that have
the same external behavior but differ in implementation de-
tails [11]. A system with the abstraction property guarantees
that clients will not be affected by changes to information
that is hidden within a module.

Both of these goals are necessary to realize the potential of
aspect-oriented programming. Without the flexibility to en-
capsulate crosscutting concerns, AOP is no better than con-
ventional programming systems. Without the abstraction
property, we can modularize crosscutting concerns, but pro-
grammers will inevitably create dependencies that violate
the intended information hiding boundaries. Only with both
of these goals will we be able to capture crosscutting con-
cerns and evolve them locally, achieving the benefits of mod-
ularity. To date, however, we know of no system which sup-
ports both common cases of aspect-oriented programming
and an abstraction property.

3. Description of Open Modules
We propose Open Modules, a new module system for

aspect-oriented programs that is intended to be open to
aspect-oriented extension but modular in that the implemen-
tation details of a module are hidden. The goals of openness
and modularity are in tension, and so we try to achieve a
compromise between them.

Previous systems support AOP using constructs like ad-
vice that can reach across module boundaries to capture
crosscutting concerns. We propose to adopt these same con-
structs, but limit them so that they respect module bound-
aries. In order to capture concerns that crosscut the bound-
ary of a module, the module can export pointcuts that repre-
sent abstractions of events that might be relevant to external
aspects. As suggested by Gudmundson and Kiczales [6], ex-
ported pointcuts form a contract between a module and its
client aspects, allowing the module to be evolved indepen-
dently of its clients so long as the contract is preserved.

Figure 2 shows a conceptual view of Open Modules. Like
ordinary module systems, open modules export a list of data
structures and functions such as moveBy and animate. In
addition, however, open modules can export pointcuts de-
noting internal semantic events. For example, the moves
pointcut in Figure 2 is triggered whenever a shape moves.
Since a shape could move multiple times during execution
of the animate function, clients interested in fine-grained
motion information would want to use this pointcut rather
than just placing advice on calls to animate.

By exporting a pointcut, the module’s maintainer is mak-
ing a promise to maintain the semantics of that pointcut as
the module’s implementation evolves, just as the maintainer
must maintain the semantics of the module’s exported func-
tions.

Open Modules are “open” in two respects. First, their in-
terfaces are open to advice; all calls to interface functions
from outside the module can be advised by clients. Second,
clients can advise exported pointcuts.

2

pointcut moves;

package shape

void moveBy(int, int);

void animate(Motion);
...

Figure 2: A conceptual view of Open Modules. The shape
module exports two functions and a pointcut. Clients can
place advice on external calls to the exported functions, or
on the exported function, but not on calls that are internal
to the module.

On the other hand, open modules encapsulate the inter-
nal implementation details of a module. As usual with mod-
ule systems, functions that are not exported in the module’s
public interface cannot be called from outside the module. In
addition, calls between functions within the module cannot
be advised from the outside–even if the called function is in
the public interface of the module.

For example, a client could place advice on external calls
to moveBy, but not calls to moveBy from another function
within the same module. Thus, in our system the code in Fig-
ure 1 would trigger a compile time error, because the moves
pointcut includes calls that are within the shape package,
violating its encapsulation.

We now provide a more technical definition for Open
Modules, which can be used to distinguish our contribution
from previous work:

Definition [Open Modules]: A module system that:

• allows external aspects to advise external calls to functions
in the interface of a module

• allows external aspects to advise pointcuts in the interface of
a module

• does not allow external aspects to advise calls from within
a module to other functions within the module (including
exported functions).

3.1 Open Module Examples
In Open Modules, there are two ways to revise the code

in Figure 1 so that the information hiding boundaries of the
shapes package are maintained. The first solution, shown
in Figure 3, simply adds a clause to the pointcut ensuring
that it only captures external calls to moveBy. Internal calls
from within the shape package are not part of the pointcut.
Thus, if the Rectangle implementation is later changed to
use Point,the assurance aspect will not be affected.

A second possible revision is shown in Figure 4. In this
example, the moves pointcut has been defined inside the
shape package, and is exported so that external clients can
use it as an extension point. The pointcut will still need to be
changed if the implementation of Rectangle is changed to
use Point. However, these two changes are now both the re-
sponsibility of the maintainer of the shape package, making

package assure;

aspect AssureShapeInvariants {
pointcut moves():

call(void shape.Shape+.moveBy(..))
&& !within(shape.*);

...
}

Figure 3: The violation of information hiding in Figure 1
can be fixed by changing the pointcut so that calls from
within the shape package are not included in the point-
cut. This allows the shape package to be changed without
affecting the assurance aspect.

package shape;

class Shape {
public pointcut moves:

call(void Shape+.moveBy(..));
...

}

package assure;

aspect AssureShapeInvariants {
after(): shape.Shape.moves() {
scene.checkInvariants();

}
}

Figure 4: A second fix to the information hiding problem is
to define the coumoves pointcut within the shape package.
The maintainer of the shape package must maintain the
semantics of this pointcut as the package evolves.

it easier to keep the pointcut coordinated with the ordinary
Java code.

Although this second solution suggests that the pointcut
for the aspect be moved into the base code, in general there
will be a division of responsibility for pointcuts between the
aspect and the base code. For example, the assurance aspect
may not be interested in all moves, but only moves that are
within the control flow of some higher-level operation. It
would be inappropriate (and unnecessary) for the base code
to include a pointcut that was specialized to the particular
needs of the aspect. Instead, a pointcut representing generic
move events can be defined in the shape package as de-
scribed in Figure 4, and the aspect can refine the pointcut
by specifying the control flow pointcut, as follows:

pointcut relevantMoves : shape.Shape.moves()
&& cflow(...);

3.2 Semantics
This paper describes a design in progress. We have not yet

worked out the semantics of Open Modules in a full aspect-
oriented programming system such as AspectJ. To do so will
be a challenging task, because the design principles of Open
Modules may require rethinking many different aspects of
the way that pointcuts and advice are defined.

3

As a start towards a semantic understanding of Open
Modules, a companion paper gives a precise semantics for
Open Modules in a core language consisting of the lambda
calculus plus pointcuts and advice [1]. In addition to prov-
ing the usual type soundness properties, this paper shows
that Open Modules enforce Reynolds’ abstraction property.
As discussed before, this property ensures that clients cannot
be affected by changes to the implementation of a module, as
long as those changes preserve the semantics of the module’s
exported functions and pointcuts.

4. Open Modules and Comprehensibility
Open Modules increase the comprehensibility of a system

relative to existing aspect-oriented programming systems,
because the implementation and behavior of a module can
be completely understood in isolation. External advice can-
not affect internal calls within the module, so it is easy to
reason about control and data flow within the module. Al-
though clients can advise exported pointcuts, this advice can
be treated as a callback to a client-specified function, and
then standard reasoning techniques can be used.

5. Open Modules and Predictability
Compared to other AOP systems, Open Modules make it

easier to predict the results of making small changes to the
implementation of a system. Because our system enforces
encapsulation boundaries, changes to code within a module
can only directly affect other code and aspects within that
same module. As long as the semantics of the module’s in-
terface are preseved, external code and aspects will not be
affected.

6. Open Modules and Evolvability
Research on both aspect-oriented programming and mod-

ule systems is predicated on the belief that better ways to
support information hiding will ease software evolution.
The premise of this paper is that Open Modules combine the
most important properties of both lines of research: the abil-
ity to capture crosscutting concerns with the ability to enforce
information hiding boundaries.

7. Open Modules and Semantic Interactions
Open Modules do not solve the problem of semantic in-

teractions between different aspects. However, our system
does make the problem easier by limiting the ways in which
aspects can interact.

If both an aspect and the code it advises are part of some
package P, then that aspect can only interact with other as-
pects defined in package P. This is true because external as-
pects cannot advise the implementation of P, only calls to its
interface.

Although external aspects can advise pointcuts exported
by package P, interaction with internal aspects via these
pointcuts is relatively controlled. A mechanism similar to
AspectJ’s aspect precedence declarations could be used to
specify whether the internal aspects apply before or after ex-
ternal aspects.

The semantic interaction problem remains challenging for
aspects defined within the same high-level module. Many
tools, such as the AspectJ plugin for Eclipse, help with the
semantic interaction problem by showing a view of where
aspects apply to base code.

8. Expressiveness
Like the Gudmundson and Kiczales proposal on which

they are based [6], Open Modules sacrifice some amount of
obliviousness [5] in order to support better information hid-
ing. Base code is not completely oblivious to aspects, because
the author of a module must expose relevant internal events

in pointcuts so that aspects can advise them1. However, our
design still preserves important cases of obliviousness:

• While a module can expose interesting implementa-
tion events in pointcuts, it is oblivious to which aspects
might be interested in those events.

• Pointcuts in the interface of a module can be defined
non-invasively with respect to the rest of the module’s
implementation, using the same pointcut operations
available in other AOP languages.

• A module is completely oblivious to aspects that only
advise external calls to its interface.

A possible concern is that the strategy of adding a point-
cut to the interface of a base module may be impossible
if the source code for that module cannot be changed. In
this case, the modularity benefits of Open Modules can be
achieved with environmental support for associating an ex-
ternal pointcut with the base module. If the base module is
updated, the maintainer of the pointcut is responsible for re-
checking the pointcut to ensure that its semantics have not
been invalidated by the changes to the base module.

8.1 Empirical Study
We hypothesize that open modules are expressive enough

to support many existing uses of aspect-oriented program-
ming. We have conducted a micro-experiment that, while
not sufficient to test this hypothesis in the general case, still
serves as a reality check to make sure the hypothesis is not
unreasonable.

In our experiment, we examined the SpaceWar program
from the AspectJ compiler distribution. At 2300 lines of code,
SpaceWar is a small demonstration program, not a realistic
application. However, it is the largest of the examples in the
distribution, and it shows a variety of interesting uses of as-
pects.

Our methodology was to examine the pointcuts used for
a number of different purposes, to see if those pointcuts vi-
olated module boundaries as described earlier in this paper.
Since SpaceWar is not divided into packages, we used files as
the module boundaries in this study.

Results. There were 11 pointcuts in the SpaceWar pro-
gram, not counting the debugging pointcuts (discussed be-
low). Of these, 4 pointcuts were compatible with Open
Modules as written. For example, the following pointcut in
Display.java repaints the display objects after each clock
tick. It is compatible with Open Modules because it inter-
cepts messages going into the Game object, rather than inter-
nal messages.
1We note that many in the AOP community feel “oblivi-
ousness” is too strong a term, preferring a notion of “non-
invasiveness” that is compatible with our proposal. See
for example posts to the aosd-discuss mailing list by Dean
Wempler and Gregor Kiczales in August 2003, available at
aosd.net.

4

after() ... : call(void Game.clockTick()) {
//for each Display object ‘‘display’’ do:

display.repaint();
}

Six other pointcuts would have to be moved into the tar-
get module in order to be compatible with Open Modules,
because they intercept messages that were internal to that
module. For example, the pointcut below is used to synchro-
nize access to data structures in the Game object. Because
handleCollisions is called from within Game.java, this
pointcut would have to be defined in Game.java rather than
in an external file.

protected pointcut synchronizationPoint() :
call(void Game.handleCollisions(..))

|| call(Ship Game.newShip(..));

The Ship class already includes a semantic pointcut in its
interface, shown below. This pointcut captures “commands”
to the ships in the SpaceWar program, and is used by an ex-
ternal aspect that cancels the command if the ship is disabled.
The use of this semantic pointcut in existing code supports
the argument that putting pointcuts in a module interface is
a natural programming idiom.

pointcut helmCommandsCut(Ship ship):
target(ship) &&

(call(void rotate(int)) ||
call(void thrust(boolean)) ||
call(void fire()));

It was unclear how the one remaining pointcut should be
supported in our system. This pointcut ensures that objects
are only “registered” with the game when they are created
and destroyed. It is unusual in that it talks not only about
the method being called but also the method from which the
call is made. Further study will be necessary to understand
how to integrate this kind of pointcut into our system.

The only concern our system definitely could not handle
in a reasonable way was an extremely invasive debugging
aspect. Debugging is an inherently non-modular activity, so
we view it as a positive sign that our module system does
not support it. In a practical system, debugging can be sup-
ported either through external tools, or through a compiler
flag that makes an exception to the encapsulation rules dur-
ing debugging activity.

A file containing the raw, detailed results of our
study is available at the Open Modules website,
http://www.cs.cmu.edu/˜aldrich/aosd/.

Lessons Learned. The fact that 6 out of 11 pointcuts required
moving the pointcut into the interface of the base code sug-
gests that we should think about a way to make this easier.
One possibility is to add a new method modifier stating that
all calls to this method (including calls from the current mod-
ule) define a pointcut by the same name as the method. This
would make it easier to expose pointcuts in a way that is
compatible with Open Modules.

In summary, our study of the aspects in the SpaceWar
program provided preliminary evidence that Open Modules
are able to capture many existing aspects with only minor
changes to the way those aspects are expressed–usually mov-
ing a pointcut into the interface of the base code. In the fu-
ture, we hope to test this hypothesis on more realistic appli-
cations.

8.2 Comparison to non-AOP techniques.
One way to evaluate the expressiveness of Open Modules

is to compare them to non-AOP alternatives. One alternative
is using wrappers instead of aspects to intercept the incom-
ing calls to a module, and using callbacks instead of point-
cuts in the module’s interface. The aspect-oriented nature of
Open Modules provides several advantages over the wrap-
per and callback solution:

• Open Modules are compatible with the quantification [5]
constructs of languages like AspectJ, so that many
functions can be advised with a single declaration.
Implementing similar functionality with conventional
wrappers–which do not support quantification–is far
more tedious because a wrapper must be explicitly ap-
plied to each function.

• In Open Modules, a single, locally-defined aspect can
implement a crosscutting concern by non-locally ex-
tending the interface of a number of modules. Wrap-
pers cannot capture these concerns in a modular
way, because each target module must be individually
wrapped.

• Callbacks are invasive with respect to the implemen-
tation of a module because the implementation must
explicitly invoke the callback at the appropriate points.
In contrast, pointcut interfaces are non-invasive in that
the pointcut is defined orthogonally to the rest of the
module’s implementation, thus providing better sup-
port for separation of concerns.

These advantages illustrate how the quantification and
non-invasive extension provided by Open Modules distin-
guish our proposal from solutions that do not use aspects [5].

9. Discussion and Conclusion
In this section we discuss related work and our future

plans before concluding the paper.

9.1 Related Work
Lieberherr et al. describe Aspectual Collaborations, a con-

struct that allows programmers to write aspects and code
in separate modules and then compose them together into
a third module [8]. Their module system does not encapsu-
late internal calls to exported functions, and thus does not
enforce the abstraction property.

In concurrent work, Dantas and Walker propose a mod-
ule system for aspect-oriented programming [4]. Their sys-
tem includes a novel feature for controlling whether advice
can read or change the arguments and results of advised
functions. In their design, pointcuts are first-class, provid-
ing more flexibility compared to the second-class pointcuts
in systems like AspectJ. This design choice breaks abstrac-
tion and thus separate reasoning, however, because it means
that a pointcut can escape from a module even if it is not ex-
plicitly exported in the module’s interface. In their system,
functions in the interface of a module can only be advised if
this is planned in advance; in contrast, Open Modules allows
advice on all function declarations in a module’s interface,
providing oblivious extensibility without compromising ab-
straction.

Open Modules is conceptually similar to the Composition
Filters model, in that external advice to a module can be

5

thought of as a filter that acts on incoming messages. How-
ever, the most recent implementation of Composition Filters,
ComposeJ, differs from our proposal in that messages sent to
“this” are dispatched through filters rather than being sent
directly to the receiver object, thus breaking the abstraction
property enforced by our system [15].

AspectJ [7] extends Java’s encapsulation mechanisms, pro-
tecting private methods from access by external aspects.
However, AspectJ does not enforce abstraction, because in-
ternal calls to public methods may still be advised by ex-
ternal aspects. Furthermore, an aspect can get around even
the limited encapsulation mechanism by declaring itself to
be privileged. Thus, AspectJ’s design provides only minimal
enapculation, but gives programmers maximum flexibility in
writing aspects.

A different approach to reasoning about code interactions
in aspect-oriented programs is to provide an analysis that
shows how aspects might affect source code or each other.
For example, the Eclipse plugin for AspectJ includes a view
showing which aspects affect each line of source code, and
researchers have studied more sophisticated analyses [12,
13]. These analyses, however, do not prevent abstraction vi-
olations in the way that Open Modules do.

Clifton and Leavens propose to modularize reasoning
about aspects using the concepts of observers and assistants
[2]. Observers can observe a module, but not change its se-
mantics, while assistants can change a module’s behavior,
but only with that module’s permission. Open Modules en-
force a stronger barrier between a module and its clients, be-
cause even “observer aspects” cannot depend on the internal
implementation details of a module. Observers and assis-
tants have a complementary advantage, supporting stronger
reasoning about how different aspects might interact.

The technique of exporting a pointcut in a module’s inter-
face was originally proposed by Gudmundson and Kiczales
as a way to ease software evolution by decoupling an aspect
from the code that it advises [6]. It is also related to the Deme-
ter project’s use of traversal strategies to isolate an aspect from
the code that it advises [9].

The name Open Modules indicates that modules are open
to advice on functions and pointcuts exposed in their inter-
face. This terminology is derived from Open Classes, a re-
lated AOP term indicating that classes are open to the addi-
tion of new methods [3].

9.2 Future Work
In future work, we plan to extend the design sketched here

to a full-fledged aspect-oriented programming system such
as AspectJ or Hyper/J. We also hope to perform an empir-
ical study evaluating whether open modules are expressive
enough to handle common examples of aspect-oriented pro-
gramming.

9.3 Conclusion
This paper presented Open Modules, an encapsulation

mechanism that provides much of the expressiveness of ex-
isting aspect-oriented programming mechanisms while en-
forcing information hiding boundaries. Open Modules are
open in the sense that clients can place advice both on point-
cuts and on functions in the interface of a module. A key
contribution of our work is recognizing that in order to en-
force encapsulation in the presence of aspects, it is necessary
to distinguish between external calls to a module and inter-

nal calls within the module. Open Modules enable aspect-
oriented programming to reach its full potential: not only
separating concerns but also ensuring that programmers can
separately reason about and evolve those concerns.

10. Acknowledgments
I thank the anonymous reviewers and my colleagues in the

software group at CMU for their valuable feedback on earlier
drafts of this material.

11. REFERENCES
[1] J. Aldrich. Open Modules: A Proposal for Modular

Reasoning in Aspect-Oriented Programming. In
Foundations of Aspect Languages, March 2004.

[2] C. Clifton and G. T. Leavens. Observers and Assistants:
A Proposal for Modular Aspect-Oriented Reasoning. In
Foundations of Aspect Languages, April 2002.

[3] C. Clifton, G. T. Leavens, C. Chambers, and
T. Millstein. MultiJava: Modular Open Classes and
Symmetric Multiple Dispatch for Java. In
Object-Oriented Programming Systems, Languages, and
Applications, October 2000.

[4] D. S. Dantas and D. Walker. Aspects, Information
Hiding and Modularity. Unpublished manuscript,
2003.

[5] R. E. Filman and D. P. Friedman. Aspect-Oriented
Programming is Quantification and Obliviousness. In
Advanced Separation of Concerns, October 2000.

[6] S. Gudmundson and G. Kiczales. Addressing Practical
Software Development Issues in AspectJ with a
Pointcut Interface. In Advanced Separation of Concerns,
July 2001.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of AspectJ.
In European Conference on Object-Oriented Programming,
June 2001.

[8] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual
Collaborations: Combining Modules and Aspects. The
Computer Journal, 46(5):542–565, September 2003.

[9] D. Orleans and K. Lieberherr. DJ: Dynamic Adaptive
Programming in Java. In Reflection 2001: Meta-level
Architectures and Separation of Crosscutting Concerns,
September 2001.

[10] D. L. Parnas. On the Criteria to be Used in
Decomposing Systems into Modules. Communications of
the ACM, 15(12):1053–1058, December 1972.

[11] J. C. Reynolds. Types, Abstraction, and Parametric
Polymorphism. In Information Processing, 1983.

[12] G. Snelting and F. Tip. Semantics-based Composition of
Class Hierarchies. In European Conference on
Object-Oriented Programming, June 2002.

[13] M. Storzer and J. Krinke. Interference Analysis for
AspectJ. In Foundations of Aspect Languages, March 2003.

[14] P. Tarr, H. Ossher, W. Herrison, and S. M. Sutton. N
Degrees of Separation: Multi-Dimensional Separation
of Concerns. In Interntional Conference on Software
Engineering, May 1999.

[15] J. C. Wichman. ComposeJ - The Development of a
Preprocessor to Facilitate Composition Filters in the
Java Language. Masters Thesis, University of Twente,
1999.

6

