

Typestate Protocol Specification in JML

Taekgoo Kim
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

vanang@cs.cmu.edu

Kevin Bierhoff
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

kevin.bierhoff@cs.cmu.edu

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA
jonathan.aldrich@cs.cmu.edu

Sungwon Kang
Dept of Computer Science

KAIST
119 Munjiro Yuseong-gu
Daejon, 305732, Korea
sungwon.kang@kaist.ac.kr

ABSTRACT
The Java Modeling Language (JML) is a language for specifying
the behavior of Java source code. However, it can describe the
protocols of Java classes and interfaces only implicitly. Typestate
protocol specification is a more direct, lightweight and abstract
way of documenting usage protocols for object-oriented programs.
In this paper, we propose a technique for incorporating the
typestate concept into JML for specifying protocols of Java
classes and interfaces, based on our previous research on typestate
protocol specifications [4]. This paper presents a set of formal
translation rules for encoding typestate protocol specifications
into pre/post-condition specifications. It shows how typestate
protocol specifications can be mixed with pre/post-condition
specifications and how violations of code contracts in inheritance
can be handled. Finally, our proposed technique is demonstrated
within the Java/JML environment to show its effectiveness.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification-Lan-
guages; D.2.4 [Software Engineering]: Software/Program Verif-
ication; D.2.2 [Software Engineering]: Design Tools and Techn-
iques; F.3.1 [Theory of Computation]: Specifying and Verifying
and Reasoning about Programs

General Terms
Specification, Verification, Design, Language

Keywords
Typestate, JML, behavioral subtyping, usage protocol.

1. INTRODUCTION
As the size of a software system grows, the likelihood of errors in
that system becomes much greater. Much of this growth comes
from errors due to inconsistencies between the intended and
actual use of components within the system. For example, a

programmer must follow the contract of a method, meaning that a
client of a particular class or interface should follow proper
method call sequences as well as the usage rules of each method.
When the programmer calls methods in the wrong order or
violates other usage rules, the method cannot guarantee anything
about the result, and in fact may produce erroneous side effects
like runtime exceptions or program failure. For example, trying
to read data from a closed Reader stream in the Java IO Library
may result in an IO exception being thrown, causing the
application to fail. In practice, numerous APIs have implicitly
protocols [16] such as JDBC and other Java libraries. Thus, there
is a need for an explicit way to document and enforce the contract
of a method.

One way of addressing this issue is to formally specify
component interfaces within the software system and ensure that
clients follow the specification [5]. For example, Hoare proposed
a formal specification methodology based on using pre- and post-
conditions to specify the usage protocol of a component [8]. The
Java Modeling Language (JML) supports this ‘design by contact’
methodology in the context of Java [1]. For instance, the
contracts can be defined within program code as annotations for
member functions or variables, and can be translated into
executable code by a JML compiler. While the JML program is
running, any violation of the contract can be detected by a JML
run-time checker.

Pre- and post-conditions in JML can be used to precisely describe
the usage protocols of Java classes and interfaces. However, in
this case the usage protocol is not defined in terms of explicit
states and transitions, but rather in terms of predicates on the
object’s state before and after the method. Inferring how different
methods relate, and the legal sequences of calls to those methods,
can therefore be done only indirectly. Thus, although the pre-
/post-condition specification technique is very powerful, it is not
always the most direct or easy to understand way to express a
usage protocol.

Typestate is a lightweight and abstract way of presenting usage
protocols [6]. The concept behind typestate is to define a state
machine made up of a number of explicit states, where each
method in the class transitions the receiver object from one state
to another. Therefore, typestate is a natural and direct way to
express usage protocols, but because the states are by their nature
abstract and finite, it cannot be used to specify behavior in as
much detail as a pre-/post-condition style specification can.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAVCBS’09, August 25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-680-9/09/08...$10.00.

In this paper, we propose to use typestate to specify and verify the
behavior of a type (i.e. an interface or a class), based on previous
research on typestate protocol specifications [4]. This paper
makes the following contributions:

 We propose an extension to the syntax of JML that supports
expressing typestate protocols directly.

 We propose a set of translation rules from this typestate
protocol definition syntax to standard JML syntax, both
providing a formal definition for the semantics of our
extension, and providing a guide to the implementation of
the system.

 Our design supports mixing typestate protocols and pure
JML specifications, so developers can specify behavior in a
lightweight way with typestate protocols, and seamlessly
extend that specification with more heavyweight traditional
JML specifications.

 Our design can support safe reasoning about flexible uses of
inheritance, where a subclass may have internal
representation invariants that are incompatible with the
representation invariants of superclasses (Section 5.1.3).

 We validate our design by using our typestate protocol
specifications on example code, translating those
specifications (by hand, for now) to JML, and using existing
JML tools to verify the code against those specifications.

The remainder of this paper is organized as follows: Section 2
presents previous research related to typestate protocol
specification; Section 3 extends the pre-existing JML syntax with
new constructs to express typestate protocols. In Section 4, we
present a set of corresponding translation rules from the new
typestate syntax to existing JML syntax. A case study based on a
simple Java application is presented in Section 5; we summarize
our work and conclude in Section 6.

2. RELATED WORK
Hoare suggested a formal methodology that provides a set of rules
to reason about the correctness of a program using mathematical
logic. His method is based on the idea of a specification as a
contract between the implementation and its clients, where the
specification consists of pre/post-conditions and invariants of the
software system [8]. By writing explicit pre/post-conditions and
invariants, one can verify that a client follows the usage protocol
of a component, and then reduce mistakes that cause system
failure.

State-based specification methods such as Z [3] can be used for
specifying systems as well. Object-Z [12] adapts Z to object-
oriented systems. It can capture class invariants and supports pre-
and post-conditions of methods. However, Object-Z has no
immediate mapping onto an implementation.

Typestates were initially proposed for imperative languages [6].
DeLine and Fähndrich proposed typestates for objects [7], as
embodied in the Fugue language. Fugue allows subclasses to
define additional states. Classes can define predicates that
describe states in terms of instance fields. Bierhoff and Aldrich
[4] modify Fugue’s approach with the concepts of state
refinement, which ensures subtype substitutability, and
specification inheritance similar to the JML, which ensures

behavioral subtyping. Our design builds on that of Bierhoff &
Aldrich. Butkevich et al. describe protocols as labeled transition
systems, check dynamically for protocol usage violations, and can
statically check for hierarchy violations [10]. Barnett, Rustan,
Leino and Schulte introduce Spec# [14], a formal language for
API contracts similar to JML and Eiffel [11]. Spec# extends C#
with constructs for code specification and reasoning about object
invariants. Also, it has unique features for maintaining invariants
in the presence of callbacks, threads and inter-object relationships.
Cheon and Perumendla extend JML to specify protocol property
of program modules that allow developers to specify the
sequences of method calls in a process algebra-style [15].
However, this method have serious scalability problem because
there is no way to handle state dimensions.

3. TYPESTATE PROTOCOL
SPECIFICATION IN JML
In this section, we introduce extensions to the syntax of JML for
specifying typestate protocols. Our protocol specifications are
comprised of 4 parts: state definitions, state invariants, protocol
specifications, and state tests. In first two subsections of this
section, we describe how abstract states can be defined and given
semantics in terms of implementation predicates. The next two
subsections show how protocols can be defined with these states
and how JML specifications can test the state of an object. In the
final subsection, we present a solution for describing frame
axioms. We discuss the strategy for encoding our typestate
protocol syntax into existing JML constructs in Section 4.

3.1 Defining States
Figure 1 presents the syntax for defining a finite set of conceptual
states within a type. We follow Bierhoff and Aldrich in defining
new states as refinements of an existing one, a choice which
facilitates behavioral subtyping, since a type in the new state is a
behavioral subtype of the same type in the state that was refined.
The refined state could have been declared either in the current
class or a superclass. A single state can be refined multiple times,
which corresponds to orthogonal state dimensions [4] or AND-
states in Statecharts [13]. State dimensions let us focus
independently on different aspects of an object, for example on
whether a file is open or closed independent of whether it is
writeable or read-only. State definitions are marked with the
keyword state.

The grammar defines a list of states as refinements of some
existing state, which defaults to a global alive state. The
optional as clause defines the name of the state dimension, which
defaults to a predefined default dimension. The grammar
allows a developer to put the state dimensions into a user-defined
JML data group.

variable-decls ::= ... | state-decl
 state-decl ::= state state-list [refine ident] [as ident] ; [jml-data-group-clause]
 state-list ::= ident | state-list, ident

Figure 1: Grammar for State Definitions

3.2 State Invariants
Following Fugue, we define the semantics of an abstract state in
terms of a predicate over the instance fields of the class.
Semantically, whenever an object is in a particular state s, the

state invariant for s must be true. The syntax for defining state
invariants is given in Figure 2.
jml-declaration ::= ... | modifiers state-invariant
state-invariant ::= state ident <==> predicate ;

Figure 2: Grammar for State Invariants

3.3 Protocol Specifications
In typestate protocol specifications, protocols are defined with
state transitions that define the pre- and post-conditions of a
method in terms of states. For a given method, a developer can
define multiple transitions, called specification cases of the
method. In our syntax, as in JML’s, specification cases are
separated with the keyword also. also can also be used for
indicating that the specification of a supertype’s method with
same name should be inherited. In typestate protocols, state
transitions are introduced with the keyword protocol.
simple-spec-body-clause ::= ... | protocol-clause
 protocol-clause ::= protocol protocol-product -> protocol-union
 protocol-union ::= protocol-product | protocol-union ‘|’ protocol-union
 protocol-product ::= predicate | (predicate, …, predicate)

Figure 3: Grammar for Protocol Specifications
Figure 3 shows the grammar for protocol specifications. A
protocol-clause concisely defines a pre- and post-condition pair.
A product notation (p, q, ...) (where p and q are predicates)
defines multiple conjunctive conditions, increasing readability.
Predicates within the product are boolean expressions, and will
usually include state tests (see below).

3.4 State Tests
A state test is a predicate testing whether an object is currently in
a particular state. State tests will be used for defining protocols,
but can be used anywhere a predicate can appear in JML. Figure 4
shows the syntax for state tests.

relational-expr ::= ... | shift-expr \in ident

Figure 4: Grammar for State Tests
Within JML, the state test can be treated as a relational-expr,
and has the same precedence as the other relational operators.
We only allow testing the state of an object against a constant
with \in. Due to the difficulty of encoding state tests in the
presence of subtyping, a comparison of states between objects is
left to future work.

3.5 Assignables
The encoding of protocols is treated orthogonally to JML’s
assignable clause. It is up to the developer to specify what data
groups can be assigned in a given method. However, the
developer has to be aware that states are mapped hierarchically
into a separate data group alive. Thus, if assignable clauses
are defined, one must ensure that states can be changed as desired.
The easiest way to accomplish this is to include alive into the
list of assignable data groups. One can be more precise, though,
by limiting possible changes to a substate or dimension. Notice,
however, that such a restriction limits flexibility of overriding

methods to change states within new or unrelated state
dimensions.
Beyond this simple solution, data group mappings between states
and other fields can be defined. We already discussed in section
3.1 that state dimensions can be mapped into arbitrary data groups
besides alive. Conversely, concrete and model fields can be
mapped into a state’s or dimension’s data group.

4. TRANSLATING TO PURE JML
In this section, we present formal rules translating typestate
protocol specifications into standard JML, covering state
definitions, the invariants associated with those states, protocol
specifications, and state tests.

4.1 Translation Rules for State Definitions
In JML, a specification field can be declared with model or
ghost modifiers [2]. Likewise, one can declare states as model
or ghost states with appropriate modifiers. In addition, the
developer can also limit the visibility of states with modifiers
such as private, protected and public. This is supported
because the declaration of typestates syntactically extends JML
variable declarations (variable-decls, see Section 3.1).
However, only some Java and JML modifiers are meaningful in
the context of state definitions. For example, modifiers such as
public model or private ghost are meaningful modifiers in
the context of a state definition, whereas JML modifiers native
and pure are not. We allow the following modifiers on states:

 model/ghost (JML modifier). These modifiers prescribe a
translation into model or ghost fields. A model field is an
abstraction of one or more concrete fields. Thus, model
states must be accompanied by a represents clause that
defines whether the object is in that state in terms of
concrete Java fields. The ghost field is similar to model
field in terms of its purpose for defining a specification-only
field, but the value of a ghost field is determined by its
initialization or set-statement in a method body rather
than determined by a represents clause. Therefore, an object
transitions from one ghost state to another by assigning
boolean values to the corresponding ghost field in method
bodies. Because the implementation predicate in a state
definition can refer to any concrete field as well as ghost
fields, we treat model as a default modifier in state
definitions.

 The Java visibility modifiers private, protected and
public work in the same way as declaration of Java
variable. Therefore, private states are not visible in
clients or subtypes, protected states are visible in
subtypes, and public allows visibility in both clients and
subtypes.

 The static modifier on a state describes properties of the
type and its static fields, not the instance state of that type.
The instance modifier (the default) is the converse.

 The final modifier on a state prohibits refining that state
further.

Figure 5 shows the rule for translating state definitions. Each
declared state turns into a boolean field with the same name, with
the semantics that the field’s value is true exactly when the object
is in the given state. If a dimension was specified, it is declared

as a JML data group, and the state fields are placed into that data
group. The new JML data group is nested within the superstate
that is being refined, as well as the data group G (if specified in
the typestate declaration). If no dimension was specified in the
declaration, we create a fresh data group to represent the
dimension internally. If no superstate was specified, we use the
alive state (root state).

[modifiers state S
1
, S

2
,…,S

n
 (refine S) (as D); (in G;)]

==>

modifiers non_null model JMLDataGroup D; in S(, G);
modifiers boolean S

1
; in D;...modifiers boolean S

n
; in D;

modifiers invariant S ==> (S

1
 || S

2
 || … || S

n
);

modifiers invariant S
1
 ==> S…modifiers invariant S

n
 ==> S;

S: Supertype's state
S

i
: Subtype's states refined from the supertype's state

D: State dimension

Figure 5: Rule SD for State Definitions
The refinement relationship between a state and its refined states
is defined using invariants, as shown. In particular, if the object is
in the superstate, then it must be in one of the substates.
Furthermore, if an object is in any substate, then it must be in the
superstate as well. Although semantically we view an object as
being in exactly one state, our translation strategy does not
enforce this (e.g. by using exclusive or) because the end user may
sometimes want to overapproximate the conditions under which
an object is in a particular state, e.g. to avoid using very complex
predicates.

public model state open, closed refine alive as mode;

==>

public non_null model JMLDataGroup mode; in alive;
public model boolean open; in mode;
public model boolean closed; in mode;
public invariant alive ==> (open || closed);
public invariant open ==> alive;
public invariant closed ==> alive;

Figure 6: Example of a translation by Rule SD
Figure 6 shows an example translation. We declare two states
open and closed, which are refined from the root state alive, and
assign those states to dimension mode.

4.2 Translation Rules for State Invariants
Our translation strategy for state invariants is relatively
straightforward. State invariants are only used in the case of
model states. It is unnecessary to impose state invariants to
ghost states because a ghost field by definition does not have a
value determined by concrete fields. Rather, its value can only be
set by the set statement ([2], p.11) in method bodies.

[modifiers state S <==> B;]

==>

modifiers represents S <- S
super

 && [B];

S

super
: Supertype's state which has invariants for itself.

B: State invariant for S

Figure 7: Rule SI for State Invariant
On the other hand, a model field should be represented by
concrete fields. As shown in Figure 7, we use a JML
represents clause with a left arrow (‘<-’) to map the model
field for the state to the state invariant expression. As with

modifiers for state definitions, modifiers for state invariants are
preserved in translation. A developer can use any fields (concrete,
model and ghost) in the boolean state invariant expression B.

Note that our translation conjoins the field for the superstate Ssuper
with the state invariant, to ensure by construction that the state
invariant is never true unless the invariant for the superstate is
true as well.
Figure 8 shows an example in which the open state has been
refined into forward and backward states. As described, the
model field for the open state must be conjoined with the state
invariants declared for each substate.

public state forward <==> isForward;
public state backward <==> !isForward;

==>

public represents forward <- open && isForward;
public represents backward <- open && !isForward;

Figure 8: Example of Translation by Rule SI

4.3 Translation Rules for Protocol
Specifications
The protocols for methods are straightforwardly encoded into
pairs of requires and ensures clauses. In protocol
specifications, a pre-state which is on the left-hand side of the
transition notation ‘->’ is encoded into a JML requires clause,
whereas a post-state on the right-hand side of ‘->’ is directly
translated into an ensures clause.
Note that the predicate in the protocol-product can be an
arbitrary JML predicate expression, so that the typestate protocol
specification allows using state tests as well as state names. Since
the ‘,’ in the protocol-product means boolean AND between two
predicates, the product notation (predicate1,
predicate2, ..., predicaten) should be encoded into the
conjunction of each predicate with the logical operator ‘&&’. In
translating the disjunction of two protocol-unions, we convert
the boolean OR (‘|’) into ‘||’, because in JML specifications ‘|’ is
used for bitwise or and ‘||’ is used as the disjunctive logical
operator.

[protocol protocol-product -> protocol-union]

==>

requires [protocol-product];
ensures [protocol-union];

Figure 9: Rule PS for Protocol Specification

['('predicate
1
, predicate

2
 , ... predicate

n
')']

==>

[predicate
1
] && [predicate

2
] && ... && [predicate

n
]

Figure 10: Rule PP for Protocol Product in Figure 9

[protocol-union '|' protocol-union]

==>

[protocol-union] || [protocol-union]

Figure 11: Rule PU for Protocol Union in Figure 9
Figure 12 illustrates how protocol specifications can be translated
into conventional JML specifications. The pre-state of the read
method is open, and its post-state is still open. The also in the
header part of the specification is a JML keyword to preserve
overridden method’s specification. In this example, read and

close methods override the corresponding methods of a
supertype while preserving the super method’s specification.
Semantically, the pre/post-conditions of overridden methods will
be conjoined with the contracts declared on overriding methods in
the JML specification to maintain behavioral subtyping [9].
To illustrate case-by-case specifications, we have (perhaps
unrealistically) given two protocol cases for the close method:
an open stream is closed, while a closed stream remains closed. If
multiple protocol clauses are present (and not separated by also)
then we wrap their individual translations with a pair of brackets,
‘{|’ and ‘|}’. In JML ([2], p.73), these brackets are used for
nested specification cases, and the keyword also is used to join
multiple specification cases. Likewise, multiple state transition
cases are encoded with a pair of brackets and the keyword also
inside the brackets to separate each case.

//@ also
//@ protocol open -> open
public int read(char[] cbuf, int off, int len) throws
IOException

//@ also
//@ protocol open -> closed;
//@ protocol closed -> closed;
public void close() throws IOException

==>

//@ also
//@ requires open;
//@ ensures open;
public int read(char[] cbuf, int off, int len) throws
IOException

//@ also
//@ {|
//@ requires open;
//@ ensures closed;
//@ also
//@ requires closed;
//@ ensures closed;
//@ |}
public void close() throws IOException

Figure 12: Example of Translation of Protocol Specification

4.4 Translation Rules for State Tests
The developer can use state tests to check whether a type is in a
certain state S. The translation of a state test is done by
substituting the typestates keyword \in with ‘.’ operator of the
JML specification (see Figure 13). In JML, the dot (‘.’) operator
is used to refer to a field of the structure that the name followed
by the operator refers to. To avoid confusion with in in the JML
specification, we just add ‘\’ as a prefix of in. The shift-expr
of the JML specification allows the developer to test any form of
a type such as ‘this \in open’ or ‘fun.getType() \in
closed’.

[shift-expr \in S]

==>

shift-expr.S

Figure 13: Rule ST for State Test
Figure 14 demonstrates an example translation of a state test.
Here \result is a JML keyword that represents the return value
of the specified method.

protocol (\result ==> this \in closed) && (!\result ==>
this \in open);

==>

ensures (\result ==> this.closed) && (!\result ==>
this.open);

Figure 14: Example of Translation of State Test

5. CASE STUDIES
In this section, we present case studies that demonstrate typestate
protocol specifications and their translation into JML. In Section
5.1, we use classes from the Java I/O library. Basic typestate
protocols are presented and the application of our technique to
handle specification subtyping is also examined. Section 5.2 then
demonstrates how typestate protocol specifications can be freely
mixed with specifications in ordinary JML.
All of the examples in this section are excerpts from code that
compiles with the JML toolset, and which can be used to find
protocol violation errors using the JML run time checking tools.

5.1 Java Readers: subtyping and refinement
The Reader class is similar to the InputStream class in Java,
but it works with characters rather than with bytes. The read()
method was designed to read a single character at one invocation
and return the character as an integer ranging between 0 and
65535, or -1 when the end of stream is reached. The close()
method closes the reader class and releases any resources
associated with it. Thus, if one invokes the close() method,
then read() cannot be called. In the following subsections, we
demonstrate typestate protocols and subtyping and state
refinement with subclasses of Reader class.

5.1.1 Translation of Typestate Specification for
ScreenReader Class
Consider a ScreenReader class which extends the Reader class
from the Java I/O library. This class operates like the Reader
class but it screens out every occurrence of a certain character.
For this case study, we defined two states for the ScreenReader
class: open and closed. When the client calls read(), the state
of the object must be open. The object enters the closed state
when the close() method is invoked. Figure 15 illustrates the
protocol of the ScreenReader class using a UML2.0 state
machine diagram.
In Figure 16, in order to define two states, open and closed, the
root state must be defined beforehand. Because all objects in Java
directly or indirectly inherit from the Object class and we define
a top-level alive state for the Object class. The states of
Object subclasses are then refined from this root state, alive.
Then, we put open and closed states into the mode state
dimension using the as clause. Because typestates like open and
closed are usually represented as model fields of the class, we
define the values of these fields using concrete member variables
of the ScreenReader class.
The code at the bottom of Figure 16 shows how this typestate
protocol specification is translated into ordinary JML. We defined
the root state first and put mode into alive state. The mode state
dimension contains a set of states, open and closed, declared in
the next two lines. The represents clauses come from the declared

invariants for each state, and define under what conditions the
object is in each state.

open

closed

read

close
close

alive

open

closed

read

close
close

alive

Figure 15: Protocol of ScreenReader class

public class ScreenReader extends Reader{
//@ public model states open, closed refines alive as

mode;
//@ protected states open <==> income != null;
//@ protected states closed <==> income == null;
protected Reader income = null;

//@ also
//@ protocol open -> open
public int read(char[] cbuf, int off, int len)

//@ also
// @ protocol open -> closed;
// @ protocol closed -> closed;
public void close()
//@ protocol (\result <== this \in closed) &&

(!\result <== this \in open);
public boolean isClosed()

}

==>

public class ScreenReader extends Reader{

//@ public model boolean alive;
//@ public non_null model JMLDataGroup mode; in alive;
//@ public model boolean open; in mode;
//@ public model boolean closed; in mode;
//@ public invariant alive ==> (open || closed);
//@ public invariant open ==> alive;
//@ public invariant closed ==> alive;
//@ protected represents alive <- true;
//@ protected represents open <- income != null;
//@ protected represents closed <- income == null;
protected Reader income = null;

//@ also
//@ requires open;
//@ ensures open;
public int read(char[] cbuf, int off, int len)

//@ also
//@ {|
//@ requires open;
//@ ensures closed;
//@ also
//@ requires closed;
//@ ensures closed;
//@ |}
public void close()

//@ ensures (\result <== this.closed) && (!\result <==

this.open);
public boolean isClosed()

}

Figure 16: Typestate protocol specification of Figure 15

5.1.2 Translation of Typestate Specification for a
Subclass of ScreenReader
The ReversibleScreenReader class is designed to extend the
ScreenReader class to reverse the order of characters read.
When the buffer is opened, the client of this class can change the

direction of the stream to either forward or backward. The
open state is refined into two states forward and backward.
Thus, the protocols of this class can be defined with three states:
forward, backward and closed. Figure 17 shows the protocol
of ReversibleScreenReader. By invoking reverse() in
Figure 18, the state of the object will be flipped between forward
and backward. Like the ScreenReader class, the
ReversibleScreenReader class will be closed when the
close() is called. In this class, some methods such as read()
and reverse() have multiple specification cases. For instance,
read() method can be invoked in forward as well as backward,
and afterwards it leaves the object in an unchanged state.

5.1.3 Handling Reuse Idioms
In Java programming, a developer sometimes creates new classes
that inherit from existing classes, but violate the representation
invariants of those superclasses. When a particular subtype
overrides a method and violates the supertype’s invariants, the
refinement between the superstate and substates does not work.
We designed the MemoryReader class to show that this can be a
problem with typestate protocols and how we handle this
important issue.
The MemoryReader class extends the ScreenReader class but
does not refine its attributes and behavior. Instead, this class has
a string field that caches characters when the object is initially
created. Also, the read method reads a character from its string
field rather than reading one through the read method of the
supertype. It seems the read method of the MemoryReader is
overriding the one of the ScreenReader class, but in fact, the
read method of the MemoryReader class does not inherit state
representation invariants from its superclass.
Even though this class preserves the same state names of the
superclass (open and closed), these states must have different
state invariants. Here is an example of specification of the
MemoryReader with typestate protocols: when a developer
instantiates the MemoryReader and uses the instance within a
JML checker, the JML checker raises a post condition error for
the constructor because the post-state must be the open state. In
fact, because typestate protocol on the JML conjoins state
invariants of the ScreenReader for the open state, the open
state of the MemoryReader preserves the state invariants of the
ScreenReader. However, closing the buffer of the superclass at
the end of the constructor violates the post-states.
Here we translate the typestate protocol specification into a JML
specification. Notice that we add two ghost boolean fields in the
superclass. We add these fields anticipating the possible
violations of code contracts by developers. Using the two given
fields, developers can manipulate the state of the superclass as
necessary.
The set clause in the constructor body in the ScreenReader is
used to set a value for the declared ghost fields. Also, we
explicitly disjoin a boolean ghost field with the existing state
invariants. Therefore, the state invariant for open in the
ScreenReader is now a disjunction of open_gh and ‘income !=
null.’ If open_gh is set to true, then the open state will be true
regardless of the value of income.
However, the use of ghost field for handling violation of code
contracts brings obvious disadvantages. First, the violation of
code contract is handled in very ad-hoc fashion. In addition to,

this we anticipate extra burden of developers to track the ghost
field to modify the state as necessary. The number of ghost field
to take care can increase exponentially.
Beyond this ad-hoc solution, JML provides code modifier to
handle this problem, which indicates a specification case
containing methods are not inherited from its supertypes whereas
the methods are overridden ([2], p. 121). Unfortunately, we
remain this nicer solution with code modifier for next work until
we get more obvious result and example.

forward

backward

closed

close

close reverse

reverse close

read

read

open

forward

backward

closed

close

close reverse

reverse close

read

read

open

Figure 17: Protocol of ReversibleScreenReader

public class ReversibleScreenReader extends ScreenReader{
//@ public model states forward, backward refines open

as reverse; in mode;
//@ public states forward <==> isForward;
//@ public states backward <==> !isForward;
private boolean isForward = true; // in \frame-

local(reverse);

//@ protocol forward -> backward;
//@ protocol backward -> forward;
public void reverse()

}

==>

public class ReversibleScreenReader extends ScreenReader{

//@ public non_null model JMLDataGroup reverse; in
open;

//@ public model boolean forward; in reverse;
//@ public model boolean backward; in reverse;
//@ public invariant open ==> (forward || backward);
//@ public invariant forward ==> open;
//@ public invariant backward ==> open;
//@ private represents forward <- open && isForward;
//@ private represents backward <- open && !isForward;
private boolean isForward = true;

//@ {|
//@ requires forward;
//@ ensures backward;
//@ also
//@ requires backward;
//@ ensures forward;
//@ |}
public void reverse()

}

Figure 18: Typestate protocol specification of Figure 17

5.2 Stack Class: Intermixed Specification
In this section, a stack class, which is a common library data
structure, is specified using a combination of a typestate protocol
and JML. For the stack class, we define three states: empty,
hasElement and full. The empty state indicates a state where
the stack has no elements, represented in the implementation by a
topOfStack field positioned at -1. The hasElement state

indicates the stack has one or more elements but less than the
maximum capacity of the stack. The full state means the
container is literally full of elements so no elements can be added
any more.

public class Stack
{

//@ [state definition and invariants are omitted]
//@ invariant \typeof(this.theArray) ==

\type(java.lang.Object[]);
//@ invariant theArray.owner == this;
//@ invariant theArray != null;
/*@ spec_public */ private Object [] theArray;
/*@ spec_public */ private int topOfStack;
//@ protocol empty -> hasElement;
//@ protocol hasElement -> hasElement | full;
//@ ensures theArray[topOfStack] == x;
//@ ensures topOfStack == \old(topOfStack) + 1;
public void push(Object x)

}

==>

public class Stack
{

//@ [state definition and invariants are omitted]
//@ invariant \typeof(this.theArray) ==

\type(java.lang.Object[]);
//@ invariant theArray.owner == this;
//@ invariant theArray != null;
/*@ spec_public */ private Object [] theArray;
/*@ spec_public */ private int topOfStack;

//@ {|
//@ requires empty;
//@ ensures hasElement;
//@ ensures theArray[topOfStack] == x;
//@ ensures topOfStack == \old(topOfStack) + 1;
//@ also
//@ requires hasElement;
//@ ensures hasElement || full;
//@ ensures theArray[topOfStack] == x;
//@ ensures topOfStack == \old(topOfStack) + 1;
//@ |}
public void push(Object x)

}

Figure 19: Typestate protocol specification for Stack Class
In terms of JML specification, the indicator variable topOfStack
should be decreased as its client removes an element from the
stack, and should be increased when an element is added by push
operation. Since the topOfStack can be used for testing the
state of a stack in isFull() and isEmpty(), its value is required
to always be equal to the number of stack elements (minus one).
We specify the push() method using pure JML constructs as
well as typestate protocols.
In Figure 19, since the stack is a well-known primitive data type,
we omit the state definition and invariants parts as well as other
operations such as pop() and top(). The first four lines declare
the class invariants of the stack class. To translate the
combination of an ordinary JML specification and a protocol
specification with multiple cases, the JML specifications had to
be redundantly combined with each typestate specification case.
This appears to highlight a limitation of JML, suggesting potential
improvements to its expressive power through a kind of
“conjunctive” also clause, which would complement the present
“disjunctive” also clause.

6. CONCLUSION AND FUTURE WORK
In this paper, we extended JML syntax to incorporate typestate
protocol specifications, and presented a corresponding strategy
and rules for encoding these typestate specifications into existing
JML constructs. In addition, we proposed a way of handling the
violation of code contracts between the behavior of a supertype
and subtype. Finally, we showed how our typestate protocols
work through case studies.
With the technique shown in this research, one can more easily
use typestate protocol specifications to specify and verify the
behavior of an object-oriented program using JML. Moreover,
this research showed how typestate protocol and pre/post-
condition specification can be intermixed so that the developers
can specify protocols in a lightweight way, and then naturally
extend that specification to describe the full behavior of a
component.
In the future, we plan to demonstrate that our technique can be
used for specification and verification at a larger scale, since in
this paper we only illustrated and verified our technique with
simple Java I/O library classes and a primitive data structure class.
Also, we plan to implement an integrated tool that supports
typestate protocol specifications based on JML. Finally, in the
longer term, we also hope our approach can be integrated with
static checkers so that programmers can verify typestate
properties along with other JML assertions at compile time.

7. ACKNOWLEDGMENTS
We thank Gary Leavens for his feedback on earlier drafts of our
proposal for adding typestate specifications to the JML. We
would also like to thank Dr. Ko and Dr. Baik for giving helpful
advices about the first author’s thesis. This work was supported in
part by DARPA grant #HR00110710019, NSF grant CCF-
0546550, and a Carnegie Mellon University Master of Software
Engineering fellowship for the first author.

8. REFERENCES
[1] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design

of JML: A behavioral interface specification language for
Java. Technical Report 98-06-rev28, Iowa State University
Department of Computer Science, July 2005.

[2] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon,
Clyde Ruby, David Cok, Peter Müller, Joseph Kiniry, Patrice
Chalin, and Daniel M. Zimmerman. JML reference manual.
Available at
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/, retrieved
June 2009.

[3] Jean-Raymond Abrial, Stephen A. Schuman and Bertrand
Meyer. A Specification Language. In On the Construction of
Programs, Cambridge University Press, 1980.

[4] Kevin Bierhoff and Jonathan Aldrich, Lightweight Object
Specification with Typestates. In Foundations of Software
Engineering, September 2005.

[5] Edmund M. Clarke, Jeannette M. Wing, et al., Formal
Methods: State of the Art and Future Directions. ACM
Computing Surveys, Vol. 28, No. 4, December 1996.

[6] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
Transactions on Software Engineering, 12:157-171, 1986

[7] R. DeLine and M. Fähndrich. Typestates for objects. In
European Conference on Object-Oriented Programming.
Springer-Verlag, 2004.

[8] C. A. R. Hoare. "An axiomatic basis for computer
programming". Communications of the ACM, 12(10):576–
580, 1969.

[9] Gary T. Leavens. JML’s Rich, Inherited Specifications for
Behavioral Subtypes. In International Conference on Formal
Engineering Methods, pp. 2-34, 2006.

[10] S. Butkevich, M. Renedo, G. Baumgartner, and M. Young.
Compiler and tool support for debugging object protocols.
In Foundations of Software Engineering, 2000.

[11] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
[12] R. Duke, G. Rose, and G. Smith. Object-z: A specification

language advocated for the description of standards.
Computer Standards and Interfaces, 17:511–533, 1995.

[13] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Programming, 8:231–274, 1987.

[14] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.
The Spec# programming system: An overview. In
Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices, 2004.

[15] Cheon, Y., Perumendla, A. 2005. Specifying and checking
method call sequences in JML. In: Arabnia, H.R., Reza, H.
(eds.), Proceedings of the 2005 International Conference on
Software Engineering Research and Practice (SERP’05). vol.
II, June 27–29, 2005, Las Vegas, Nevada, CSREA Press, pp.
511–516.

[16] Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich.
Practical API Protocol Checking with Access Permissions. In
Proceedings of the 23rd European Conference on Object-
Oriented Programming (ECOOP’09) (Genova, Italy, July
2009). to appear.

