
Statically Typed String Sanitation Inside a Python

Nathan Fulton Cyrus Omar Jonathan Aldrich
Carnegie Mellon University

{nathanfu, comar, aldrich}@cs.cmu.edu

Abstract
Web applications must ultimately command systems like
web browsers and database engines using strings. Strings
derived from improperly sanitized user input can as a result
be a vector for command injection attacks. In this paper,
we introduce regular string types, which classify strings
constrained statically to be in a regular language specified
by a regular expression. Regular strings support standard
string operations like concatenation and substitution, as well
as safe coercions, so they can be used to implement, in
an essentially conventional manner, the pieces of a web
application or framework that handle strings arising from
user input. Simple type annotations at function interfaces
can be used to statically verify that sanitization has been
performed correctly without introducing redundant run-time
checks. We specify this type system first as a minimal typed
lambda calculus, λRS .

To be practical, adopting a specialized type system like
this should not require the adoption of a new programming
language. Instead, we advocate for extensible type systems:
new type system fragments like this should be implemented
as libraries atop a mechanism that guarantees that they can
be safely composed. We support this with two contributions.
First, we specify a translation from λRS to a calculus with
only standard strings and regular expressions. Then, taking
Python as a language with these constructs, we implement
the type system together with the translation as a library
using typy, an extensible static type system for Python.
Categories and Subject Descriptors F.3.3 [Logics & Mean-
ings of Programs]: Studies of Program Constructs—Type
structure
Keywords type systems, regular expressions, input sanita-
tion, string sanitation, extensible languages, web security

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PSP ’14, October 21, 2014, Portland, OR, USA..
Copyright is held by the owner/author(s).
ACM 978-1-4503-2296-6/14/10.
http://dx.doi.org/10.1145/2687148.2687152

1. Introduction
Command injection vulnerabilities are among the most com-
mon and severe security vulnerabilities in modern web ap-
plications [11]. They arise because web applications, at their
boundaries, control external systems using commands rep-
resented as strings. For example, web browsers are con-
trolled using HTML and Javascript sent from a server as a
string, and database engines execute SQL queries also sent
as strings. When these commands include substrings derived
from user input, care must be taken to ensure that the user
cannot subvert the intended command. For example, a SQL
query constructed using string concatenation exposes a SQL
injection vulnerability:

’SELECT * FROM users WHERE name="’ + name + ’"’

If a malicious user enters the name ’"; DROP TABLE users --’,
the entire database could be erased.

To avoid this problem, developers are cautioned to sani-
tize user input. For example, in this case, the developer (or,
more often, a framework) might define a function sanitize
that escapes double quotes and existing backslashes with a
backslash, which SQL treats securely. Alternatively, it might
HTML-encode special characters, which would head off
both SQL injection attacks and cross-site scripting attacks.
Guaranteeing that user input has already been sanitized be-
fore it is used to construct a command is challenging, espe-
cially because sanitization and command construction may
occur in separately developed and maintained components.

We observe that many such sanitization techniques can be
specified using regular languages [7]. For example, for the
command constructed above to be secure, name must be a
string in the language described by the regular expression
([ˆ"\\]|(\")|(\\))* – a sequence of characters other
than quotation marks and backslashes; these can only appear
escaped. This conventional syntax for regular expression
patterns can be understood to desugar, in a standard way, to
the syntax for regular expressions shown in Figure 1, where
r · r is sequencing and r + r is disjunction. We will work
with this “core” for simplicity in the remainder.

In this paper, we present a static type system that tracks
the regular language a string belongs to (we identify regu-
lar languages by the notation L{r}). For example, the out-
put of sanitize will not simply be string, but rather

stringin[r], where r is the regular expression above. By
leveraging closure and decidability properties of regular lan-
guages, the type system will be able to closely track the
language a string belongs to through uses of a number of
operations, including replacement of substrings matching a
given pattern. This makes it possible to implement sanitiza-
tion functions – like the one just described – in a conven-
tional manner. The result is a system where the fact that
a string has been correctly sanitized becomes manifest in
its type. Missing calls to sanitization functions can thus be
detected statically, and, crucially, so can incorrectly imple-
mented sanitization functions (i.e. these functions need not
be trusted). These guarantees require run-time checks only
when going from less precise to more precise types.

We will begin in Sec. 2 by specifying this type system
minimally, as a conservative extension of the simply typed
lambda calculus called λRS . This allows us to specify the
guarantees that the type system provides precisely. We also
formally specify a translation from this calculus to a typed
calculus with only standard strings and regular expressions,
intending it as a guide to language implementors interested
in building this feature into their own languages. This also
demonstrates that no additional space overhead is required.

Waiting for a language designer to build this feature in
is unsatisfying in practice. We take the position that a bet-
ter path forward for the community is to work within a pro-
gramming language where such type system fragments can
be introduced modularly and orthogonally, as libraries.

In Sec. 3, we show how to implement the type system
and translation from Sec. 2 using typy, an extensible static
type system implemented as a library inside Python. typy
leverages local type inference to control the semantics of
literal forms, so regular string types can be introduced using
string literals without any run-time overhead. Coercions that
are known to be safe due to a sublanguage relationship
are performed implicitly, also without run-time overhead.
This results in a usably secure system: working with regular
strings differs little from working with standard strings in a
language that web developers have already widely adopted.

We conclude after discussing related work in Sec. 4.

2. Regular String Types, Minimally
This section is organized as follows:

• Sec. 2.1 describes λRS and its metatheory.
• Sec. 2.2 describes a simple target language, λP , with a

minimal regular expression library. In Section 3, we will
take Python to be such a language.

• Sec. 2.3 describes the translation from λRS to λP and
ensures the correctness result from Sec. 2.1 is preserved
under this translation.

The accompanying technical report [5] contains more
detailed proofs and further discussion of design choices.

r ::= ε | . | a | r · r | r + r | r∗ a ∈ Σ

Figure 1. Regular expressions over the alphabet Σ.

σ ::= σ → σ | stringin[r] source types
v ::= λx.e | rstr[s] source values (s ∈ Σ∗)
e ::= v | x | e(e) source terms
| rconcat(e; e) | rstrcase(e; e;x, y.e)
| rcoerce[r](e) | rcheck[r](e;x.e; e) | rreplace[r](e; e)

Figure 2. Syntax of λRS .

2.1 The Language of Regular Strings
In this section, we define a typed lambda calculus with
regular string types called λRS . Its syntax is specified in
Figure 2, its static semantics in Figure 3 and its evaluation
semantics, given here in big-step style, in Figure 4.

There are two type constructors in λRS :→ and stringin.
Arrow types classify functions, which are introduced via
lambda abstraction, λx.e, and can be applied, written e(e),
in the usual way [6]. Regular string types are of the form
stringin[r], where r is a regular expression. Values of such
regular string types take the form rstr[s], where s is a string
(i.e. s ∈ Σ?, where the Kleene star is defined in the usual
way). The rule S-T-STRINGIN-I requires that s ∈ L{r}.
λRS provides several familiar operations on strings. The

type system relates these operations over strings to corre-
sponding operations over the regular languages they belong
to. Since these operations over regular languages are known
to be closed and decidable, we can use these operations as a
basis for implementing and reasoning about sanitation pro-
tocols, as we will discuss below.
2.1.1 Concatenation

The S-T-CONCAT rule is the simplest example of our ap-
proach. The rule is sound because the result of concatenat-
ing two strings, the first in L{r1} and the second in L{r2},
will always be in the language L{r1 · r2}. The rule there-
fore relates string concatenation to sequential composition
of regular expressions.
2.1.2 String Decomposition

Whereas concatenation allows the construction of large
strings from smaller strings, rstrcase(e; e0;x, y.e1) allows
the decomposition, or elimination, of large strings into
smaller strings. Intuitively, this operation branches based
on whether a string is empty or not, exactly analagous to
case analysis on lists in a functional language. The branch
for a non-empty string “peels off” the first character, bind-
ing it and the remainder of the string to specified variables.
The evaluation rules S-E-CASE-ε and S-E-CASE-CONCAT
express this semantics. This construct can be used to im-
plement a standard string indexing operation as a function,
given a suitable definition of natural numbers (omitted).

The typing rule S-T-CASE must determine a suitable type
for the head and tail of the string. The regular expression
recognizing any one-character prefix of the strings in L{r}
is easily defined.

Ψ ` e : σ Ψ ::= ∅ | Ψ, x : σ

S-T-VAR
x : σ ∈ Ψ

Ψ ` x : σ

S-T-ABS
Ψ, x : σ1 ` e : σ2

Ψ ` λx.e : σ1 → σ2

S-T-APP
Ψ ` e1 : σ2 → σ Ψ ` e2 : σ2

Ψ ` e1(e2) : σ

S-T-STRINGIN-I
s ∈ L{r}

Ψ ` rstr[s] : stringin[r]

S-T-CONCAT
Ψ ` e1 : stringin[r1] Ψ ` e2 : stringin[r2]

Ψ ` rconcat(e1; e2) : stringin[r1 · r2]

S-T-CASE
Ψ ` e1 : stringin[r] Ψ ` e2 : σ

Ψ, x : stringin[lhead(r)], y : stringin[ltail(r)] ` e3 : σ

Ψ ` rstrcase(e1; e2;x, y.e3) : σ

S-T-SAFECOERCE
Ψ ` e : stringin[r′] L{r′} ⊆ L{r}

Ψ ` rcoerce[r](e) : stringin[r]

S-T-CHECK
Ψ ` e0 : stringin[r0] Ψ, x : stringin[r] ` e1 : σ Ψ ` e2 : σ

Ψ ` rcheck[r](e0;x.e1; e2) : σ

S-T-REPLACE
Ψ ` e1 : stringin[r1]

Ψ ` rreplace[r](e1; e2) : stringin[lreplace(r; r1; r2)]

Figure 3. Typing rules for λRS . The typing context Ψ is
standard.

Definition 1 (Definition of lhead(r)).
lhead(r) = lhead(r, ε)

We use a two-argument auxiliary lhead(r, r′) in the defini-
tion of lhead(r) because when r = q∗ · r′, lhead(r) needs to
“remember” r′ in case q is iterated zero times:

lhead(ε, r′) = ε

lhead(a, r′) = a

lhead(r1 · r2, r′) = lhead(r1, r2)

lhead(r1 + r2, r
′) = lhead(r1, r

′) + lhead(r2, r
′)

lhead(r∗, r′) = lhead(r′, ε) + lhead(r, ε)

Given this definition of lhead(r), regular expression
derivatives [2] provide a useful tool for defining ltail(r).

Definition 2 (Brzozowski’s Derivative). The derivative of r
with respect to s is δs(r) = {t|st ∈ L{r}}.

Definition 2 is equivalent to the definition given in [2],
although we refer the unfamiliar reader to [12]. Definition 2
is equivalent to Definition 3.1 in both papers. We now define
ltail(r) using derivatives with respect to lhead(r).

Definition 3 (Definition of ltail(r)). ltail(r) is defined in
terms of lhead(r). Note that lhead(r) = a1 + a2 + ... + ai.
We define ltail(r) = δa1(r) + δa2(r) + ...+ δai(r) + ε.

The S-T-CASE rule, which is defined in terms of these
operations, thus relates the result of “peeling off” the first
character of a string to regular expression derivatives.
2.1.3 Coercion

The λRS language supports two forms of coercion.
Safe coercions, written rcoerce[r](e), allow passage to a

e ⇓ v

S-E-ABS

λx.e ⇓ λx.e

S-E-APP
e1 ⇓ λx.e3 e2 ⇓ v2 [v2/x]e3 ⇓ v

e1(e2) ⇓ v
S-E-RSTR

rstr[s] ⇓ rstr[s]

S-E-CONCAT
e1 ⇓ rstr[s1] e2 ⇓ rstr[s2]

rconcat(e1; e2) ⇓ rstr[s1s2]

S-E-CASE-ε
e1 ⇓ rstr[ε] e2 ⇓ v2

rstrcase(e1; e2;x, y.e3) ⇓ v2
S-E-CASE-CONCAT
e1 ⇓ rstr[as] [rstr[a], rstr[s]/x, y]e3 ⇓ v3

rstrcase(e1; e2;x, y.e3) ⇓ v3
S-E-SAFECOERCE

e ⇓ rstr[s]

rcoerce[r](e) ⇓ rstr[s]

S-E-CHECK-OK
e ⇓ rstr[s] s ∈ L{r} [rstr[s]/x]e1 ⇓ v

rcheck[r](e;x.e1; e2) ⇓ v
S-E-CHECK-NOTOK
e ⇓ rstr[s] s 6∈ L{r} e2 ⇓ v

rcheck[r](e;x.e1; e2) ⇓ v
S-E-REPLACE

e1 ⇓ rstr[s1] e2 ⇓ rstr[s2]

rreplace[r](e1; e2) ⇓ rstr[replace(r; s1; s2)]

Figure 4. Big step semantics for λRS
.

“smaller” regular language. Such coercions will always suc-
ceed. Conversely, checked coercions, rcheck[r](e0;x.e1; e2),
allow for passage to regular languages that are not necessar-
ily smaller. Checked coercions branch based on whether the
coercion succeeded or not.

The rule S-T-SAFECOERCE checks for language inclu-
sion, which we writeL{r1} ⊆ L{r2}. Language inclusion is
decidable. As a result, the rule S-E-SAFECOERCE does not
need to perform any dynamic checks. The rule S-T-CHECK,
conversely, does not perform any static checks on the two
languages involved, only checking that the two branches
have the same type. The checks are performed dynamically,
by rules S-E-CHECK-OK and S-E-CHECK-NOTOK.

In our calculus, both forms of coercion are explicit. For
safe coercions, it is often useful for the coercion to be per-
formed implicitly. This can be seen as a form of subtyping
for regular string types [1, 4, 9]. In practice, subtyping will
be crucial to the usability of our system due to the nature
of the replacement operator. For simplicity, we do not spec-
ify subtyping in our core calculus; however, subtyping for
regular strings is present in previous treatments of our work
[4]. The implementation discussed in Section 3 also provides
subtyping between regular string types.
2.1.4 Replacement

The premier operation for working with regular strings in
λRS is replacement, written rreplace[r](e1; e2). It behaves
analogously to str_replace in PHP and String.replace in Java,
differing in that the replacement pattern r must be statically

given. The evaluation rule S-E-REPLACE is defined in terms
of the metafunction replace(r; s1; s2).

Definition 4 (replace). replace(r; s1; s2) = s such that all
substrings of s1 in L{r} are replaced with s2.

The typing rule S-T-REPLACE thus requires computing
the regular language of the string resulting from this opera-
tion given knowledge of the languages of s1 and s2, written
as lreplace(r; r1; r2) = r′.

Given an automata-oriented interpretation of regular lan-
guages, it may be helpful to think in terms of replacing sub-
automata. A complete definition of lreplace would consist of
a rewrite system based on this intuition, with correctness and
termination proofs, which is beyond the scope of this paper.
Instead, we provide an abstract definition of the operation
and state necessary properties.

Definition 5 (lreplace). lreplace(r; r1; r2) relates r, r1, and
r2 to a language r′ containing all strings of r1 except that any
substring spresspost ∈ L{r1} where s ∈ L{r} is replaced
by the set of strings spres2spost for all s2 ∈ L{r2} (the
prefix and postfix positions may be empty). This procedure
saturates the string.

Proposition 6 (Replacement Correspondence). Given strings
s1 ∈ L{r1} and s2 ∈ L{r2} we have

replace(r; s1; s2) ∈ L{lreplace(r; r1; r2)}

2.1.5 Metatheory of λRS

In this section, we establish some basic metatheoretic
properties of λRS . These rely upon the definitions and
propositions given above and some basic properties of regu-
lar languages.

Lemma 7 (Properties of Regular Languages.).

1. If s1 ∈ L{r1} and s2 ∈ L{r2} then s1s2 ∈ L{r1 · r2}.
2. For all strings s and regular expressions r, either s ∈
L{r} or s 6∈ L{r}.

If any of these properties are unfamiliar, the reader may
refer to a standard text on the subject [7].

Type preservation for λRS requires validating that the
statics are consistent with the dynamics. We give a full proof
of type safety for a variant of the calculus with a small step
semantics in [5], but for concision, it is more straightforward
to explain the semantics with a big step semantics here.

Theorem 8 (Type Preservation.). If ∅ ` e : σ and e ⇓ v then
∅ ` v : σ.
Proof Sketch. By induction on the typing relation. The S-
T-CONCAT case requires Lemma 7.1, the S-T-CHECK case
requires Lemma 7.2 and the S-T-Replace case appeals to
Proposition 6.

We can also define a canonical forms lemma for regular
strings.

τ ::= τ → τ | string | regex target types
v̇ ::= λx.ι | str[s] | rx[r] target values (s ∈ Σ∗)
ι ::= v̇ | x | ι(ι) target terms
| pconcat(ι; ι) | pstrcase(ι; ι;x, y.ι)
| pcheck(ι; ι; ι; ι) | preplace(ι; ι; ι)

Figure 5. Syntax of the target language, λP , containing
strings and statically constructed regular expressions.

Lemma 9 (Canonical Forms for Regular Strings). If ∅ ` v :
stringin[r] then v = rstr[s] and s ∈ L{r}.
Proof Sketch. The only typing rule that applies is S-T-
STRINGIN-I. The conclusion is the first premise.

2.1.6 The Security Theorem
The chief benefit of λRS is its security theorem, which

states that any term of a regular string type that evaluates
to a value will evaluate to a regular string recognized by
the regular language corresponding to the regular expression
the type is indexed by. This is beneficial because this ensure
that membership in a regular language known to be secure
becomes manifest in the type of the string, rather than being
a property that must be established extralinguistically.

Theorem 10 (Correctness of Input Sanitation for λRS). If
∅ ` e : stringin[r] and e ⇓ rstr[s] then s ∈ L{r}.
Proof Sketch. The theorem follows directly from type
preservation and canonical forms above.

2.2 Target Language
Our next major technical result, stated in Sec. 2.3, estab-
lishes that the security property is preserved under transla-
tion into λP . The system λP is another straight-forward ex-
tension of a simply typed lambda calculus with a string type
and a regex type, as well as some operations – such as con-
catenation and replacement – found in the standard libraries
of many programming languages. The operations of λP cor-
respond to “run-time” versions of the operations performed
statically in λRS in a way made precise by the translation
rules described in the next section. The language λP is so-
called because it is reminscent of popular web programming
languages, such as Python or PHP, albeit statically typed.
We will discuss an implementation within the former in the
next section.

The grammar of λP is defined in Figure 5. The typing
rules P-T- are defined in Figure 6 and a big-step semantics
is defined by the rules P-E- in Figure 7. The semantics are
straightforward given the discussion of the corresponding
operations in the previous section.
2.2.1 Safety

Type preservation for λP is essentially trivial, but is nec-
essary in order to establish the correctness of our transla-
tion. Again, we give a small step semantics and address type
safety more completely in [5].

Theorem 11 (Safety for λP). If ∅ ` ι : τ and ι ⇓ v̇ then
∅ ` v̇ : τ .

Θ ` ι : τ Θ ::= ∅ | Θ, x : τ

P-T-VAR
x : τ ∈ Θ

Θ ` x : τ

P-T-ABS
Θ, x : τ1 ` ι2 : τ2

Θ ` λx.ι2 : τ1 → τ2

P-T-APP
Θ ` ι1 : τ2 → τ Θ ` ι2 : τ2

Θ ` ι1(ι2) : ι

P-T-STRING

Θ ` str[s] : string

P-T-REGEX

Θ ` rx[r] : regex

P-T-CONCAT
Θ ` ι1 : string Θ ` ι2 : string

Θ ` pconcat(ι1; ι2) : string

P-T-CASE
Θ ` ι1 : string Θ ` ι2 : τ Θ, x : string, y : string ` ι3 : τ

Θ ` pstrcase(ι1; ι2;x, y.ι3) : τ

P-T-REPLACE
Θ ` ι1 : regex Θ ` ι2 : string Θ ` ι3 : string

Θ ` preplace(ι1; ι2; ι3) : string

P-T-CHECK
Θ ` ιr : regex Θ ` ι1 : string Θ ` ι2 : σ Θ ` ι3 : σ

Θ ` pcheck(ιr; ι1; ι2; ι3) : σ

Figure 6. Typing rules for λP . The typing context Θ is
standard.

We can also define canonical forms for regular expres-
sions and strings in the usual way:

Lemma 12 (Canonical Forms for Target Language). If ∅ `
v̇ : τ then

1. If τ = regex then v̇ = rx[r] such that r is a well-formed
regular expression.

2. If τ = string then v̇ = str[s].

2.3 Translation from λRS to λP
The translation from λRS to λP is defined in Figure 8.
The coercion cases are most interesting. If the safety of
coercion in manifest in the types of the expressions, then no
runtime check is inserted (TR-SAFECOERCE). If the safety
of coercion is not manifest in the type, then a check is
inserted (TR-CHECK). Note that regular strings translate to
strings directly; there is no space overhead.

The translation correctness theorem guarantees that the
translation is type preserving and that semantics of the origi-
nal code and translation coincide, following the treatment of
compilation pioneered by the TIL compiler for SML [15].
Note that we apply the translation inline in judgements for
concision when convenient.

Theorem 13 (Translation Correctness). If Θ ` e : σ then
there exists an ι such that JeK = ι and JΘK ` ι : JσK.
Furthermore, if e ⇓ v then ι ⇓ v̇ such that JvK = v̇.
Proof Sketch. The proof proceeds by induction on the typ-
ing relation for e. We choose an ι based on the syntactic form
in λP corresponding to the form under consideration (e.g.
we choose replace when considering sreplace). The proof
proceeds by our type safety theorems and an appeal to the
induction hypothesis.

ι ⇓ v̇ P-E-ABS

λx.ι ⇓ λx.ι

P-E-APP
ι1 ⇓ λx.ι3 ι2 ⇓ v̇2 [v̇2/x]ι3 ⇓ v̇3

ι1(ι2) ⇓ v̇3
P-E-STR

str[s] ⇓ str[s]

P-E-RX

rx[r] ⇓ rx[r]

P-E-CONCAT
ι1 ⇓ str[s1] ι2 ⇓ str[s2]

pconcat(ι1; ι2) ⇓ str[s1s2]

P-E-CASE-ε
ι1 ⇓ str[ε] ι2 ⇓ v̇2

pstrcase(ι1; ι2;x, y.ι3) ⇓ v̇2
P-E-CASE-CONCAT
ι1 ⇓ str[as] [str[a], str[s]/x, y]ι3 ⇓ v̇

pstrcase(ι1; ι2;x, y.ι3) ⇓ v̇
P-E-REPLACE
ι1 ⇓ rx[r] ι2 ⇓ str[s2] ι3 ⇓ str[s3] replace(r; s2; s3) = s

preplace(ι1; ι2; ι3) ⇓ str[s]

P-E-CHECK-OK
ιr ⇓ rx[r] ι ⇓ str[s] s ∈ L{r} ι1 ⇓ v̇1

pcheck(ιr; ι; ι1; ι2) ⇓ v̇1
P-E-CHECK-NOTOK
ιr ⇓ rx[r] ι ⇓ str[s] s 6∈ L{r} ι2 ⇓ v̇2

pcheck(ιr; ι; ι1; ι2) ⇓ v̇2
Figure 7. Big step semantics for λP

.

2.3.1 Preservation of Security
Finally, our main result establishes that correctness of

λRS is preserved under the translation into λP .

Theorem 14 (Correctness of Input Sanitation for Translated
Terms). If JeK = ι and ∅ ` e : stringin[r] and e ⇓ rstr[s]
then ι ⇓ str[s] for s ∈ L{r}.
Proof Sketch. By Theorem 13, we have our first conclu-
sion. By Theorem 10 together with the assumption that e is
well-typed we have that s ∈ L{r}.

3. Implementation in typy
In the previous section, we specified a type system and a
translation semantics to a language containing only strings
and regular expressions. In this section, we take Python to
be such a target language. Python does not have a static type
system, however, so to implement these semantics, we will
use typy, an extensible type system for Python (being de-
veloped by the authors). By using typy, which leverages
Python’s quotations and reflection facilities, we can imple-
ment these semantics as a library, rather than as a new dialect
of the language.
3.1 Example Usage
Figure 9 demonstrates the use of two type constructors, fn
and stringin, corresponding to the two type constructors
of λRS . We show these as being imported from typy.std,
the standard library for typy (it benefits from no special
support from the language itself).

The fn type constructor can be used to annotate func-
tions that should be statically checked by typy.1 The func-
tion sanitize on lines 3-7, for example, specifies one ar-

1 Here, we use argument annotation syntax only available in versions 3.0+
of Python. Syntax supporting Python 2.7+ is available, not shown.

JσK = τ TR-T-STRING

Jstringin[r]K = string

TR-T-ARROW
Jσ1K = τ1 Jσ2K = τ2

Jσ1 → σ2K = τ1 → τ2

JΨK = Θ TR-T-CONTEXT-EMP

J∅K = ∅

TR-T-CONTEXT-EXT
JΨK = Θ JσK = τ

JΨ, x : σK = Θ, x : τ

JeK = ι

TR-VAR

JxK = x

TR-ABS
JeK = ι

Jλx.eK = λx.ι

TR-APP
Je1K = ι1 Je2K = ι2

Je1(e2)K = ι1(ι2)

TR-STRING

Jrstr[s]K = str[s]

TR-CONCAT
Je1K = ι1 Je2K = ι2

Jrconcat(e1; e2)K = pconcat(ι1; ι2)

TR-CASE
Je1K = ι1 Je2K = ι2 Je3K = ι3

Jrstrcase(e1; e2;x, y.e3)K = pstrcase(ι1; ι2;x, y.ι3)

TR-REPLACE
Je1K = ι1 Je2K = ι2

Jrreplace[r](e1; e2)K = preplace(rx[r]; ι1; ι2)

TR-SAFECOERCE
JeK = ι

Jrcoerce[r′](e)K = ι

TR-CHECK
JeK = ι Je1K = ι1 Je2K = ι2

Jrcheck[r](e;x.e1; e2)K = pcheck(rx[r]; ι; (λx.ι1)(ι); ι2)

Figure 8. Translation from source to target.

gument, s, of type stringin[r’.*’]. Here, the index is a reg-
ular expression, written using Python’s raw string notation
as is conventional (in this particular instance, the r is not
strictly necessary). The sanitize function takes an arbitrary
string and returns a string without double quotes or left and
right brackets. Note that the return type need not be speci-
fied: typy uses a form of local type inference [13].

In this example, we use an HTML encoding so that the
same sanitization function can be used to generate both SQL
commands and HTML securely. The sanitized string is gen-
erated by invoking the replace operator, which has the
same semantics as rreplace in λRS . Unlike in the core calcu-
lus, it is invoked like a method on s. The regular expression
determining the substrings to be replaced is given as the first
argument (as in λRS , the only restriction here is that the reg-
ular expression must be specified statically.)

The functions results_query and results_div con-
struct a SQL query and an HTML snippet, respectively, by
regular string concatenation. The argument type annotations
serve as a check that sanitation was properly performed. In
the case of results query, this specification ensures that user
input cannot prematurely be terminated. In the case of re-
sults div, this specification ensures that user input does not
contain any HTML tags, which is a conservative but effec-
tive policy for preventing XSS attacks. Note that the type
of the surrounding string literals are determined by the type
constructor of the function they appear in, fn in both cases,
which we assume simply chooses stringin[r’.*’] (an alter-

1 from typy.std import fn, stringin
2
3 @fn
4 def sanitize(s : stringin[r’.*’]):
5 return (s.replace(r’"’, ’"’)
6 .replace(r’<’, ’<’)
7 .replace(r’>’, ’>’))
8
9 @fn

10 def results_query(s : stringin[r’[ˆ"]*’]):
11 return ’SELECT * FROM users WHERE name="’ + s + ’"’
12
13 @fn
14 def results_div(s : stringin[r’[ˆ<>]*’]):
15 return ’<div>Results for ’ + s + ’</div>’
16
17 @fn
18 def main():
19 input = sanitize(user_input())
20 results = db_execute(results_query(input))
21 return results_div(input) + format(results)

Figure 9. Regular string types in typy

1 import re
2
3 def sanitize(s):
4 return re.sub(r’"’, re.sub(r’<’, re.sub(r’>’,
5 s, ’>’), ’<’), ’"’)
6
7 def results_query(s):
8 return ’SELECT * FROM users WHERE name="’ + s + ’"’
9

10 def results_div(s):
11 return ’<div>Results for ’ + s + ’</div>’
12
13 def main():
14 input = sanitize(user_input())
15 results = db_execute(results_query(input))
16 return results_div(input) + format(results)

Figure 10. The output of compilation of Figure 9 (at the
terminal, typy figure9.py, or just-in-time).

native strategy would be to use the most specific type for the
literal, rather than the most general, but this choice is im-
material for this example). The addition operator here corre-
sponds to the rconcat operator in λRS .

The main function invokes the functions just described. It
begins by passing user input to sanitize, then executing a
database query and returning HTML based on this sanitized
input. The helper functions user_input and db_execute
are not shown but can be assumed standard. Importantly,
had we mistakenly forgotten to call sanitize, the function
would not type check (in this case, it is obvious that we did,
but lines 14 and 15 would in practice be separated more dras-
tically in the code). Moreover, had sanitize itself not been
implemented correctly (e.g. we forgot to strip out quotation
marks), then main would also not typecheck either.

One somewhat subtle issue here is that the return type
of sanitize is equivalent to stringin[r’[ˆ"<>]*’], which is
a distinct type from the argument types to results_query
and results_div. More specifically, however, it is a “smaller”
type, in that it could be coerced to these argument types us-
ing an operator like rcoerce in λRS . In our implementation,
safe coercions are performed implicitly rather than explic-

1 class stringin(typy.Type):
2 def __init__(self, rx):
3 typy.Type.__init__(idx=rx)
4
5 def ana_Str(self, ctx, node):
6 if not in_lang(node.s, self.idx):
7 raise typy.TypeError("...", node)
8
9 def trans_Str(self, ctx, node):

10 return astx.copy(node)
11
12 def syn_BinOp_Add(self, ctx, node):
13 left_t = ctx.syn(node.left)
14 right_t = ctx.syn(node.right)
15 if isinstance(left_t, stringin):
16 left_rx = left_t.idx
17 if isinstance(right_t, stringin):
18 right_rx = right_t.idx
19 return stringin[lconcat(left_rx, right_rx)]
20 raise typy.TypeError("...", node)
21
22 def trans_BinOp_Add(self, ctx, node):
23 return astx.copy(node)
24
25 def syn_Method_replace(self, ctx, node):
26 [rx, exp] = node.args
27 if not isinstance(rx, ast.Str):
28 raise typy.TypeError("...", node)
29 rx = rx.s
30 exp_t = ctx.syn(exp)
31 if not isinstance(exp_t, stringin):
32 raise typy.TypeError("...", node)
33 exp_rx = exp_t.idx
34 return stringin[lreplace(self.idx, rx, exp_rx)]
35
36 def trans_Method_replace(self, ctx, node):
37 return astx.quote(
38 """__import__(re); re.sub(%0, %1, %2)""",
39 astx.Str(s=node.args[0]),
40 astx.copy(node.func.value),
41 astx.copy(node.args[1]))
42
43 # check and strcase omitted
44
45 def check_Coerce(self, ctx, node, other_t):
46 # coercions can only be defined between
47 # types with the same type constructor ,
48 if rx_sublang(other_t.idx, self.idx):
49 return other_t
50 else: raise typy.TypeError("...", node)

Figure 11. Implementation of stringin in typy.

itly. Because all regular strings are implemented as strings,
this coercion induces no run-time change in representation.

Figure 10 shows the output of typechecking and trans-
lating this code (this can occur either in batch mode at the
terminal, generating a new file, or “just-in-time” at the first
callsite of each function in the dynamically typed portion of
the program, not shown).
3.2 Implementation
The primary unit of extension in typy is the active type con-
structor, rather than the abstract syntax as in other work on
language extensibility. This allows us to implement the en-
tire system as a library in Python and avoid needing to de-
velop new tooling, and also makes it more difficult to cre-
ate ambiguities between extensions. Active type construc-
tors are subclasses of typy.Type, and types are instances of
these classes. The methods of active type constructors con-
trol how typechecking and translation proceed for associated
operations. In Figure 11, we show key portions of the imple-

mentation of the stringin type used in the example above.
Although a detailed description of the extension mechanism
is beyond the scope of this work, we describe the intuitions
behind the various methods below.

The constructor, __init__ in Python, is called when a
type is constructed. It simply stores the provided regular
expression as the type index by calling the superclass.

When a string literal is being checked against a regular
string type, the method ana_Str is called. It checks that the
string is in the language of the regular expression provided
as the type index, corresponding to rule S-T-STRINGIN-I in
Section 2. The method trans_Str is called after typecheck-
ing to produce a translation. Here, we just copy the original
string literal – regular strings are implemented as strings.

The method syn_BinOp_Add synthesizes a type for the
string concatenation operation if both arguments are regular
strings, consistent with rule S-T-CONCAT. The correspond-
ing method trans_BinOp_Add again simply translates the
operation directly to string concatenation, consistent with
our translation semantics.

The method syn_Method_replace synthesizes a type
for the “method-like” operator replace, seen used in our
example. It ensures that the first argument is a statically
known string, using Python’s built-in astmodule, and lever-
ages an implementation of lreplace, which computes the
appropriate regular expression for the string following re-
placement, again consistent with our description in Section
2. Translation proceeds by using the re library built into
Python, as can be seen in Figure 10.

Code for checked conversions and string decomposition
is omitted, but is again consistent with our specification in
the previous section. Safe coercions are controlled by the
check_Coerce function, which checks for a sublanguage
relationship. Here, as in the other methods, failure is indi-
cated by raising an typy.TypeError with an appropriate
error message and location.

Taken together, we see that the mechanics of extending
typy with a new type constructor are fairly straightforward:
we determine which syntactic forms the operators we spec-
ified in our core calculus should correspond to, then di-
rectly implement a decision procedure for type synthesis (or,
in the case of literal forms, type analysis) in Python. The
typy compiler invokes this logic when working with regu-
lar strings. The result is a library-based embedding of our
semantics into Python.

4. Related Work
The input sanitation problem is well-studied. There exist a
large number of techniques, proposed by both practition-
ers and researchers, for preventing injection attacks. In this
section, we explain how our approach to the input sanita-
tion problem differs from each of these approaches. Equally
important is our assertion that language extensibility is the
right approach for consideration of language-oriented secu-
rity mechanisms like the one we described here.

Unlike frameworks and libraries provided by languages
such as Haskell and Ruby, our type system provides a static
guarantee that input is always properly sanitized before use.
Doing so requires reasoning about the operations on regular
languages corresponding to standard operations on strings;
we are unaware of any production system which contains
this form of reasoning. Therefore, even where frameworks
and libraries provide a viable interface or wrapper around in-
put sanitation (e.g. prepared SQL statements), our approach
is complementary because it can be used to ensure the cor-
rectness of that framework or library itself. Furthermore, our
approach is more general than database abstraction layers
because our mechanism is applicable to all forms of com-
mand injection (e.g. shell injection or remote file inclusion).

A number of research languages provide static guarantees
that a program is free of input sanitation vulnerabilities by
never using a string representation at all, but rather desugar-
ing SQL syntax to a safe representation immediately [3]. The
Wyvern programming language introduced a general frame-
work for writing syntax extensions like this [10]. Unlike this
work, our solution to the input sanitation problem retains a
string representation and thus has a very low barrier to adop-
tion. Our implementation conservatively extends Python – a
popular language among web developers – rather than re-
quiring the adoption of a new language entirely. We also
believe our semantic extensibility approach (as opposed to
only syntactic extensibility in Wyvern) is better-positioned
for security, where continuously evolving threats might re-
quire frequent addition of new semantic analyses. typy is
particularly well-suited to type system based analyses.

Incorporating regular expressions into the type system
is not novel. The XDuce system [8] checks XML docu-
ments against schema using regular expressions. 2Similarly,
XHaskell [14] focuses on XML documents. We differ from
this and related work in at least three ways:

• Although our static replacement operation is definable in
some languages with regular expression types, we are the
first to expose this operation and connect the semantics
of regular language replacement with the semantics of
string replacement via a type theoretic argument.

• The underlying representation of regular strings is guar-
anteed to be a string, rather than a heavier implementa-
tion based on an encoding using functional datatypes.

• We demonstrate that regular expression types are appli-
cable to the web security domain, whereas previous work
on regular expression types focused on XML.

5. Future Work
We believe that this type system extension serves as a useful
basis for web-oriented static analysis; frameworks and regu-
lar expression libraries could be annotated, along with use-
sites. We hope to empirically evaluate the feasability of this
approach in the future using typy. We also believe that ex-
tensible programming languages are a promising approach

toward incorporating other security analyses into program-
ming languages. Construing such analyses as type systems,
specifying them rigorously and implementing them within
an extensible type system appears to be a promising general
technique that the community may wish to emulate.

Acknowledgements
We thank the anonymous referees. This work was supported
by the National Security Agency lablet contract #H98230-
14-C-0140 and the National Science Foundation under NSF
CNS-1035800. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of any
sponsoring institution or government.

References
[1] V. Breazu-tannen, T. Coquand, C. A. Gunter, and A. Scedrov.

Inheritance as implicit coercion. Information and Computa-
tion, 93, 1991.

[2] J. A. Brzozowski. Derivatives of regular expressions. J. ACM,
11(4):481–494, Oct. 1964.

[3] A. Chlipala. Static checking of dynamically-varying security
policies in database-backed applications. In OSDI’10, Oct.
2010.

[4] N. Fulton. A typed lambda calculus for input sanitation. Un-
dergraduate thesis in mathematics, Carthage College, 2013.

[5] N. Fulton, C. Omar, and J. Aldrich. Statically typed string
sanitation inside a Python. Technical Report CMU-ISR-14-
112, Carnegie Mellon University.

[6] R. Harper. Practical Foundations for Programming Lan-
guages. Cambridge University Press, 2012.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

[8] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular Expression
Types for XML. In ICFP ’00, 2000.

[9] K. Lu and M. Sulzmann. An implementation of subtyping
among regular expression types. In W.-N. Chin, editor, Pro-
gramming Languages and Systems, volume 3302 of Lecture
Notes in Computer Science, pages 57–73. Springer Berlin
Heidelberg, 2004.

[10] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and
J. Aldrich. Safely composable type-specific languages. In
ECOOP 2014, volume 8586 of Lecture Notes in Computer
Science, pages 105–130. Springer Berlin Heidelberg, 2014.

[11] OWASP. Open web application security project top
10. https://www.owasp.org/index.php/Category:

OWASP_Top_Ten_Project.
[12] S. Owens, J. Reppy, and A. Turon. Regular-expression deriva-

tives re-examined. J. Funct. Program., Mar. 2009.
[13] B. C. Pierce and D. N. Turner. Local type inference. ACM

Trans. Program. Lang. Syst., 22(1):1–44, Jan. 2000.
[14] M. Sulzmann and K. Lu. XHaskell – adding regular expres-

sion types to Haskell. In Implementation and Application
of Functional Languages, volume 5083 of Lecture Notes in
Computer Science, pages 75–92. Springer, 2008.

[15] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML. In
PLDI ’96, Philadelphia, PA, May 1996.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

	Introduction
	Regular String Types, Minimally
	The Language of Regular Strings
	Concatenation
	String Decomposition
	Coercion
	Replacement
	Metatheory of RS
	The Security Theorem

	Target Language
	Safety

	Translation from RS to P
	Preservation of Security

	Implementation in typy
	Example Usage
	Implementation

	Related Work
	Future Work

