
Composable and Hygienic Typed Syntax Macros∗

Cyrus Omar Chenglong Wang Jonathan Aldrich
Carnegie Mellon University

{comar, stwong, aldrich}@cs.cmu.edu

ABSTRACT
Syntax extension mechanisms are powerful, but reasoning
about syntax extensions can be difficult. Recent work on
type-specific languages (TSLs) addressed reasoning about
composition, hygiene and typing for extensions introducing
new literal forms. We supplement TSLs with typed syntax
macros (TSMs), which, unlike TSLs, are explicitly invoked
to give meaning to delimited segments of arbitrary syntax.
To maintain a typing discipline, we describe two flavors of
term-level TSMs: synthetic TSMs specify the type of term
that they generate, while analytic TSMs can generate terms
of arbitrary type, but can only be used in positions where the
type is otherwise known. At the level of types, we describe a
third flavor of TSM that generates a type of a specified kind
along with its TSL and show interesting use cases where the
two mechanisms operate in concert.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Extensible languages

Keywords
extensible syntax; macros; hygiene; type inference

1. INTRODUCTION
One way programming languages evolve is by introducing

syntactic sugar that captures common idioms more concisely
and naturally. In most contemporary languages, this is the
responsibility of the language designer. Unfortunately, the
designers of general-purpose languages do not have strong
incentives to capture idioms that arise only situationally,
motivating research into mechanisms that allow the users of
a language to extend it with new syntactic sugar themselves.

Designing a useful syntax extension mechanism is non-
trivial because the designer can no longer comprehensively
check that parsing ambiguities cannot arise and that desug-
arings are semantically well-behaved. Instead, the extension
mechanism must provide several key guarantees:

∗This paper uses color for clarity of exposition.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SAC ’15 April 13 - 17 2015, Salamanca, Spain
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3196-8/15/04 ...$15.00.
http://dx.doi.org/10.1145/2695664.2695936

Composability The mechanism cannot simply allow the
base language’s syntax to be modified arbitrarily due to the
potential for parsing ambiguities, both due to conflicts with
the base language and, critically, between extensions (e.g.
extensions adding support for XML and HTML).

Hygiene The desugaring logic associated with new forms
must be constrained to ensure that the meaning of a valid
program cannot change simply because some of the variables
have been uniformly renamed (manually, or by a refactoring
tool). It should also be straightforward to identify the bind-
ing site of a variable, even with intervening uses of sugar.
These two situations correspond to inadvertent variable cap-
ture and shadowing by the desugaring.

Typing Discipline In a rich statically typed language,
which will be our focus in this work, determining the type a
sugared term will have, and analagously the kind a type will
have (discussed further below), should be possible without
requiring that the desugaring be performed, to aid both the
programmer and tools like type-aware code editors.

Most prior approaches to syntax extension, discussed in
Sec. 5, fail to simultaneously provide all of these guarantees.
Recent work on type-specific languages (TSLs) makes these
guarantees, but in a limited setting: library providers can
define new literal syntax by associating parsing and desug-
aring logic with type declarations [13]. Local type inference,
specified as a bidirectional type system [15], controls which
such TSL is used to parse the bodies of literal forms. The
available delimiters are fixed by the language, but the bodies
of literal forms can be arbitrary, so TSLs are flexible, and
this approach guarantees composability and maintains the
typing discipline by construction. The semantics given also
guarantees hygiene. We will review in Sec. 2.

While many forms of syntactic sugar can be realized as
TSLs, there remain situations where TSLs do not suffice:

(i) Only a single TSL can be associated with a type, and
only when it is declared, so alternate syntactic choices
(which are common [17]), or syntax for a type that is
not under a programmer’s control, cannot be defined.

(ii) Syntax cannot be associated with types that are not
identified nominally (e.g. arrow types).

(iii) Idioms other than those that arise when introducing a
value of a type (e.g. those related to control flow or
API protocols) cannot be captured

(iv) Types cannot themselves be declared using specialized
syntax.

Contributions In this paper, we introduce typed syntax
macros (TSMs), which supplement TSLs to handle these
scenarios while maintaining the crucial guarantees above.

1 casetype HTML
2 Empty
3 Seq of HTML ∗ HTML
4 Text of String
5 BodyElement of Attributes ∗ HTML
6 H1Element of Attributes ∗ HTML
7 StyleElement of Attributes ∗ CSS
8 (∗ ... ∗)
9 syntax = ~ (∗ : Parser(Exp) ∗)

10 start <- ’<body’ attributes ’>’ start ’</body>’
11 fn atts, child => ’BodyElement(($atts, $child))’
12 start <- ’<(’ EXP ’)>’
13 fn e => e
14 (∗ ... ∗)
15

16 let heading : HTML = H1Element({}, Text("My Heading"))
17 serve(~) (∗ serve : HTML -> Unit ∗)
18 <body id="doc1">
19 <(heading)>
20 <p>My first paragraph.</p>
21 </body>

Figure 1: A case type with an associated TSL.

Our specific contributions are as follows:

1. We introduce TSMs first at the term level in Sec. 3.
To maintain a typing discipline, there are two flavors
of term-level TSMs: synthetic TSMs can be used any-
where, while analytic TSMs can only be used where
the expected type of the term is otherwise known.

2. We next turn to type declarations in Sec. 4. Type-
level TSMs generate both a type of a specified kind,
maintaining the kinding discipline that governs type
parameter application, and also the TSL associated
with it, so TSLs and TSMs can operate in concert.

3. Both TSLs and TSMs leverage lightweight delimiters
to separate syntax extensions from the host language.
We supplement the delimited forms previously defined
to support additional idioms.

We more specifically compare our work to related work
in Sec. 5 and conclude in Sec. 6. A more detailed type-
theoretic treatment of these mechanisms is available in an
accompanying technical report [14].

2. BACKGROUND
2.1 Wyvern

We will present TSMs in the context of the simple variant
of the Wyvern programming language introduced previously
to describe TSLs [13], making only minor changes that we
will note as they come up. Wyvern is a statically typed
language with features from both the functional and object-
oriented traditions and has a layout-sensitive syntax.

An example of a type encoding the tree structure of HTML
is declared in Figure 1. The type HTML is a case type, with
cases for each HTML tag and additional cases for an empty
document, a sequence of nodes and a text node. Case types
are similar to datatypes in an ML-like language (in type-
theoretic terms, recursive labeled sum types). We introduce
a value of type HTML on line 17 by naming a case and provid-
ing an argument of the type the case declares.

Wyvern also supports declaring object types, e.g. Parser

in Figure 2 (discussed below). Object types declare fields
and methods via val and def, respectively. Values of object
type are introduced with new, which is a syntactic forward
reference: it can appear once per line, at the term position
where an object is needed. The next indented block gives the

1 objtype Parser(T)
2 def parse(ParseStream) : Result(T)
3 syntax = (∗ ... parser generator syntax ... ∗)
4

5 casetype Result(T)
6 OK of T
7 Error of String ∗ Location
8

9 casetype Exp
10 Var of ID
11 Fn of ID ∗ Exp
12 Ap of Exp ∗ Exp
13 Ascription of Exp ∗ Type
14 CaseIntro of ID ∗ Exp
15 (∗ ... ∗)
16 Spliced of ParseStream (∗ see Sec. 3.3 ∗)
17 syntax = (∗ ... exp quasiquotes ... ∗)
18

19 casetype Type
20 Declared of ID
21 Objtype of List(MemberDecl)
22 Casetype of List(CaseDecl)
23 Arrow of Type ∗ Type
24 (∗ ... ∗)
25 TyVar of ID (∗ see Sec. 4.1 ∗)
26 TyFn of ID ∗ Type
27 TyAp of Type ∗ Type
28 Spliced of ParseStream (∗ see Sec. 4.2 ∗)
29 syntax = (∗ ... type quasiquotes ... ∗)

Figure 2: A portion of the Wyvern prelude relevant
to TSLs and TSMs.

field values and method implementations (Figure 7 shows
some examples). Objects are similar to functional records.

We assume standard types like String, List and Option

are ambiently available in a prelude. Types declarations
are generative, i.e. declared types are identified nominally
(like datatypes in ML, or classes in Java). Declarations can
also include type parameters, e.g. List would declare one
type parameter. To be more precise, we say that List is a
type constructor, in that applying List to a type produces a
particular list type, e.g. List(String). Types have kind Ty,
while type constructors have arrow kind, e.g. List has kind
Ty -> Ty. For concision, we use the phrase declared type for
names having any kind.

Some types are identified structurally, e.g. tuple types
like HTML ∗ HTML and function types like HTML -> Unit. When
object and case types are written anonymously, rather than
via a declaration, they are also identified structurally.

2.2 Type-Specific Languages (TSLs)
Introducing a value of type HTML using general-purpose

syntax like that shown on line 17 of Figure 1 can be tedious.
Moreover, there is standard concrete syntax for HTML that
might be preferable for reasons of familiarity or backwards
compatibility. To allow for this, we associate a type-specific
language with the HTML type. We see this TSL being used
on lines 18-22 of Figure 1. On line 18, we call the function
serve, which we assume has type HTML -> Unit. Rather than
explicitly constructing a term of type HTML as the argument,
we use the forward referenced literal form ~. The body of the
literal consists of the text in the indented block beginning on
the next line, stripped of the leading indentation. In effect,
whitespace is serving as a delimiter.

We could equivalently have used other inline delimiters,
e.g. curly braces or single quotes, though we would then
need to follow the restrictions described in Figure 3. For
example, we could have written line 17 equivalently as:

val heading : HTML = ’<h1>My Heading</h1>’

’body here, ’’inner single quotes’’ must be doubled’
[body here, [inner braces] must be balanced]
{body here, {inner curly braces} must be balanced}
~ (∗ can appear at any expression position ∗)
forward referenced body here, leading indent stripped

(parentheses_delimitv_spliced_terms_in_TSM_arguments(~))
so forward references can propagate out

[adjacent] {delimited forms} or [those] separated ~ form
by identifiers create a single multipart delimited

Figure 3: Available delimited forms in Wyvern.
The parentheses and multipart delimited forms are
novel, discussed in Sec. 3.

The first phase of parsing leaves the bodies of such de-
limited forms unparsed. They are parsed and elaborated
during typechecking. More specifically, when the semantics
encounters any such literal form, the syntax associated with
the declared type that the literal is being analyzed against,
here HTML, is used to desugar it before continuing.

Such syntax is associated with a declared type as seen on
lines 9-14 of Figure 1 by writing syntax = e, where e is a
parser of type Parser(Exp).1,2 Per Figure 2, a parser defines
a parse function that transforms a ParseStream based on the
body to a Result(Exp), which is either a desugaring, encoded
as a value of type Exp, or an indication of a parse error.
Rather than writing a parse function explicitly, we make
use of the fact that Parser itself has a TSL associated with
it providing a static grammar-based parser generator. This
allows us to create a Parser(Exp) by specifying a number of
productions each of which is followed by a Wyvern function
taking in the elaborations of each constituent non-terminal
and producing the final elaboration of type Exp. The non-
terminal start serves as the starting non-terminal.

The types Exp and Type encode the abstract syntax of
Wyvern terms and types, respectively. To make code gener-
ation more straightforward, these types are equipped with
TSLs that provide quasiquotation [16, 3, 4]: terms of these
types can be written using Wyvern’s usual concrete syntax,
extended with unquote forms $x and $(e), which splice in
variable x and term e, respectively.

Splicing can be supported by any TSL. For example, the
TSL for HTML uses the delimiters <(and)> to mean “splice in
the enclosed term of type HTML here”, as seen on line 19 of Fig-
ure 1. This is supported because a parser can request that
some portion of the parse stream be treated as a host lan-
guage term, type or variable. The cases Spliced in Exp and
Type track these spliced portions of the parse stream. This
is the basis of the hygiene mechanism in [13]. The parser
generator provides the non-terminals EXP, ID and TYPE, which
generate these spliced forms internally. For example, EXP is
used on line 13 of Figure 1 to implement HTML splicing.

For expository purposes, we color the bodies of delimited
forms a color corresponding to the TSL or TSM being used,
identified when declared. Base language terms, including
spliced base terms, are colored black.

3. TERM-LEVEL TSMs
Having introduced the necessary background, we will now

describe term-level typed syntax macros and illustrate their
use in situations where TSLs are not suitable.

1In [13], we gave a more general metadata-based mechanism,
but we give a simpler TSL-specific mechanism here.
2For expository purposes, we include type ascriptions that
are not strictly needed in comments throughout the paper.

1 syntax simpleHTML for HTML = ~ (∗ : Parser(Exp) ∗)
2 start <- ’>body’= attributes> start>
3 fn atts, child => ’BodyElement(($atts, $child))’
4 start <- ’<’= EXP>
5 fn e => e
6 (∗ ... ∗)
7 let heading = simpleHTML ’>h1 My Heading’
8 serve(simpleHTML ~)
9 >body[id="doc1"]

10 < heading
11 >p My first paragraph

Figure 4: A synthetic TSM providing alternative
syntax for the HTML type in Figure 1.

3.1 Synthetic TSMs
TSMs are defined using the syntax keyword. Figure 4

shows a synthetic TSM, simpleHTML, being defined and used.
This TSM defines an alternative layout-sensitive syntax for
HTML. The clause for HTML indicates that valid invocations
of the TSM will necessarily elaborate to a term of type HTML.

Like defining a TSL, defining a TSM requires defining a
parser, i.e. a statically evaluated value of type Parser(Exp).
We again do so using the parser generator associated with
Parser. In this case, we take advantage of its support for
Adams grammars, which allow declarative specifications of
layout-sensitive grammars using layout constraints within
productions [2]. Here, the suffix = indicates that the left-
most column (on any line) occupied by the annotated ter-
minal or non-terminal must occur at the same column as the
parent and > indicates that it must be further indented.

Whereas TSLs are invoked implicitly based on local type
inference, invoking a TSM is similar to function application:
the name of the TSL is followed by a delimited form from
Figure 3. The body of the delimited form is parsed and
elaborated by the parser the TSM defines. For example, we
use single quotes on line 7 of Figure 4. Notice that we did
not need a type annotation on heading. On lines 8-11, we
again invoke simpleHTML, this time using the same forward
referenced delimited form described above. Lines 16-21 of
Figure 1 are semantically equivalent to lines 7-11 of Figure
4, differing only syntactically.

Synthetic TSMs address issue (i) from Sec. 1: modularly
and composably defining more than one choice of syntax
for a type that either has a TSL already, or a type which a
user cannot modify. Compared to the alternative solution of
defining a type HTML2 with a TSL that has the desired syntax,
and a function mapping from HTML2 to HTML, TSMs avoid
declaration duplication and the O(n) runtime overhead.

Synthetic TSMs also address issue (ii) because they can
define syntax for types identified structurally (e.g. functions,
pairs and anonymous objects), not just nominally.

3.2 Analytic TSMs
TSLs and synthetic TSMs are not suitable for expressing

idioms that are valid at many types, i.e. issue (iii) from
Sec. 1. As perhaps the simplest example, consider the case
type encoding booleans declared in Figure 5. Explicit case
analysis on booleans is considered unnecessarily verbose, so
many languages defining booleans in this manner build in an
if construct as a desugaring. Rather than having to build
this in to Wyvern, however, we can express it as an analytic
TSM, on lines 4-9. These are distinguished from synthetic
TSMs in that they don’t declare a type, here because the
type of an if expression is determined by its branches.

1 casetype Bool
2 True
3 False
4 syntax if = ~ (∗ : Parser(Exp) ∗)
5 EXP BOUNDARY EXP BOUNDARY ‘else’ BOUNDARY EXP
6 fn guard, branch1, branch2 => ~ (∗ : Exp ∗)
7 case $guard
8 True => $branch1
9 False => $branch2

10 def testIf(ok : Bool) : HTML
11 if (ok) (simpleHTML ~) else (’<h1>Not OK!</h1>’)
12 >h1 Everything is OK!

Figure 5: An analytic TSM providing a conventional
syntax for if based on case analysis. Lines 11-12
demonstrate multipart delimited forms.

We see if being used on lines 10-12 of Figure 5 with a
multipart delimited form. Each part can be either a single
delimited form (e.g. the guard and the two branches) or
one or more intervening identifiers (e.g. else). The body
is generated by concatenating the bodies of the parts and
inserting between them a special boundary character outside
the normal character set. We call this character BOUNDARY in
our parser generator (line 5). Intervening identifiers can be
thought of as having implicit delimiters around them, e.g.
if [e1] else [e2] and if [e1] [else] [e2] express the same
body, e1·else·e2, where · is the boundary character.

For the branches in our example, we used parentheses-
delimited parts. In a TSM application, this means that the
part consists of a single spliced term and no other syntax.
Because the parser can assume this, forward references can
be identified prior to typechecking and thus be allowed to
escape, as we see in the “then” branch in our example: the
body is on the next line. Had we used, for example, square
brackets, then we would need to write the example like this:

def testIf2(ok : Bool) : HTML
if (ok) [simpleHTML ~
>h1 Everything is OK!

] else [’<h1>Not OK!</h1>’]

An analytic TSM can only be used in a position where the
type is otherwise known, e.g. on line 10 due to the return
type annotation. This is to maintain the typing discipline:
we do not need to expand the TSM to know what type it
will have, just as with synthetic TSMs and TSLs.

Although we believe this trade-off is worthwhile, another
point in the design space is to permit a special signifier that
can be used to explicitly allow analytic TSMs to be used in
synthetic positions. For example, we might permit a post-
fix asterisk, if∗. The type the term will have then requires
a deeper understanding of the TSM in question (e.g. by
knowing how it elaborates, or based on a “derived” typing
rule that the providers of if assert or prove [11]).

3.3 Hygiene
The hygiene mechanism for term-level TSMs is identical to

that for TSLs. The details are in [13]. To summarize: spliced
sub-terms are marked as such in the generated code, and
only these can refer to variables in the surrounding scope.
No new variables can be introduced into their scope.

4. TYPE-LEVEL TSMs
We now turn our attention to TSMs at the level of type

declarations. Our example will be a simple object-relational
mapping (ORM) syntax, shown being used in Figure 6. An

1 decltype EmployeesDB = schema ~
2 *ID int
3 Name varchar
4

5 let db : EmployeesDB = ~
6 connect to ~
7 mysql://localhost:3306
8 table "Employees"
9 username "user1"

10 password "001"
11 db.getByID(758) (∗ : Option(EmployeeDB.Entry) ∗)

Figure 6: The usage of a type-level TSM and the
TSL it generates to enable a simple ORM.

ORM provides an object-oriented interface to a relational
database, generated from a database schema. For example,
the schema in Figure 6 specifies a table with two columns,
ID and Name, holding values of the SQL data types int and
varchar. The ID column is marked with an asterisk as being
a primary key, meaning that it must be unique across rows.

ORMs typically rely on an external code generator, which
can hinder code comprehension because the fully elaborated
interface is exposed directly to the programmer, obscuring
the simpler schema by moving it to an external resource. By
instead using the type-level TSM schema, the interface shown
in Figure 7 is generated from the schema during compilation,
using a language-integrated mechanism. More specifically,
in Figure 7 the type member Entry declares a field for each
column in the schema, with its type generated based on
a mapping from SQL types to Wyvern types (not shown).
Moreover, for each column C, a method named getByC is
also generated. The return type of this method is an option
type if the column is a primary key (reflecting the unique-
ness invariant) or a list otherwise. There are also fields for
connection parameters.

As discussed in Section 2, declared types in Wyvern can
define a TSL. A type-level TSM generates not only a type,
but also its TSL. Here, the TSL that schema generates is
shown being used on lines 5-10 of Figure 8 to create a value
of the generated type EmployeesDB. Only the per-database
parameters need to be provided.

The definition of schema is shown in Figure 8. Type-level
TSMs must specify the kind of type-level term that will
be generated, here ∗ because the type takes no parameters.
This is to maintain a kinding discipline: knowing how many
type parameters a type takes does not require desugaring
its declaration. Elaboration is then defined by a parser of
type Parser(Type∗Parser(Exp)), i.e. it must map the body to
a reified type-level term and the TSL parser.

Here, we generate the type using type quasiquotation by
mapping over the column specifications parsed out of the
body on lines 37-43 (using the same color for both Type and
MemberDecl for simplicity). We assume a mapping from SQL
types to Wyvern types, ty_from_sqlty, not shown. Starting
on line 20, we then generate the TSL as described in Sec. 2.
Note that the implementations of the methods generated on
lines 4-19 are filled in by the TSL generated on lines 20-35.

4.1 Recursive and Parameterized Types
In this example, there were no type parameters and the

generated type was not recursive. To understand how we
can generate such types, we must first break down our type
declaration mechanism in a bit more detail. Recall that type
declarations using casetype or objtype were generative. In

1 decltype EmployeesDB = objtype
2 decltype Entry = objtype
3 val ID : Int
4 val Name : String
5 val connection : URL
6 val username : String
7 val password : String
8 (∗ ... ∗)
9 def getByID(Int) : Option(Entry)

10 def getByName(String) : List(Entry)
11 syntax = (∗ ... generated TSL, cf Figure 8 ... ∗)
12

13 let db : EmployeesDB = new
14 val connection = new
15 val domain = "localhost"
16 (∗ ... ∗)
17 val username = "user1"
18 val password = "001"
19 (∗ ... ∗)
20 def getByID(x)
21 (∗ send appropriate query ∗)
22 db.getByID(758)

Figure 7: The elaboration of Figure 6.

fact, these declaration forms are (built in) syntactic sugar
for the general generative type declaration form, decltype.
The right-hand side of this declaration form consists of a
type level function that takes in a self-reference followed by
the type parameters before producing an anonymous type on
the right. For example, List is actually declared as follows:

decltype List = tyfn S::Ty->Ty => tyfn T::Ty => casetype
Nil
Cons of T ∗ S(T)

Note that the type-level function after the equals sign as a
whole has kind (Ty -> Ty)-> (Ty -> Ty). More generally, for
a type with n type parameters, the type-level function must
have kind (Ty ->n Ty)-> (Ty ->n Ty), where the subscript n
indicates n arguments of kind Ty. A type-level TSM must
generate such a function. On line 5 of Figure 8, the mecha-
nism allowed that the self-reference be omitted because the
type was not recursive, but we could have written tyfn S ::

Ty => objtype. Note that the name of the type is determined
by the client of the TSM. The type variable S here is rele-
vant only inside the TSM definition. We discuss mutually
recursive types in the technical report [14].

4.2 Hygiene
The previous work on TSLs did not handle parameterized

types or parametric polymorphism, so there was no notion of
a type variable there. With these features included, we must
also have a notion of hygiene with respect to type variables.
We can take an analagous approach to the one taken for
term variables, marking spliced sub-terms and giving only
these access to the surrounding type variable context when
kind checking the generated type. The details are in the
technical report [14].

5. RELATED WORK
Unlike other work on library-integrated syntax extension

mechanisms, e.g. SugarJ [6] and its subsequent variations
[7], protean operators [9], mechanisms like those found in
Coq [12, 8] and Nemerle [19] and various language-external
mechanisms like Camlp4 [10], we do not permit the syntax
of the base language to be extended directly. Instead, we
build on the delimited forms used for type-specific languages
[13]. Using delimiters to separate extensions from the base
language guarantees that any combination of libraries can be

1 syntax schema :: Ty = ~ (∗:Parser(Type∗Parser(Exp))∗)
2 start <- columns
3 fn cols (∗ : List(Bool∗Label∗Type) ∗) =>
4 let ty : Type = ~
5 objtype
6 type Entry = objtype
7 $(
8 map(cols, fn (primary, lbl, ty) => ~)
9 val $lbl : $ty

10)
11 val connection : URL
12 val username : String
13 val password : String
14 (* ... *)
15 $(
16 map(cols, fn (primary, lbl, ty) => ~)
17 def getBy$lbl($ty) : $(if (primary) (
18 ’Option(Entry)’) else (’List(Entry)’))
19)
20 let tsl : Parser(Exp) = ~
21 start <- ("connect to"= EXP>
22 "table"= EXP>
23 "username"= EXP>
24 "password"= EXP>)
25 fn url, un, pw, table => ~
26 new
27 val connection = $url
28 val username = $un
29 val password = $pw
30 (* ... *)
31 $(
32 map(cols, fn (primary, lbl, ty) => ~)
33 def getBy$lbl(x)
34 (* send appropriate query *)
35)
36 (ty, tsl)
37 columns <- column
38 fn column => Cons(column, Nil)
39 columns <- column= columns=
40 fn column, columns => Cons(column, columns)
41 column <- "*"? ID ID
42 fn primary, lbl, sqlty =>
43 (primary, lbl, ty_from_sqlty(sqlty))

Figure 8: The definition of a type-level TSM.

imported and used together (i.e. composed), without “link-
time” parsing ambiguities, because different extensions can
only interact via the host language using splicing.

Schwerdfeger and Van Wyk have shown a composable
analysis for syntax specified using an LR parser generator
with a context-aware scanner [18]. Like our work, they rely
on a unique starting token to identify a language, but per-
form a sophisticated analysis on follow sets of non-terminals
to guarantee composability. Our use of fixed delimiters is
simpler – no analysis need to be run at all – and allows for
arbitrary parse functions. A parser generator (in our case,
based on Adams grammars [2]) is simply a TSL atop this
mechanism. Using a synthetic TSM, different parser genera-
tor formalisms could be defined (e.g. for regular languages, a
simpler mechanism using regular expressions might suffice).

Macro systems have a long history in the LISP family of
languages. These typically only permit rewriting existing
syntax (typically, a variant on S-expressions), rather than
introducing arbitrary new syntax, though reader macros do
allow some syntax extensions as well, albeit without strict
composability guarantees [20]. We use the phrase syntax
macro to describe our work because like macros, TSMs are
invoked explicitly by name and are used to generate code,
but this occurs during typechecking. The initial parsing
phase separates delimited forms but leaves bodies unparsed.

Most existing syntax extension mechanisms don’t support
a typing discipline. A notable exception is work by Lorenzen

and Erdweg, who described a mechanism for automatically
proving the admissibility of derived typing rules for syntax
extensions [11]. Integrating such facilities into TSMs would
be an interesting avenue for future work.

Macro systems that do consider the typing discipline, e.g.
in Scala [4], do exist but as just mentioned, do not support
syntax extension. In Scala, black box macros are similar
to synthetic TSMs in that they specify a type signature.
Analytic TSMs can be seen as a restriction on the use of
white box macros (disabled by default in recent versions of
Scala) to analytic positions.

Concerns about hygiene have been well-studied in the
macros communities, e.g. in Scheme [5]. Because we defer
parsing of delimited forms to typechecking time, our formal-
ization of the hygiene mechanism can be cleanly specified in
terms of access to typing contexts and, uniquely, we track
portions of the parse stream that correspond to spliced terms
implicitly. We also considered hygiene at the type level here.

Standard ML of New Jersey supports quotation and an-
tiquotation using the concept of fragment lists [1]. This
is composable and obeys a typing discipline, but has three
main problems:

1. Parsing of fragment lists must still occur at run-time.
This is perhaps the biggest difference relative to our
mechanism, which introduces new static desugarings.

2. Syntax that uses backticks or carets is difficult to in-
troduce in this way. In our mechanism, a variety of
delimiters, notably including layout, can be used, and
the extension itself determines how antiquotation (i.e.
splicing) is initiated, so such difficulties can be avoided.

3. Only one type of subterm can occur inside antiquotes.
One must define and use a datatype if there may be
different types of subterms (e.g. our HTML example
above). This can again defeat part of the purpose of
introducing concrete syntax.

6. CONCLUSION AND FUTURE WORK
Taken together, TSLs and TSMs represent what we see

as a new “high water mark” in expressive power, especially
within the space of systems that guarantee composability,
hygiene and typing discipline described in Sec. 1 and are
rigorously specified in type theoretic terms, as we show in
the accompanying technical report [14].

There remain several promising avenues for future work.
While synthetic TSMs as shown allow specifying syntax for
any particular type, we did not show any way to specify
syntax for all types having a common type constructor (e.g.
syntax for all lists). Similarly, we do not show how to specify
syntax for abstract types. Another promising avenue for fu-
ture work is to strengthen splicing so that a single delimiter
can support multiple types of spliced terms (e.g. allowing
both strings and HTML to be spliced into HTML). Enabling
editor support is also an important direction for future work.

ACKNOWLEDGEMENTS
We thank the anonymous referees for helpful suggestions,

and acknowledge the support of the National Security Agency
lablet contract #H98230-14-C-0140 and National Science
Foundation grant #CCF-1116907.

7. REFERENCES
[1] SML/NJ Quote/Antiquote.

http://www.smlnj.org/doc/quote.html.

[2] M. D. Adams. Principled Parsing for
Indentation-Sensitive Languages: Revisiting Landin’s
Offside Rule. In POPL, 2013.

[3] A. Bawden. Quasiquotation in Lisp. In Partial
Evaluation and Semantic-Based Program
Manipulation, 1999.

[4] E. Burmako. Scala Macros: Let Our Powers Combine!:
On How Rich Syntax and Static Types Work with
Metaprogramming. In Proceedings of the 4th
Workshop on Scala, SCALA, 2013.

[5] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic
abstraction in Scheme. Lisp Symb. Comput.,
5(4):295–326, Dec. 1992.

[6] S. Erdweg, T. Rendel, C. Kastner, and K. Ostermann.
SugarJ: Library-based syntactic language extensibility.
In OOPSLA, 2011.

[7] S. Erdweg and F. Rieger. A framework for extensible
languages. In GPCE, 2013.

[8] T. Griffin. Notational definition-a formal account. In
Logic in Computer Science, 1988.

[9] K. Ichikawa and S. Chiba. Composable user-defined
operators that can express user-defined literals. In
MODULARITY, 2014.

[10] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy,
and J. Vouillon. The OCaml system release 4.01
Documentation and user’s manual. Institut National
de Recherche en Informatique et en Automatique,
September 2013.

[11] F. Lorenzen and S. Erdweg. Modular and automated
type-soundness verification for language extensions. In
ICFP, 2013.

[12] The Coq development team. The Coq proof assistant
reference manual. LogiCal Project, 2004. Version 8.0.

[13] C. Omar, D. Kurilova, L. Nistor, B. Chung,
A. Potanin, and J. Aldrich. Safely composable
type-specific languages. In ECOOP, 2014.

[14] C. Omar, C. Wang, and J. Aldrich. Composable and
hygienic typed syntax macros. Technical Report
CMU-ISR-14-113, Carnegie Mellon University.

[15] B. C. Pierce and D. N. Turner. Local type inference.
ACM Trans. Program. Lang. Syst., 22(1):1–44, Jan.
2000.

[16] W. V. O. Quine. Mathematical Logic. Harvard
University Press, Boston, MA, 1940.

[17] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar,
J. Lin, B. Myers, and M. Shaw. Using topes to
validate and reformat data in end-user programming
tools. In 4th International Workshop on End-User
Software Engineering, 2008.

[18] A. Schwerdfeger and E. V. Wyk. Verifiable
composition of deterministic grammars. In PLDI,
2009.

[19] K. Skalski, M. Moskal, and P. Olszta.
Meta-programming in Nemerle. In GPCE, 2004.

[20] G. L. Steele. Common LISP: the language. Digital
Press, 1990.

