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Path dependent types have long served as an expressive component of the Scala programming language.They

allow for the modelling of both bounded polymorphism and a degree of nominal subtyping. Nominality in

turn provides the ability to capture first class modules.Thus a single language feature gives rise to a rich array

of expressiveness. Recent work has proven path dependent types sound in the presence of both intersection

and recursive types, but unfortunately typing remains undecidable, posing problems for programmers who

rely on the results of type checkers. The Wyvern programming language is an object oriented language with

path dependent types, recursive types and first class modules. In this paper we define two variants of Wyvern

that feature decidable typing, along with machine checked proofs of decidability. Despite the restrictions,

our approaches retain the ability to encode the parameteric polymorphism of Java generics along with many

idioms of the Scala module system.
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1 INTRODUCTION

A type member is a named member within an object that denotes a type. We can refer to the type
denoted by typemember L of some object owith the notation o.L.The semantics of L are dependent
on how it is accessed, i.e. the path taken in the selection, and thus o.L is a path dependent type.

Practically, path dependent types have wide utility. One application is providing a more modu-
lar form of bounded parametric polymorphism. Parametric polymorphismwas originally designed
for functional languages such as ML [Harper 2012], and has more recently been adopted for Object
Oriented languages such as C++, Java, C# and Scala. While parametric polymorphism is useful, it
can also make types verbose. The example below shows how parametric polymorphism in Java
can be encoded using type members. To begin with, we define an empty class Object. We then
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define Cell with a type parameter E bounded by Object and a field of that type. Cell turns into
a type with a type member E that is also bounded by Object, and has a field of the member type
(denoted this.E within the surrounding object). A client that instantiates the Cell with type int
can refer to the type of aCell.member abstractly via the syntax aCell.E, something that is not
possible in Java:

1 class Object{}
2 class Cell<E extends Object>{
3 E member;}
4 Cell<Integer> aCell =
5 new Cell<Integer>(...);
6 Integer i = aCell.member;

⇒

1 type Object = {}
2 type Cell = {this ⇒

3 type E <: Object;
4 val member:this.E}
5 val aCell : Cell =
6 new Cell{type E = Integer}
7 val i:aCell.E = aCell.member

The ability to access type members within an object increases expressiveness, both when dealing
with polymorphic data structures and more interestingly when modeling module systems or han-
dling dependency injection [Odersky and Zenger 2005]. Type members were first introduced in
BETA [Kristensen et al. 1987; Madsen and Moller-Pedersen 1989; Torgersen 1998], were briefly
considered as an alternative to Generics in Java [Igarashi and Pierce 2002; Thorup 1997], and have
gained additional prominence due to their inclusion in the Scala language [Odersky et al. 2004;
Rompf and Amin 2016]. Recently Amin et al. have studied the Dependent Object Types (DOT) cal-
culus as a sound core calculus for Scala [Amin et al. 2012, 2014]. The DOT calculus includes type
members to model parametric polymorphism as well as a notion of nominality.
The past few years has seen much work elaborating on the foundations of path dependent types.

They were finally proven type safe by Amin et al. in 2014 using a big step semantics in µDOT, an
early variant of DOT that includes recursive types but not intersection types. Subsequent work
derived a type safety proof for the full DOT that included recursive types and full intersection
and union types using a small step semantics [Rompf and Amin 2016] that was unfortunately
complex. A simpler and more tractable proof was derived [Rapoport et al. 2017] to aid language
designers in the construction of extensions of DOT.Many of the problems associated with deriving
type safety come down to the many interdependent properties of the DOT calculus, particularly
subtype transitivity and environment narrowing (the maintaining of well-formedness when types
within the environment are narrowed to more specific types).

Unfortunately, rich type systems come at a cost: subtyping of Java generics is undecidable [Grig-
ore 2017]. Undecidability in Java comes from recursive inheritance: a class String implements
Comparable<String>, so the String type is being defined in terms of itself—and as a result, any
procedure intended to check subtyping will not terminate on some examples. As of the writing
of this paper, it is possible to construct such an example in Java that crashes the javac compiler
with a stack overflow exception. Such errors are relatively rare, however we would ideally like to
provide useful guidance to programmers in all error cases.
While type safe, subtyping in DOT is undecidable [Rompf and Amin 2016] due to its ability to

encode System F<: [Pierce 1992]. Perhaps unsurprisingly, those same properties that complicated
the proof of type safety (subtype transitivity and environment narrowing) for path dependent
types, confound the construction of a decision procedure for subtyping.
Scala subsumes not only Java’s type system, but introduces several instances of added expres-

siveness on top of it that further complicate the derivation of a decision procedure for subtyping.
Coupled with DOT’s encoding of System F<:, the construction of any decidable type system that
includes path dependent and recursive types must address all of these issues.
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While Nieto [2017] did develop a decidable subset of the DOT calculus, theirs lacked recursive
types, a key feature of both DOT and Scala, and critical for the encoding of Java generics.
Greenman et al. defined a decidable subset of Java subtyping by distinguishing between those

types that were responsible for cyclic subtype definitions—called shapes—and those types that
weren’t—called materials. They found that a simple restriction on the use of shapes called the
Material-Shape Separation resulted in decidable subtyping, without prohibiting commonly-used
idioms. Greenman et al. did not, however, apply the approach to a system with path dependent
types, a setting which presents a number of additional challenges.
This paper adapts the Material-Shape Separation approach to design two decidable variants of

a core type system for the Wyvern Programming language [Melicher et al. 2017; Nistor et al. 2013;
Omar et al. 2014], a programming language closely related to the Scala. Greenman et al.’s approach
does not solve the full problem in the more complicated setting ofWyvern (or DOT), so we identify
two additional restrictions, either of which is sufficient to ensure decidability when layered on
top of Material-Shape Separation. We demonstrate that despite these restrictions, our approach
supports all the same patterns of generic Java class usage identified by Greenman et al., while
also expressing key motivating examples of type members in the context of Scala and advanced
module systems. We further categorize the decidability issues associated with Wyvern with the
aim of furthering the understanding of subtyping in the presence of path dependent and recursive
types. The rest of this paper is organized as follows:

• Section 2 provides a background on path dependent types and their subtyping.
• Section 3 introduces a core calculus Wyvcore, and identifies the problematic aspects of con-
structing a finite subtype algorithm for Wyvcore.

• Section 4 defines a Material/Shape separation on Wyvcore and its variants. We then discuss
a general approach to demonstrating decidability for decidable variants of subsequent sec-
tions.

• Section 5 definesWyvself, a variant ofWyvcore that restricts the usage of recursive types to en-
sure subtype decidability. We provide a sketch of the proof of decidability, that is formalized
in Coq. We also discuss the expressiveness of the variant.

• Section 6 introducesWyvfix a decidable variant ofWyvcore that provides fixed environments
during subtyping, along with a sketch of a proof of subtype decidability that is formalized
in Coq.

• Section 7 discusses type safety for Wyvcore and Wyvself.
• Section 8 discusses the decidable variants Wyvself and Wyvfix in the context DOT and Scala.
• Section 9 concludes, discussing the potential for future work.

This paper makes the following contributions:

• An investigation of the factors involved in defining a finite subtype algorithm for a type
system with both recursive types and path dependent types.

• An approach attaining subtype decidability for path dependent types by imposing a syntactic
restriction on the use of recursive types while retaining key forms of expressiveness.

• An approach to attaining subtype decidability for path dependent types by removing envi-
ronment narrowing and a discussion of the trade offs associated with this.

• Subtype Decidability for the both of the above formalisms is formalized in Coq1.

2 BACKGROUND

Path dependent types are a language feature that provides a range of expressiveness including
parametric polymorphism and nominality.They are most notably present in Scala as Abstract Type

1https://bit.ly/36SL5zv
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Members. The strength of path dependent types is the economy of concepts they afford in the
presence of several other key language features, specifically intersection and union types and
recursive types. In this section we motivate path dependent types and touch on some key concepts
that have implications for discussions later in this paper.

2.1 Type Refinements

A type refinement is a language feature that allows for the construction of a new object type from
an existing type via the specification of new member information. Amin et al. featured them as
part of their formalism of path dependent types. A type refinement captures a common pattern
that programmers write when constructing types. The following example demonstrates the use of
type refinements in the construction of an AppendableList type from a List type.

1 type List = {def head : Object, def tail : List}
2 type AppendableList = List{def append (o : Object) : List}

AppendableList represents the type of Lists that also contain an append function. This allows
some useful expressiveness: type extension similar to that implied by Java subclassing can be
captured using type refinements, along with parametric polymorphism.

2.2 Parametric Polymorphism

Path dependent types completely subsume the polymorphism of System F [Reynolds 1974] and
System F<: [Cardelli and Wegner 1985] and of object oriented languages such as Java. Instead of
quantifying terms (or classes and methods in the case of Java) over types, terms are quantified over
values containing a type member. In the example below we translate bounded polymorphism to a
language containing path dependent types. It is subsequently fairly simple to sugar the translation
back into something resembling traditional bounded polymorphism.

1 def append[E >: ⊥]
2 (e : E,
3 l : List[E])

⇒

1 def append(x : {type E >: ⊥},
2 e : x.E,
3 l : List{type E = x.E})

While path dependent types encompass the expressiveness of parametric polymorphism, the re-
verse is not true: path dependent types provide increased expressiveness over parametric poly-
morphism. Path dependent types are implicitly included as part of an object and can be referenced
from outside of the containing object. Consider the following shallow copy function.

1 type List = {type E <: ⊤}
2 def copy(l : List) : List{type E = l.E} = new List{type E = l.E}

If we were to write the above function using in a language with bounded polymorphism, it would
have to include as an argument the element type of the copied list explicitly. There is no way to
write generic functions that don’t explicitly require the generic type to be mentioned at every step.
While this is perhaps a small savings in the above example, requiring explicit parameters can lead
to potentially excessive boilerplate if more types are involved.

2.3 Modules

One of the original motivations for including type members in Scala was for the purposes of mod-
ularity, echoing the module system of Standard ML [Milner et al. 1997]. Path dependent types
can be used to express module signatures such as the Protocol signature, here adapted from the
FoxNet project which implemented a TCP/IP stack in Standard ML [Biagioni et al. 2001]:
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1 type Protocol { type Address, type Data
2 def send(a:Address, d:Data)
3 def receive(a:Address):Data }
4 module IP : Protocol { ... }
5 module TCP : Protocol { ... }

Here Address and Data are abstract data types representing addresses and data in a particular
protocol implementation. Note: while they are not explicitly defined with bounds, type Address
is implicitly the upper bounded type definition, type Address ^: ⊤. We show the first version
of Protocol from the FoxNet paper; the final version is more complicated, but conceptually similar.
Different protocols (e.g. TCP, IP, Ethernet…) may represent these types in different ways, so these
types are members of their surrounding module. Scala (and Wyvern) add a bit of flexibility by
modeling modules as first-class objects, which in this example would allow custom network stacks
to be constructed at run time, but otherwise support similar kinds of expressiveness.

2.4 Nominality

The ability to define path dependent types abstractly, combined with bounds on type members,
and the ability to provide type refinements, supports a kind of nominal subtyping. In the previous
example, Data and Address are defined with only an upper bound. This means that in practice,
they exhibit nominal subtyping. That is, for an instance of Protocol, p, without being explicitly
provided a specific representation for p.Address, only instances of p.Address (or some explicit
subtype of p.Address) may be supplied to a call to p.receive. Coupled with type refinements,
this manifests as a form on nominal subtyping. The following example due to Rompf and Amin
provides a clearer example of this.

1 type ListAPI = {type List <: { type Elem }
2 def nil(): List{ type Elem >: Bot }
3 def cons(x : { type E },
4 e : x.E,
5 l : List{ type Elem <: x.E }): List{ type Elem <: x.E}}

List is abstract, meaning it has an (implicit) lower bound of⊥. We give it an upper bound express-
ing that every List has a type member Elem. The only way to subtype List is as a refinement
on List.2 Thus, until a concrete form of List is supplied, subtyping of List is essentially nomi-
nal. Nominality in this form has some powerful implications. List is an abstract data type [Cook
2009], meaning its full representation is at be hidden, allowing for instance the restriction of object
initialization to the methods nil and cons.

In the rest of this paper, when referring to “abstract types”, we mean types that are only up-
per bounded (with lower bound ⊥), hiding the full type representation. This, is almost always in
relation to the implications for nominality. The nature of nominality that is provided by path de-
pendent types is of particular concern to the work in this paper. We cover this in more detail in
Section 3.4.2.

2This form of refinement is a special case of intersection types.
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2.5 Dependent Object Types

The Dependent Object Types (DOT) calculus [Amin 2016; Amin et al. 2016, 2012, 2014; Rompf
and Amin 2016] is a core calculus that is intended to be the theoretical basis for Dotty3, itself
a basis for the upcoming Scala 3. In DOT, a broad array of expressiveness arises from the core
features of path dependent, intersection, recursive and dependent function types. Path dependent
types encode nominal subtyping and Scala modules. When combined with dependent function
types, path dependent types subsumed bounded polymorphism. Intersection types capture the
type aspects of multiple inheritance, and when coupled with recursive types give rise to structural
subtyping.

3 WYVERN

Wyvern [Nistor et al. 2013] is an object oriented language based on many of the same ideas ex-
plored in DOT and Scala. Like Scala, Wyvern incorporates several language features derived from
both functional and object oriented paradigms. In this section we present a core calculus for Wvy-
ern: Wyvcore. We subsequently discuss the issues with constructing a terminating subtyping algo-
rithm for Wyvcore, and provide context for the variants of Wyvcore in the following sections.
Like DOT,Wyvcore features path dependent types, structural subtyping, first class functions and

objects, and recursive types. Wyvcore is, however, simpler than DOT in a few key ways. Intersec-
tion and union types introduce complexity that is not directly related to the complexity of path
dependent types. For this reason, Wyvcore introduces a simplified form of intersection types, type
refinements—an idea that was, in fact, present in an early version of DOT that was presented at
the FOOL workshop [Amin et al. 2012].

We have already touched on type refinements, but we will say some more here as they form a
key component ofWyvcore. A type refinement (τ {z ⇒ σ }) represents a more specific form of inter-
section type that explicitly introduces a recursive definition. The variable z in the type represents
the object whose type is being defined. The member types within the refinement (σ ) are restricted
to only new members that do not occur in the base type (τ ), or member types that are subtypes of
already existing members within the base type.
Finally,Wyvcore restricts type members to a single bound, either a lower bound, an upper bound

or a specific type that acts as both the upper and lower bound. DOT on the other hand allows type
members to be defined with both an upper and lower bound.

3.1 Wyvcore

We now define the type syntax, subtyping, and associated judgments of the Wyvcore calculus; we
defer the term syntax and typing rules to Section 7.The syntax ofWyvcore types is defined in Figure
1. A Type is either the top type (⊤), the bottom type (⊥), a type selection on a variable (x .L), a
refinement on ⊤ (⊤{z ⇒ σ }), a refinement on a selection type (x .L{z ⇒ σ }), or a dependent
function type (∀(x : τ1).τ2). A type refinement τ {z ⇒ σ } is a base type τ refined with a set of
declaration types σ and a self reference z. A dependent function type (∀(x : τ1).τ2) quantifies a
type τ2 over values of type τ1. A Declaration Type is either a type member declaration that is
upper bounded (L ⩽ τ ), lower bounded (L ⩾ τ ), an exact type (L = τ ), or a value declaration
(l : τ ). There are several instances in the semantics where rules may apply to multiple possible
syntactic forms of a declaration type. An example is E-Uॶॶ५R in Figure 6, in this case, the syntax
L ⩽/= τ is used to imply that the rule applies in both cases.

We also define term (Γ ⊢ x ∋ σ ) and type (Γ ⊢ σ ∈z τ ) membership in Figure 4. Intuitively, these
capture object membership within an environment constructed during subtyping (or typing). A

3http://dotty.epfl.ch/
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τ ::= Type

⊤ top

⊥ bottom

x .L type selection

⊤{z ⇒ σ } top refinement

x .L {z ⇒ σ } selection refinement

∀(x : τ ).τ all

σ ::= Declaration Type

L ⩽ τ upper bound

L ⩾ τ lower bound

L = τ equality

l : τ value

Γ ::= Context

∅

Γ, x : τ

Fig. 1. Wyvcore Syntax

f lat (⊤, σ , z) = ⊤{z ⇒ σ }

f lat (x .L, σ , z) = x .L {z ⇒ σ }

f lat (τ {z ⇒ σ 1 }, σ 2, z) = τ {z ⇒merдe(σ 1, σ 2)}

Fig. 2. Refinement Flattening

merдe(∅, σ ) = σ

merдe(σ : σ 1, σ 2) = if id (σ ) ∈ map(id , σ 2)

thenmerдe(σ 1, σ 2)

else σ :merдe(σ 1, σ 2)

id (L ⩽ _) = L

id (L ⩽ _) = L

id (L = _) = L

id (l : _) = l

Fig. 3. Associated Functions

Γ ⊢ x ∋ σ , σ ∈z τ

Γ ⊢ σ ∈z Γ(x )

Γ ⊢ x ∋ [x/z]σ
(M-V१R)

σ ∈ σ

Γ ⊢ σ ∈z τ {z ⇒ σ }
(M-R५६ॴ-1)

id (σ ) < {id (σ ′) : σ ′ ∈ σ } Γ ⊢ σ ∈z τ

Γ ⊢ σ ∈z τ {z ⇒ σ }
(M-R५६ॴ-2)

Γ ⊢ x ∋ L ⩽/= τ Γ ⊢ σ ∈z τ

Γ ⊢ σ ∈z x .L
(M-Uॶॶ५R)

Fig. 4. Wyvcore Membership

Γ ⊢ ⊤ is is extendable

Γ ⊢ x ∋ L ⩽/= τ Γ ⊢ τ is extendable

Γ ⊢ x .L is extendable

Γ ⊢ τ is extendable

Γ ⊢ τ {z ⇒ σ } is extendable

Fig. 5. Wyvcore Type Extendability

Γ ⊢ τ ⩽:: τ

Γ ⊢ x ∋ L ⩽/= τ Γ ⊢ τ is extendable

Γ ⊢ x .L ⩽:: τ
(E-Uॶॶ५R)

Γ ⊢ τ ⩽:: τ ′

Γ ⊢ τ {z ⇒ σ } ⩽:: f lat (τ ′, σ , z)
(E-R५६९ॴ५)

Fig. 6. Wyvcore Type Extension

value indicated by variable x contains a member of type σ if Γ ⊢ x ∋ σ , and a type τ is inhabited
by values that contain members of type σ (where z is the self variable) if Γ ⊢ σ ∈z τ . A declaration
type (σ ) is a member of a type (τ ) if τ is a type refinement, and σ occurs as part of that refinement
(M-R५६ॴ-1) or is an unrefined member of the base type (M-R५६ॴ-2). If τ is some selection type x .L
and σ is a member of its upper bound, then σ is also a member of x .L (M-Uॶॶ५R). A declaration
type is considered a member of a variable (or rather the object referenced by the variable) if the
type of the variable contains the member (M-V१R).
Type extension (Γ ⊢ τ1 ⩽:: τ2) is defined in Figure 6, as is an important judgment in construct-

ing transitive subtyping for type refinements. A type extends its upper bound (determined using
membership) if it is a selection type (E-Uॶॶ५R) or in the case of type refinements, a refined version
of any type that the base type extends (E-R५६९ॴ५). Figure 5 restricts extension to either⊤, selection
types or type refinements. Related calculi, such as DOT, do not have a type extension judgment, as
the semantics defined by it are included as part of the subtyping of intersection types. In Wyvcore,
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Γ ⊢ τ1 <: τ2, σ 1 <: σ 2, σ1 <: σ2

Γ ⊢ x .L <: x .L (S-R५६ॲ) Γ ⊢ ⊥ <: τ (S-Bॵॺॺॵॳ) Γ ⊢ τ <: ⊤ (S-Tॵॶ)

Γ ⊢ x ∋ L ⩽/= τ ′ Γ ⊢ τ ′ <: τ

Γ ⊢ x .L <: τ
(S-Uॶॶ५R)

Γ ⊢ x ∋ L ⩾/= τ ′ Γ ⊢ τ <: τ ′

Γ ⊢ τ <: x .L
(S-Lॵॽ५R)

Γ ⊢ τ2 <: τ1 Γ, x : τ2 ⊢ τ ′
1

<: τ ′
2

Γ ⊢ ∀(x : τ1).τ
′
1

<: ∀(x : τ2).τ
′
2

(S-Aॲॲ)
Γ, z : τ {z ⇒ σ 1 } ⊢ σ 1 <: σ 2

Γ ⊢ τ {z ⇒ σ 1 } <: τ {z ⇒ σ 2 }
(S-R५६९ॴ५)

Γ ⊢ τ1 ⩽:: τ Γ ⊢ τ <: τ2

Γ ⊢ τ1 <: τ2
(S-Eॾॺ५ॴ४)

∀ σ2 ∈ σ 2, ∃ σ1 ∈ σ 1 s .t . Γ ⊢ σ1 <: σ2

Γ ⊢ σ 1 <: σ 2

(S-D५३ॲॹ)

Γ ⊢ τ1 <: τ2

Γ ⊢ L ⩽/= τ1 <: L ⩽ τ2
(S-D५३ॲ-Uॶॶ५R)

Γ ⊢ τ2 <: τ1

Γ ⊢ L ⩾/= τ1 <: L ⩾ τ2
(S-D५३ॲ-Lॵॽ५R)

Γ ⊢ τ2 <: τ1 Γ ⊢ τ1 <: τ2

Γ ⊢ L = τ1 <: L = τ2
(S-D५३ॲ-E१ॲ)

Γ ⊢ τ1 <: τ2

Γ ⊢ l : τ1 <: l : τ2
(S-D५३ॲ-V१ॲ)

Fig. 7. Wyvcore Subtyping

we separate type extension out from subtyping, as type refinements are the central source of recur-
sion during subtyping. Separating their definition out, allows for their semantics to be constrained
independently of subtyping.
The associated flat function is defined in Figure 2, and is used to capture type extension for

type refinements. f lat(τ ,σ , z) flattens the declaration types σ with self variable z into type τ .
Normally this would simply produce the type τ {z ⇒ σ }, however in the case where τ is itself a
type refinement, the two refinements are merged in order to produce a syntactically valid form.
Themerge and id functions are defined in Figure 3. These functions are relatively straightforward,
and merge two sets of declaration types and return the names of declaration types respectively.
The subtype semantics forWyvcore are defined in Figure 7. Subtyping is explicitly reflexive only

with regard to selection types on variables (S-R५६ॲ). Subtyping is bounded above by⊤ (S-Tॵॶ) and
below by ⊥ (S-Bॵॺॺॵॳ). A selection type subtypes those types above its upper bound and super
types those types below its lower bound (S-Uॶॶ५R and S-Lॵॽ५R respectively). The type L = τ

is in fact expressing τ as both the upper bound and the lower bound and thus for brevity’s sake,
S-Uॶॶ५R and S-Lॵॽ५R both apply to types of the form L = τ . This is captured in the rules
using L ⩽/= τ and L ⩾/= τ . Subtyping of dependent function types is defined in S-Aॲॲ, type bounds
are required to have a contra-variant relationship while the type bodies are required to have a
covariant relationship. Type refinement subtyping is relatively complex and is captured in the
S-R५६९ॴ५ and S-Eॾॺ५ॴ४ rules. S-R५६९ॴ५ compares two refinements on the same type. S-Eॾॺ५ॴ४
is essentially an upper bound lookup that takes refinements into account. Finally, subtyping of
member types is done per member type (S-D५३ॲॹ, S-D५३ॲ-Uॶॶ५R, S-D५३ॲ-Lॵॽ५R, S-D५३ॲ-E१ॲ
and S-D५३ॲ-V१ॲ).

3.2 Undecidability of Subtyping in Wyvcore

Subtyping inWyvcore is undecidable. This can be demonstrated by its encoding of System F<: and
the fact that this extension is a conservative one. Undecidability in System F<: is primarily the
result of a combination of two features: environment narrowing and contra-variance.
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3.2.1 Encoding System F<: in Wyvern. Subtyping in System F<: is subsumed by subtyping of
Wyvcore. This is easily demonstrated by the encoding in Figure 8 using a combination of type
members, structural subtyping and dependent function types. Such an encoding is simple, and
to be expected given the similarity of dependent function types in Wyvcore and the bounded poly-
morphism of System F<:. What might be surprising is that System F<: subtyping is subsumed by
Wyvern, even in the absence of dependent function types. Figure 9 provides an encoding of the crit-
ical aspects of System F<: using only selection types and recursive types. Note: the reader should
not attempt to draw any intuition from this encoding other than what is stated here. The encoding
of Figure 9 demonstrates howWyvcore captures the problematic aspects of subtyping in System F<:

(contra-variance, recursion and divergent contexts), and not necessarily the semantics of System
F<:. Indeed, bounded-quantification in System F<: is used to express function types, while its en-
coding in Figure 9 is captured by an object type. The salient point of Figure 9 is that the Wyvcore
encodes the undecidable fragment of System F<: (bounded-quantification), and thus transitively
Turing machines. Put another way, a decision procedure for subtyping inWyvcore constitutes a de-
cision procedure for subtyping in System F<:, and thus a general solution to the halting problem.

F (⊤) = ⊤
F (α ) = x .A
F (T1 → T2) = ∀(x : F (T1)).F (T2)

F (∀(α ⩽ T1).T2) = ∀(x :
{

A ⩽ F (T1)
}

).F (T2)

Fig. 8. Encoding F<: inWyvcore

F ′(α ) = z .A

F ′(∀(α ⩽ T1).T2) = ¬⊤

{

A ⩽ F (T1)
B ⩾ F (T2)

}

where ¬τ = ⊤
{

z ⇒ L ⩾ τ
}

Fig. 9. Encoding F<: inWyvcore without All Types

Cardelli and Wegner defined a subset of System F<: called Kernel F<: that restricts subtyping
of bounded quantification to invariance on type parameters [Cardelli and Wegner 1985]. Pierce
proved subtyping in Kernel F<: decidable [Pierce 2002]. Intuitively we might be inclined to pro-
pose a similar restriction on Wyvern and enforce invariance on the type parameters of dependent
function types in Wyvern, however this would not prevent the of encoding of System F<: using
recursive types (Figure 9). A similar restriction here would perhaps enforce invariance on lower
bounded type definitions (L ⩾ τ ), however this would excludemuch of the expressiveness of lower
bounds, in particular it would have severe consequences for the ability to write to polymorphic
data structures.

Castagna and Pierce 1994 proposed a decidable variant of bounded quantification, F⊤
<:
, that in-

troduced amodified subtype rule for universally quantified types, allowing for variant type bounds
while constraining additions to the context to ⊤. We provide this rule in Figure 10. Unfortunately,

Γ ⊢ S2 <: S1 Γ, α ⩽ ⊤ ⊢ U1 <: U2

Γ ⊢ (∀(α ⩽ S2).U2) <: (∀(α ⩽ S2).U2)
(S-Aॲॲ)

Fig. 10. Subtyping of BoundedQuantification in F⊤
<:.

F⊤
<:

was ultimately found to lack minimal typing4. While this is a drawback, F⊤
<:

might still inform
the search for a decidable variant of Wyvern. Unfortunately, F⊤

<:
is even less amenable to adap-

tation to Wyvcore than Kernel F<:. This can be seen by observing the restriction implied by the
encoding of Figure 9. The subtype rule of Figure 10 excludes the possibility for context divergence

4A discussion on this topic in the form of an email exchange is included as an appendix to a later version of the original

paper on one of the author’s homepage: http://www.cis.upenn.edu/~bcpierce/papers/fsubnew.ps
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during subtyping by requiring all bounds to be treated as⊤ during subtyping. Adapting this restric-
tion toWyvcore would require stripping all type information from type members during subtyping
by treating their bounds as ⊤ (or ⊥). Such a restriction would prohibit many useful instances of
expressiveness fromWyvcore, not least of all the nominality afforded by abstract type members.

3.3 Recursive Types, Contra-variance & Environment Narrowing

The problems for decidability in Wyvcore derive from the complex mix of Recursive Types, Subtype
Contra-variance and Environment Narrowing. The first two provide key aspects of expressiveness
inWyvcore, while the last fundamentally underpins much of the theoretical properties of languages
such asWyvcore and DOT. Recursive types are types that provide a way for types to refer to them-
selves recursively. Recursive types in Wyvcore and DOT resemble equi-recursive types, however
they are quantified over terms and not types. Contra-variance is a subtyping property that requires
subtyping in certain instances enforce an inverse relationship between the components of a type.
Environment narrowing is a property of DOT-like languages where types within contexts can be
changed during type checking to a more specific, “narrower” type. All three are interconnected.
In Wyvcore, type refinements provide both environment narrowing and recursive types. The cen-
tral vehicle for narrowing in the the subtype rules of Figure 7 is S-R५६९ॴ५, subtyping of recursive
types. Contra-variant subtyping (exhibited in both subtyping of dependent function types and
lower bounds of type members) allows for narrowing to occur on both sides of a subtype deriva-
tion. All three collectively contribute to issues of non-termination during subtyping. In this section
we describe these three features, try to identify how they connect to each other, and what they
each mean for expressiveness.

3.3.1 Recursive Types. Removing recursive types from Wyvcore would reduce the issues of decid-
ability to those of System F<: as the only other source of environment narrowing is S-Aॲॲ. The
wholesale sacrifice of recursive types removes several instances of valuable expressiveness, the
most important of which is the critical encoding of certain forms of polymorphic object types and
family polymorphism [Ernst 2001].
Languages such as Java, C# and Scala all provide a mechanism to construct new types from

existing ones while instantiating generic types using self references to generic types of the new
type. Below is an example modeling a Node type in a graph as a map from edges to other Nodes.

1 { self΂ => type Map <: ⊤{ type K <: ⊤, type V <: ⊤ }
2 type Node <: Map{ self΃ => type E <: ⊤, type Value <: ⊤

3 type K = self΃.E, type V = self΂.Node }}

Intrinsic to this encoding is the ability to refer to the current type (self1.E and self0.Node), i.e.
recursive types.
Family polymorphism refers to a type pattern where an entire family of types can be defined

and used polymorphically. The canonical example from Ernst is the family structure of a set of
related types that compose a graph. A simple example is given below.

1 type Graph = { self => type Node <: ⊤{
2 val neighbors : Map{ type K = self.Edge
3 type V = self.Node }}
4 type Edge <: ⊤{val origin, destination : self.Node}}

A graph is defined with a family of types, Node and Edge that are defined mutually. Specific instan-
tiations of Graphmust maintain these relationships. The above set of types are entirely dependent
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on the existence of recursive types since every use of Node or Edge is in fact a selection on the
implicit self variable of Graph.

Evidently recursive types are integral to the expressiveness ofWyvcore. In fact without recursive
types, no recursive data structures can be defined within Wyvcore!

3.3.2 Contra-variant Subtyping. Themost common example of contra-variance is exhibited in the
subtyping of function types in the typed lambda calculus that require argument types to maintain
an inverse relationship to the subtyping of the arrow type; this is captured in our S-Aॲॲ rule.
Further, inWyvcore lower bounds are contra-variant with regard to the member that refers to them.
Variant lower bounds are often used to model writable datatypes. The example below defines a
polymorphic write function that writes an Integer to a polymorphic list that can hold an Integer.

1 def write[E >: Integer](i : Integer, e : Integer,
2 l : List[E]) : List[E] = l.set(i, e)

Defining E as lower bounded allows write to be correctly typed as List[E]. Since E ^: Integer
in fact represents a lower bounded type member, any use (e.g. write[Number](^^.)) requires a
variance on the lower bound. Completely removing contra-variant subtyping would exclude an
entire class of useful programs.

3.3.3 Environment Narrowing. While environment narrowing is harder to point to with explicit
examples, it underpins most aspects of typing in a type system with path dependent types. As
has already been discussed, it is necessary in the subtyping of both dependent function types and
recursive types (S-Aॲॲ and S-R५६९ॴ५ in Figure 7). Environment narrowing is fundamentally inter-
twined with the derivation of subtype transitivity as demonstrated by the long struggle for type
safety for DOT. Environments are narrowed during subject reduction of functions, requiring well-
formedness to be maintained in the presence of a narrower type. This last instance in particular,
with the help of intersection types, can result in strange uninhabitable types being constructed
dynamically, throwing many notions of well-formedness into doubt.

3.4 Cyclic Type Definitions

The ability for types in Wyvcore to be explicitly cyclic in definition further complicates the deriva-
tion of a finite subtyping algorithm. The most obvious form of this is direct circularity ({z ⇒ L ⩽

z.L}), but this is a nonsensical type definition and can easily be avoided using cycle detection. More
complex and useful forms of type definitions do rely on circularity. Below we borrow an example
from Greenman et al..

1 {self΂ => type Equatable = ⊤{ self => type T >: ⊥, def equals : self.T -> bool}
2 type List = Equatable{ self =>
3 type T >: self΂.List{type E <: self΂.Equatable{ type T >: self.E }}
4 type E <: ⊤ }
5 type Tree = self΂.List{ type E <: self΂.Tree }}

List is defined polymorphically as Equatable to lists that contain elements Equatable to the
generic type of the current list. Tree is then modeled as a List of element type Tree. While each
definition can be justified, it leads to instances of cycles during subtype derivation. Specifically
the question of Tree ^: Equatable[Tree] requires itself as a subproof. A Java formulation of
this example results in a stack overflow error on compilation. Greenman et al. make use of a syn-
tactic separation (called the Material/Shape separation) on Java types that distinguishes between
concrete Material types such as Tree and abstract Shape types, such as Equatable, that facilitate
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cyclic definitions. They demonstrated that this ensured decidable subtyping for Java, and resulted
in an equivalent Java version of the above example being rejected.They also did an empirical study
showing that theMaterial/Shape separation discipline is already followed in essentially all existing
Java code.

Separation of types is based on cycles constructed by dependencies between types. In the previ-
ous example, List is dependent on both Equatable and itself. There is a cycle formed from List
to itself, facilitated by Equatable. Below we draw these dependencies.

1 type List = Equatable{ self =>
2 type T >: List{
3 type E <: Equatable{ type T >: self.E }}
4 type E <: ⊤ }Equatable

The problematic dependency is captured by the List
Equatable
−→ List edge. The definition of a

Shape is the set of type names that label edges that, when removed, result in a cycle-free type
graph. This may seem an opaque definition, but it has the effect that all type cycles contain at least
one Shape. That is, for any type, there is a maximal “shape depth”. In Java, this property coupled
with the prohibition of shapes from use in type parameters, provides the key property that for any
subtype comparison in Material/Shape separated Java, there is a maximal depth beyond which
shapes do not occur. As shapes are by definition required for recursive type definitions, subtyping
is guaranteed to terminate.

3.4.1 Designing Material/Shape Separated Wyvcore. We design a Material/Shape separation for
Wyvcore based on that of Greenman et al.. We start first be defining a separation on type names in
Wyvcore in Figure 11. Next we identify a conceptual mapping from Material/Shape separated Java

L ::= Type Label

M Material

S Shape

Fig. 11. Material/Shape Separation on Type Names

toWyvcore. At first glance this seems like a relatively simple task, type definitions play the role of
class definitions in Java, while type members also assume the role of generic type parameters. The
complexities of path dependent types however make it difficult to separate types in such a way as
to both imitate the separation in Java and ensure decidable subtyping.
At the center of the complexity is the economy of concepts afforded by languages such as

Wyvern and DOT. Path dependent types are used to model several different aspects of modern
programming languages: bounded polymorphism, Java generics style parametric polymorphism,
and nominality. The expression of concepts by a common syntax conflates any separation on one
concept with a separation on another. The Material/Shape separation on Java uses qualities of the
nominal type hierarchy (modeled in Wyvcore with type members) to enforce a syntactic prohibi-
tion on usages of Shapes in generic type parameters (also modeled inWyvcore with type members).
Further, the subtype decidability argument of Material/Shape separated Java is dependent on the
strict nominal nature of the Java type hierarchy, while subtyping with bounded type members
always allows subtyping to be derived via structural subtyping.
The conceptual conflation is most apparent when attempting to directly apply the prohibition

from Java of Shapes to generic types. As has been noted, generic types are modeled inWyvcore by
type members, thus it would seem natural to prohibit Shapes from use in type members. But we
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σ ::= Decl. Type

.

.

.

L � τ

Fig. 12. Nominal Syntax forWyvcore

Γ ⊢ x ∋ M � τ

Γ ⊢ x .M ⩽:: τ
(E-M१ॺ)

Γ ⊢ x ∋ S � τ

τ = x ′.S ′ {z ⇒ σ }

Γ ⊢ x .S ⩽:: τ
(E-S८१ॶ५)

Fig. 13. Nominal Extension Rules for Wyvcore

have also noted that the type hierarchies and type dependencies that are used to define Shapes
are also derived from type members. A prohibition on Shapes in type member definitions would
prohibit the very mechanism used to identify Shapes, and ultimately all type cycles.

3.4.2 Nominality with PathDependent Types. The tension between these two concepts (nominality
and polymorphism) would seem to be alleviated by separating them within the syntax. First we
seek to understand nominality in Wyvcore. Section 2.4 provided an example of how nominality
arises in languages such as Wyvcore and DOT, and we will refer to that example here.

Nominality in Wyvcore or DOT does not constrain the type hierarchy in the same manner as
the class hierarchy of a language such as Java. Super types of List have no constraints except
the structure of List. This has implications for a separation on types. Part of the decidability
argument of the Material/Shape separation in Java is that Shapes do not give rise to Materials
through extension, that is a Shape cannot extend a Material. In Wyvcore this is not the case, it is
always possible to use the upper bound of an abstract type for subtyping purposes, and it is not
possible for every Shape to only extend other Shapes. At some point a Shape must be defined as
an extension on a Material (most likely ⊤).
Nominality inWyvcore is also only relevant to abstractly defined types (L ⩽ τ ). Lower bounded

types (L ⩾ τ and L = τ ) cannot rely on such a hierarchy since it is possible to subtype a use
of that type by subtyping the lower bound. Since the separation of Shapes from Materials relies
on such hierarchy, this implies that lower bounded types may not use Shapes at all. Thus, we
would be inclined to prohibit the use of Shapes from all type definitions of the form L ⩾ τ or
L = τ . Such a restriction, however would make it impossible Shapes to ever be meaningfully
used. While abstractly defining a type allows for implementation to be hidden, in order for it to
be initialized, there must be some non-abstract, concrete definition of the type of the form L = τ .
As an example, the List definition of Section 2.4 is abstract, but at run-time, there must exist a
concrete ListAPI that contains a specific implementation of List. If Shapes themselves must be
abstract, then the only way to subtype them would be by refinement, which would necessitate
a Shape usage in a concrete type definition (L = τ ), which as we have already seen must be
prohibited. This contradiction arises from the conflation of patterns that type members provide.
In order to allow concrete types to observe nominal subtyping, we introduce nominality in to the
syntax.

3.4.3 A Syntactic Form for Nominality. We extend Wyvcore with two additions that address the
nominality issues inWyvcore: a syntactic form for nominality (Figure 12), and a semantic restriction
on the extension of that nominal form (Figure 13). On top of the existing syntactic forms for type
members, we also allow the definition L � τ , a nominal form for concrete types. In L � τ , we mix
the semantics of concrete exact types (L = τ ) with that of abstract upper bounded types (L ⩽ τ ).
Nominally defined type members can be thought of as exact type members that are not considered
as having an explicit lower bound. As with abstract type members, the only way to subtype a type
defined as L � τ , is by type refinement, and the only way to super type it is by type extension (by
S-Eॾॺ५ॴ४). This allows the familiar form of selection types, but a more restricted semantics that
observes a traditional nominal type hierarchy. Extension of a nominally defined type (Figure 13)
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τ ::= Type

µ {z ⇒ σ }

τ {z ⇒ δ }

x .L

∀(x : τ ).τ

⊤

⊥

σ ::= Decl. Type

L ⩽ τ

M ⩾ µ

L = µ

L � τ

l : µ

µ ::= Mat.

µ {z ⇒ δ }

x .M

∀(x : µ).µ

⊤

⊥

δ ::= Mat. Decl

L ⩽ µ

M ⩾ µ

L = µ

L � µ

l : µ

Fig. 14. Material/Shape Separated Wyvcore Syntax: Unseparated Types (τ ), Unseparated Declaration Types

(σ ), Pure Material Types (µ), and Pure Material Declaration Types (δ )

introduces a semantic change toWyvcore by only allowing extension of Shapes by other Shapes (E-
S८१ॶ५). While shapes can be defined using ⊤ (a material), they cannot be arbitrarily super typed
(in a structural manner), thus during subtyping Shapes can only give rise to other Shapes. This
ensures that the Shapes in Wyvcore can never be structurally inspected, and observe nominality
not only from subtyping, but also from super typing.

4 MATERIAL/SHAPE SEPARATEDWYV core

We now introduce the Material/Shape separation on the nominal Wyvcore. The syntax for Materi-
al/Shape separated Wyvern is defined in Figure 14. Types are divided in to two categories, pure
Materials (µ and δ ) that contain no uses of Shapes and general unseparated types (τ and σ ) that
may contain either Shapes or Materials. Shapes are restricted in type definitions to only upper
bounded abstract types and nominal type members, thus only to types that obey a nominal style
type hierarchy. Shapes may only be refined by pure Material refinements, and refinements con-
taining Shapes may only be placed on pure materials.
Material/Shape separated Wyvcore is not itself decidable, but provides a common separation on

types for the decidable variants presented in this paper. We define a common decidability argu-
ment on the type graphs discussed in Section 3.4 that subsequent decidable variants all target
as an intermediate representation. To ensure decidability the following separation properties are
statically enforced on type definitions before type checking.

S५ॶ१R१ॺ९ॵॴ PRॵॶ५Rॺॿ 1. All type names are either Materials or Shapes.

S५ॶ१R१ॺ९ॵॴ PRॵॶ५Rॺॿ 2. All type cycles contain a Shape.

S५ॶ१R१ॺ९ॵॴ PRॵॶ५Rॺॿ 3. Lower bounds do not contain Shapes

S५ॶ१R१ॺ९ॵॴ PRॵॶ५Rॺॿ 4. All usages of Shapes are type refinements.

These separation properties ensure several aspects of subtyping that aid in the derivation of
subtype decidability: (i) There is a maximal depth on each type until a Shape is reached, (ii) new
Shapes cannot be introduced on the right-hand side of subtyping, and (iii) Subtyping of a Shape
removes all Shapes from the right-hand side.
The key intuition to be taken from the separation of Figure 14 and the 4 separation properties

is related to the Material/Shape separation of Java. Material/Shape separated Java guarantees that
during subtype checking there is a maximal proof search depth, beyond which no Shapes occur.
Material/Shape separated Wyvcore guarantees that there is a maximal proof search depth, beyond
which no Shape occurs on the right hand side. Since, by separation property 4, all cyclic type
definitions must pass through a shape, subtype checking in Wyvcore is assured to be bounded by
a finite measure on the right hand side. Thus, the syntax of Figure 14 prohibits Shapes from those
positions that would allow Shapes to be introduced on the right hand side during subtype checking,
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i.e. lower bounds. Further, the syntax of Figure 14 ensures that type refinements with a Shape base

type (τ {z ⇒ δ }) must be pure materials. The reader might note that parameter types of dependent
function types allow for Shape, but are contra-variant, and thus allow for Shapes to be introduce on
the right hand side during subtype checking. This is something that will be dealt with specifically
by each variant on Wyvcore.

4.1 Type Graphs

Sections 5 and 6 provide proofs of subtype decidability for their respective subtype semantics. In
this section we provide a subtype algorithm for a common target, type graphs. For the most part,
type graphs mirror types, and in the absence of path dependent types, are equivalent to types.
Types however do not include all the type information required during subtyping (type member
definitions and type extension) as syntactic sub-components. A type graph is a graphical repre-
sentation of a type that includes this relationship. We provide the full definition of the encoding
of type graphs in the associated technical report, but provide the intuition here.
A type graph consists of nodes representing both types and declaration types, with directed

edges representing dependencies between types. Edges exist from a type to all types that are syn-
tactic sub-components it (e.g.∀(x : τ1).τ2 has out-edges to both τ1 and τ2). Edges also exist between
path dependent types and their definition. We provide the full formal rules for deriving the edges
of type graphs (written as Γ ⊢ τ −→ τ ′) in the associated technical report, but provide some
informal definitions below:

• The type graph of a type τ {z ⇒ σ } in context Γ contains out-edges to each node representing
each σ in σ , along with an out-edge to the node representing type τ ′, such that Γ ⊢ τ {z ⇒

σ } ⩽:: τ ′.
• The type graph of a selection type x .L in context Γ contains an out-edge to the node repre-
senting its definition σ such that Γ ⊢ x .L ∋ σ and id(σ ) = L.

• The type graph of a dependent function type ∀(x : τ1).τ2 contains out edges to the nodes
representing both τ1 and τ2.

We have actually already discussed the construction of type graphs for type declarations and
their edges. Recall the List/Equatable example:

1 type List = Equatable{ self΂ =>
2 type T >: List{ self΃ => type E <: Equatable{ self΄ => type T >: self΂.E }}
3 type E <: ⊤ }Equatable

Type refinements not only point to their component types, but also the type extension that they
represent. In the above example, the type List{ type E = Int } depends not only on its syntac-
tic subcomponents (Int), but also on its extended type, constructed by merging the refinement
{ type E = Int } with the definition of List:

Equatable

{

self ⇒
type T ^: List{type E ^: Equatable{type T ^: self.E}
type E = Int

}

The Material/Shape separation defined in Section 4 ensures that all type cycles within a type
graph contain at least one Shape. Thus, it follows that from any Material/Shape separated type
graph, by splitting the graph at nodes representing Shapes, we are able to derive a forest of trees
where terminal nodes represent either ⊤, ⊥ or a Shape x .S . While the full graph of List is fairly
large (see associated technical report 5), we do provide a portion of the graph for List in Figure 15.

5https://bit.ly/36SL5zv
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While the definition of List and Equatable would be rejected by the Material/Shape separation

Equatable{ … }

Equatable{ … }

self0^:T ⩾ ^^.

self0^:E ⩽ ^^. self1^:E ⩽ ^^.

List List{^^.}

⊤

Fig. 15. A Partial Type Graph of List

due to the use of a Shape, Equatable, in the lower bound of T, the tree in Figure 15 helps illustrate
how type trees are constructed. We now define a measure on type graphs in Figure 16. It is simple
to see that since the measure in Figure 16 is a depth measure on Shapes, and every type cycle
contains a Shape, S(τ ) is finite for every appropriately separated type (and its type graph).

S(⊤) = 0

S(⊥) = 0

S(x .S ) = 0

S(x .M ) = 1 + S(definition of x .M )

S(∀(x : T1).T2) = 1 +max (S(T1), S(T2))

S(T {z ⇒ D }) = if T is a shape
then 0

else 1 +max (S(T ), S(D))

S(L ⩽ T ) = 1 + S(T )
S(L ⩾ T ) = 1 + S(T )
S(L = T ) = 1 + S(T )
S(L � T ) = 1 + S(T )
S(l : T ) = 1 + S(T )

Fig. 16. Shape Depth Measure on Type Graphs

During the proof of termination, we also make use of the “extension depth” of Shapes. That is,
by the definition of Shapes, we know that cycles must all pass through dependencies between type
definitions and refinements in their definitions. It follows from this that no typemay be a transitive
extension of itself. This is in line with the definition of Java classes (a class may not inherit from

itself transitively), and abstract type members in Scala. Thus, for any Shape, x .S{z ⇒ δ }, there is
a finite depth of extension, and further, by Figure 13, all type extended by shapes are themselves
Shapes. Figure 17 provides the extension depth measure for type graphs. We state the subtyping

E(x .L) = 1 + E(T )
where x .L ⩽:: T
in some defining context for x .L

E(T {z ⇒ D }) = 1 + E(T )

E(⊤) = 0

E(⊥) = 0

E(∀(x : T1).T2) = 0

Fig. 17. Extension Depth Measure on Type Graphs

algorithm for type graphs in Algorithm 1. We subsequently prove that for type graphs that obey
theMaterial/Shape separation, all evaluations of subtype are guaranteed to terminate.This is stated
in Theorem 4.1, along with a proof sketch. We provide the full proof in the associated technical
report.

T८५ॵR५ॳ 4.1 (Tॿॶ५ GR१ॶ८ D५३९४१२९ॲ९ॺॿ). Any call to Algorithm 1, subtype(T1,T2) will termi-

nate for all inputs.

PRॵॵ६. The proof is constructed in three parts:

(1) All calls of the form subtype(S,M), where S is the type graph of a Shape (guaranteed to be a
type refinement by Separation Property 4), andM is the type graph of a pure material type,
are guaranteed to terminate.
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subtype(T1,T2)
switch T1 do

case ⊤ do
switch T2 do

case ⊤ do return true;

case x .L do return subtype(T1 , lower_bound(x .L)) ;
otherwise do return false;

end

case ⊥ do return true;

case x1 .L1 do
switch T2 do

case ⊤ do return true;
case x2 .L2 do return (x2 == x2 ∧ L1 == L2) ∨ subtype(upper_bound(x1 .L1), T2)∨ subtype(T1 ,
lower_bound(x .L)) ;

otherwise do return subtype(upper_bound(x1 .L1), T2) ;
end

case ∀(x : S1).U1 do
switch T2 do

case ⊤ do return true;

case x .L do return subtype(T1 , lower_bound(x .L)) ;
case ∀(x : S2).U2 do return (subtype(S2 , S1)) ∧ subtype(U1,U2) ;
otherwise do return false;

end

case T ′
1
{z ⇒ D1 } do

switch T2 do
case ⊤ do return true;

case x .L do return subtype(T1 , lower_bound(x .L)) ;
case T ′

2
{z ⇒ D2 } do

if T ′
1
== T ′

2
then

return subtypeDecl(D1, D2)
else

switch extends(T1, D1) do
case Some(T ) do return subtype(T ,T2);
otherwise do return false;

end

end

otherwise do return false;

end

end
subtypeDecl(D1, D2)

switch D1, D2 do
case L1 ⩽ T1, L2 ⩽ T2 do

if L1 = L2 then subtype(T1,T2);
else return false;

case L1 = T1, L2 ⩽ T2 do
if L1 = L2 then subtype(T1,T2);
else return false;

case L1 ⩾ T1, L2 ⩾ T2 do
if L1 = L2 then subtype(T2,T1);
else return false;

case L1 = T1, L2 ⩾ T2 do
if L1 = L2 then subtype(T2,T1);
else return false;

case L1 = T1, L2 = T2 do
if L1 = L2 then subtype(T2,T1) ∧ subtype(T1,T2);
else return false;

case L1 � T1, L2 � T2 do
if L1 = L2 ∧T1 = T2 then true;

else return false;

case l1 : T1, l2 : T2 do
if l1 = l2 then subtype(T1,T2);
else return false;

otherwise do return false;

end

Algorithm 1: Wyvcore Type Graph Subtyping Algorithm
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(2) All calls of the form subtype(T ,M), where M is the type graph of a pure material type, are
reducible to a finite set of calls of the form subtype(S,M ′), and thus guaranteed to terminate.

(3) All calls of the form subtype(T1,T2) are reducible to a finite set of calls of the form
subtype(T ,M), and thus guaranteed to terminate.

Case 1. By case analysis on M , it is easy to see that all subsequent calls arising from
subtype(S,M) also have material types on the right hand side (either M itself, or the lower
bound of some path dependent type selection). Similarly, the only new types that may arise
on the left hand side are types that are extended by S (also Shapes by Figure 13). Since cy-
cles are defined by labeled edges connecting type definitions to refining declaration types,
it follows that all extensions are acyclic, i.e. types may not transitively extend themselves.
Thus, by an ordering on the sum of the extension depth of S and the Shape depth (S) of M ,
it is clear that each successive call is strictly smaller than the last.

Case 2. It is demonstrable that for any call of the form subtype(T ,M), all subsequent calls
are of the form subtype(T ′

,M ′) (given that any new type that arises on the right-hand side
is either the lower bound of some type definition and thus a material, or a syntactic sub-
component of a pure material, and thus also a material). Given, Separation Property 4, we
know that the measures S(T ) and S(M) are finite. Thus the measuremax(S(T ),S(M)) rep-
resents the maximal depth at which all remaining calls are of the form subtype(S,M ′) for
some S andM ′.

Case 3. Using similar reasoning to Cases 1 and 2, and the finite shape depth measuresS(T1)
and S(T2), we know that there is some finite shape depth at which at either (1) the left, or
(2) the right hand side is a shape.

Subcase 1. If the left hand side is a Shape, then as in Case 1, all subsequent calls will feature
a Shape on the left hand side unless the right hand side is also a Shape. Thus, as in Case
1, by an ordering on the sum of the extension depth of the left hand side, and the Shape
depth on the right hand side, each successive call is strictly smaller than the last, either
terminating, or resulting in a Shape on the right hand side with the same base type. Given
that by the separation properties, all refinements on Shapes are restricted to pure materials,
all subsequent calls to subtype will be of the form subtype(M1,M2), and thus guaranteed to
terminate.

Subcase 2. If the right hand side is a Shape, then by the separation properties it is a refine-
ment on a Shape, and can only be evaluated by a case of S-R५६९ॴ५. Thus, the proof depth of
subtype is bound by the finite Shape depth of the left hand side. Once a Shape is reached on
the left hand side too, the proof search depth of subtype is bound by the extension depth of
the left hand side.

□

5 RESTRICTING RECURSIVE TYPES

In this section we define a restriction on recursive types that ensures decidable subtyping.Wyvself
is a variant of Wyvcore that restricts the usage of recursive types from pure material types. Thus
the Material/Shape separation also implies a separation on the use of recursive types. This does
not mean that Material types may not use recursive types in their definition, only that recursive
types are prohibited from anywhere Shapes are. The modified syntax and subtype semantics are
defined in Figure 18. In effect this restricts recursive types from lower bounded (L ⩾ τ ) and exact
type members (L = τ ). A further semantic restriction inspired by Kernel F<: [Cardelli andWegner

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 66. Publication date: January 2020.



Decidable Subtyping for Path Dependent Types 66:19

1985] is made on subtyping of bounded function types to enforce invariance on function argument
types.

µ ::= Material Type

.

.

.

µ {δ }

Γ, x : τ ⊢ τ1 <: τ2

Γ ⊢ ∀(x : τ ).τ1 <: ∀(x : τ ).τ2
(S-Aॲॲ)

Fig. 18. Wyvself Syntactic/Semantic Extension

5.1 Subtype Decidability

We provide a sketch of the subtype decidability proof here. The full proof is provided as a formu-
lation in Coq6.

T८५ॵR५ॳ 5.1 (Sॻ२ॺॿॶ९ॴ७ ९ॴ Wyv self ९ॹ D५३९४१२ॲ५). For all Γ, τ1 and τ2, there exists a finite

algorithm subtype that returns true if and only if Γ ⊢ τ1 <: τ2.

PRॵॵ६. The proof is constructed in two parts:

(i) Subtype questions of the specific form Γ ⊢ τ <: µ are decidable.
(ii) Subtype questions of the general form Γ ⊢ τ1 <: τ2 reduce to the more specific form Γ ⊢

τ <: µ, and thus decidable.

Case 1 (Subtyping of materials inWyvself is decidable). Thefirst fact to be noted is that in problems
of the form Γ ⊢ τ <: µ, narrowing does not occur since recursive types may not occur on the right-
hand side, and the rule S-Aॲॲ enforces invariance on the argument type. Thus, during subtyping,
all types are homomorphic to a type graph constructed during cycle detection, and observe the
Separation Properties of Section 3.4. Since the right-hand side of the subtype problem is a pure
material type, no Shapes can be introduced on the right-hand side. Thus there exists a finite depth
at which a Shape occurs on the left-hand side. If τ = x .S{z ⇒ . . .} for some x, S and z, then
there can be no subsequent contra-variance because contra-variance would require a Shape on the
right-hand side. Subtyping is thus bound by the right-hand side which in the absence of Shapes is
necessarily finite.

Case 2 (Subtyping in Wyvself is decidable). Given that narrowing does not affect the left-hand
side, τ1 and types that arise from it are homomorphic to some type graph contstructed during
cycle detection, and thus there is a finite depth at which a Shape occurs on the right-hand side. If
τ2 is a Material then Case 1 already applies, otherwise if τ2 is a Shape, then by Separation Property
4, refinements on both sides only contain only pure materials, also fulfilling Case 1.

□

5.2 Expressiveness in Wyvself

5.2.1 Polymorphism. As noted in Section 3.3, recursive types provide key expressiveness exam-
ples in using polymorphic types in type definitions and family polymorphism.Themajor drawback
of restricting recursive types is that these examples are restricted. The prior example of defining
Node using the Map type is not possible since it would require the use of a recursive type in the
lower bound of Node. It is useful then that Wyvcore introduces the nominal form of type members
that allows concrete types to be defined without defining a lower bound. Below we rewrite the
example of Section 3.3.

6https://bit.ly/36SL5zv

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 66. Publication date: January 2020.

https://bit.ly/36SL5zv


66:20 Julian Mackay, Alex Potanin, Jonathan Aldrich, and Lindsay Groves

Γ1 ⊢ τ <: ⊤ ⊣ Γ2 (S-Tॵॶ) Γ1 ⊢ ⊥ <: τ ⊣ Γ2 (S-Bॵॺॺॵॳ) Γ1 ⊢ x .L <: x .L ⊣ Γ2 (S-R५६ॲ)

Γ1 ⊢ x ∋ L ⩽/= τ ′ Γ1 ⊢ τ ′ <: τ ⊣ Γ2

Γ1 ⊢ x .L <: τ ⊣ Γ2

(S-Uॶॶ५R)
Γ2 ⊢ x ∋ L ⩾/= τ ′ Γ1 ⊢ τ <: τ ′ ⊣ Γ2

Γ1 ⊢ τ <: x .L ⊣ Γ2

(S-Lॵॽ५R)

Γ2 ⊢ τ2 <: τ1 ⊣ Γ1

Γ1, x : τ1 ⊢ τ ′
1

<: τ ′
2
⊣ Γ2, x : τ2

Γ1 ⊢ ∀(x : τ1).τ
′
1

<: ∀(x : τ2).τ
′
2
⊣ Γ2

(S-Aॲॲ)
Γ1 ⊢ τ1 ⩽:: τ Γ1 ⊢ τ <: τ2 ⊢ Γ2

Γ1 ⊢ τ1 <: τ2 ⊣ Γ2

(S-Eॾॺ५ॴ४)

Γ1, z : τ {z ⇒ σ 1 } ⊢ σ 1 <: σ 2 ⊣ Γ2, z : τ {z ⇒ σ 2 }

Γ1 ⊢ τ {z ⇒ σ 1 } <: τ {z ⇒ σ 2 } ⊣ Γ2

(S-R५६९ॴ५)

Fig. 19. Wyvfix Subtyping

1 type Node � Map{ self΃ => type E <: ⊤, type Value <: ⊤

2 type K = self΃.E, type V = self΂ .Node }

As the nominal definition of Node can not be subtyped by a lower bound, there does not need to
be a restriction on recursive types. The same strategy can be used to encode the example of family
polymorphism in a different way (since the original approach, with normal lower bounds, doesn’t
work with this restriction).

1 type Graph � {type Node <: {val neighbors : Map[Edge, Node]}
2 type Edge <: {val origin, destination : Node}}

5.2.2 Encoding Java in Wyvself. It is notable that Material/Shape separated Java is encodable in
Wyvself. In the associated technical report we provide an encoding for a fragment of Java Generics

in to Wyvself
7. We also provide a proof that Java subtyping is subsumed by Wyvself subtyping.

Apart from the fact that we restrict type parameters to a single bound, this encoding mirrors that
of Greenman et al.. While restricting type parameters to a single bound is less expressive than
Material/Shape separated Java, Java itself only allows a single bound. The absence of intersection
types in Wyvcore (and thus Wyvself) also presents a loss of expressiveness over Java: Wyvcore is
unable to model the subtyping that arises from multiple inheritance in Java.

6 REMOVING ENVIRONMENT NARROWING

Wyvfix is a variant of Wyvcore that removes environment narrowing entirely from the subtype
semantics. Wyvfix is syntactically identical to Wyvcore, but modifies the subtype semantics to fix
types to their original defining environments. This is done by including a second environment
during subtyping in order to type the right-hand type. The resulting subtype judgment is double-
headed, contextualizing each type within its own environment. The subtype semantics are defined
in Figure 19.We omit the declaration subtype rules as they are straightforward. As noted in Section
4, we must still address the issue of the use of Shapes in the argument types of dependent function
types. In Figure 20 we define a restricted syntax for Wyvfix that restricts argument types to pure
materials.

7https://bit.ly/36SL5zv
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τ ::= Material Type

.

.

.

∀(x : µ).τ

Fig. 20. Wyvfix Syntactic Extension

6.1 Subtype Decidability

The subtype decidability argument is relatively easy forWyvfix given the complete exclusion of any
form of environment narrowing. In this Section we provide a proof sketch of Subtype Decidability
inWyvfix, but the full argument is provided as a Coq formulation.

T८५ॵR५ॳ 6.1 (Sॻ२ॺॿॶ९ॴ७ ९ॴ Wyvfix ९ॹ D५३९४१२ॲ५). For all Γ1, τ1, Γ2 and τ2, there exists a finite
algorithm subtype that returns true if and only if Γ1 ⊢ τ1 <: τ2 ⊣ Γ2.

PRॵॵ६. We construct our proof by constructing type graphs for τ1 in Γ1 and τ2 in Γ2. Since there
is no narrowing, it can be demonstrated that all types involved in subsequent questions that arise
out of Γ1 ⊢ τ1 <: τ2 ⊣ Γ2 are mappable to type graphs that are a subgraph of those constructed
for either τ1 or τ2. The proof of decidability proceeds by comparing these two type graphs and
demonstrated in two parts:

(i) Subtype questions of the specific form Γ ⊢ τ <: µ are decidable.
(ii) Subtype questions of the general form Γ ⊢ τ1 <: τ2 reduce to the more specific form Γ ⊢

τ <: µ ⊣ Γ2, and are thus decidable.

Case 1 (Subtyping of materials in Wyvfix is decidable). Given the syntactic separation imposed
in Figure 14, for any question of subtyping that features a material on the right-hand side, all
subproofs must also have a material on the right-hand side. Thus, any algorithm that is equivalent
to the subtyping in Figure 19 is bound by a finite Shape depth on the left-hand side. Once a shape
is reached on the left-hand side, the restriction on extension of Shapes in Figure 13 means no
materials may subsequently occur on the left-hand side. Thus, subtyping is bounded by the finite
depth of any type refinement (which must be a material) on the right-hand side.

Case 2 (Subtyping in Wyvfix is decidable). Since every type cycle must include a Shape, there
is a finite depth at which a subtyping must conduct a Shape comparison using S-R५६९ॴ५. Since
type refinements on Shapes must be pure material types, it follows that all subsequent subtype
questions must have a Material on the right-hand side.

□

6.2 Subtype Transitivity

The central drawback of Wyvfix is the loss of transitivity. The most effective way to see this is
through the following example.

1 type A = {w => type L = Integer, type L ' >: Integer}
2 type B = {w => type L = Integer, type L ' >: w.L}
3 type C = {w => type L <: ⊤, type L ' >: w.L}

While A <: B and B <: C, unfortunately A≮: C. The lack of transitive subtyping in the above example
is due to the separation of type information during subtyping between the two environments,
thus during subtype checking, neither ΓA nor ΓC contain the most specific type information. ΓB
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does contain the necessary type information, but is not available during subtype checking, at least
not in any kind of algorithmic way. Contra-variance is also required to break transitivity. If the
example lacked any types in a contra-variant position, then the left-most environment (ΓA) would
always contain the most specific type information, and thus subtyping would be derivable.
The above example not an entirely unreasonable example that can be written off as some kind

of corner case. A similar scenario might arise in a data structure that had an element type and a
programmer wanted to include a write function such as append or replace. What is encouraging
though is that A does not lack members that C contains, and thus it would be possible to construct
a workaround with the help of a cast function that cast terms of type A to B.

7 TYPE SAFETY

Before we construct a type safety argument for Wyvcore or any of its variants, we first define a
term syntax (Figure 21), term typing (Figure 24), expansion of types (Figure 22), term membership
(Figure 23), definitions for evaluation contexts and stores (Figure 25), and an operational semantics
(Figure 26). A Term is either a variable, a new expression, or a method call. A Declaration is
either a type or a method declaration. Term typing is very similar to that of DOT [Rompf and
Amin 2016], differing only in the use of membership for terms instead of typing, and the use of
Wyvcore Type Expansion (Figure 22). Type expansion ensures that a type instantiated in a new
expression expands to some concrete set of member types. This is not necessary in DOT as typing
of intersections of declarations is done by an intersection of declaration types. In the absence of
declaration types we introduce type expansion.
Finally, the operational semantics, associated evaluation contexts, and stores are defined in Fig-

ures 25 and 26. These are identical to that of DOT, and are standard.

7.1 Wyvcore

Type safety is not that surprising given the similarities to DOT. In fact, the type safety argument
is constructed by leaning on the type safety argument of DOT. We construct an encoding from

Wyvcore to DOT: Wyvcore
D
7→ DOT. We subsequently demonstrate that the typing in Figure 24 and

the reduction in Figure 26 represent subsets of the semantics of DOT. We provide this encoding
and the type safety argument in the associated technical report8, but outline the approach here.
The type safety argument for Wyvcore is constructed in five theorems:

(1) Lemma 7.1 proves that membership in Wyvcore implies a typing in DOT.
(2) Lemma 7.2 proves that subtyping in Wyvcore implies an equivalent subypting in DOT.
(3) Lemma 7.3 proves that typing in Wyvcore implies an equivalent typing in DOT.
(4) Lemma 7.4 proves that term reduction in Wyvcore implies an equivalent term reduction in

DOT.
(5) Theorem 7.1 proves that term reduction in Wyvcore does not get stuck.

L५ॳॳ१ 7.1 (WyvcoRe ॳ५ॳ२५Rॹ८९ॶ ९ॳॶॲ९५ॹ DOT ॺॿॶ९ॴ७). For all Γ, x , σx , στ and τ , if Γ ⊢ x ∋ σx
and Γ ⊢ στ ∈ τ then D(Γ) ⊢ x : {D(σx )} and ∀y, such that D(Γ) ⊢ y : D(τ ), D(Γ) ⊢ y :

{D([y/z]στ )}.

L५ॳॳ१ 7.2 (DOT ॹॻ२ॹॻॳ५ॹ WyvcoRe ॹॻ२ॺॿॶ९ॴ७). For all Γ, τ1 and τ2, if Γ ⊢ τ1 <: τ2 then

D(Γ) ⊢ D(τ1) <: D(τ2).

L५ॳॳ१ 7.3 (DOT ॹॻ२ॹॻॳ५ॹWyvcoRe ॺॿॶ९ॴ७). For all Γ, t and τ , if Γ ⊢ t : τ then D(Γ) ⊢ D(t) :

D(τ )

8https://bit.ly/36SL5zv

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 66. Publication date: January 2020.

https://bit.ly/36SL5zv


Decidable Subtyping for Path Dependent Types 66:23

t ::= Term

x variable

new {τ ⇒ z }d object

t .m(t ) method call

x ::= Variable

y concrete var

z abstract var

d ::= Declaration

L = τ type

m : ∀(x : τ ).τ = t method

v ::= value

y

Fig. 21. Wyvcore Term Syntax

Γ ⊢ ⊤ � {z ⇒ ∅}

Γ ⊢ x ∋ L �/= τ

Γ ⊢ τ � τ ′

Γ ⊢ x .L � τ ′

Γ ⊢ τ � τ ′

Γ ⊢ τ {z ⇒ σ } � f lat (τ ′, σ , z)

Fig. 22. Wyvcore Type Expansion

Γ ⊢ t : τ Γ ⊢ σ ∈z τ z < f v(τ )

Γ ⊢ t ∋ σ

Fig. 23. Wyvcore Term Membership

Γ(x ) = τ

Γ ⊢ x : τ
(T-V१R)

Γ ⊢ t0 ∋ m : ∀(z : τ1).τ2
Γ ⊢ y : τ

Γ ⊢ τ <: τ1

Γ ⊢ t0 .m(y) : [y/z]τ2
(T-IॴॼK1)

Γ ⊢ t0 ∋ m : ∀(z : τ ′).τ

Γ ⊢ t : τ2
Γ ⊢ τ2 <: τ ′

x < f v(τ )

Γ ⊢ t0 .m(t ) : τ
(T-IॴॼK2)

Γ ⊢ τ � {z ⇒ σ }

d has distinct labels

Γ, z : τ ⊢ d : σ ′
Γ, z : τ ⊢ σ ′

<: σ

Γ ⊢ new {τ ⇒ z }d : τ
(T-N५ॽ)

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (m : ∀(x : τ1).τ2 = t ) : (m : ∀(x : τ1).τ2)
(T-M५ॺ८) Γ ⊢ L = τ : L = τ (T-Tॿॶ५)

Fig. 24. Wyvcore Typing

E ::= Eval. Context

[ ] hole

E .m(t )

y .m(E)

γ ::= Store

∅

y 7→ new {τ ⇒ z }d , γ

Fig. 25. Wyvcore Evaluation Contexts and Store

γ (y) = new {τ ⇒ z }d

(m : ∀(x : τ1).τ2 = t ) ∈ d

y .m(y′) −→ γ | [y/z][y′/x ]t
(R-IॴॼK)

y fresh in γ γ ′
= γ [y 7→ new {τ ⇒ x }d ]

γ | new {τ ⇒ z }d −→ γ ′ | y
(R-N५ॽ)

t −→ t ′

E[t ] −→ E[t ′]
(R-Cॺॾ)

Fig. 26. Wyvcore Operational Semantics

L५ॳॳ१ 7.4 (DOT T५Rॳ R५४ॻ३ॺ९ॵॴ ॹॻ२ॹॻॳ५ॹ WyvcoRe T५Rॳ R५४ॻ३ॺ९ॵॴ). For all t and t ′, if

t −→ t ′ then D(t) −→ D(t ′).

T८५ॵR५ॳ 7.1 (WyvcoRe ९ॹ Tॿॶ५ S१६५). For all t and τ , if ∅ ⊢ t : τ , then term reduction of t does

not get stuck.

7.2 Wyvself

The semantics of Wyvself are equivalent to that of Wyvcore, and represents only a syntactic subset,
thus the type safety of Wyvself is derived implicitly from the type safety of Wyvcore. This is an
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advantage of a syntactic restriction over a semantic one, the inheritance of semantic properties is
immediate.

7.3 Wyvfix

Type safety in Wyvfix is more complex as it represents a semantic departure from Wyvcore rather
than a syntactic one. It is certainly not possible to attain type safety forWyvfix using the small step
semantics in Figure 26 due to the absence of subtype transitivity. Ideally, we would be able to say
that every well-typed Wyvfix program is also a well-typed Wyvself program.

8 DISCUSSION

8.1 Nominality

One of the central themes that arises in this work is the lack of structure present inWyvcore’s type
hierarchy upon which to build a Material/Shape separation. Such a structure is present in Java, as
subtyping is built upon subclasses that are explicitly defined. Some structure is available in the
way type members can be defined abstractly, and thus only used by explicit refinement on the
type, but this is lost when subtyping concrete types.
In our formulation of the Material/Shape separation, Shapes are types that must be subtyped

nominally, and can never occur in the lower bounds of types. The unseparated Wyvcore of Figure
1 always allow a type to be compared structurally at the bounds (this is true of DOT too). Thus,
without the addition of a mechanism to prevent both the structural comparison of Shapes and to
allow concrete types to be defined as extensions to Shapes, Shapes themselves would be rendered
pointless.
We provide two additions to the Material/Shape separatedWyvcore that ensure these properties:

(i) a nominal form for concrete type members (L � τ ) and (ii) a semantic restriction on the
definition of Shapes by refinement (Figure 13).

These two additions allow for the application of an expressive Material/Shape separation while
also allowing for the writing of types in the manner of DOT (to a limited degree considering the
lack of full intersection types). A stronger distinction between types that are used nominally (type
definitions), and types that are used for polymorphism (System F polymorphism or Java generics)
would further simplify subtyping.

8.1.1 NominalWyvern. Zhu [2019] has developed NominalWyvern in conjunctionwith this work.
Nominal Wyvern is a strictly nominal form of Wyvern with path dependent types, but without
recursive types. Nominal Wyvern employs a Material/Shape separation inspired by the work in
this paper. Strict nominality (as opposed to the ad-hoc nominality ofWyvcore) further constrains the
subtype hierarchy ofWyvern allowing for amore well behaved hierarchy, and decidable subtyping.

8.2 Type Safety

The type safety argument of Section 7.1 is dependent on an encoding into DOT. This is more than
just a decision based on convenience and ease, it would be relatively difficult to derive a type
safety proof that is self-contained withinWyvcore primarily for the same reasons that the original
DOT type safety proof was difficult to obtain. Type refinements represent a form of intersection
type, and thus introduce problems with environment narrowing and transitivity in the presence
of ill constructed type bounds. Part of this problem is dealt with by syntactically restricting type
definitions to single bound definitions, but through narrowing it would be potentially possible to
construct objects that conceptually contained the following type definitions: L = String ∧ L =

Int. A type safety proof for DOT was achieved by admitting transitivity as a subtype rule, and
subsequently demonstrating that this admission did not violate type safety. Such a techniquewould
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not be possible in Wyvcore, as an explicit transitivity rule would not allow for a syntax directed
definition of subtyping since it is not clear which middle type could be used.
It would be possible to counteract the “bad bounds problem” by restricting type refinements

to only concrete types, but this would sacrifice the aspects of Wyvcore. A more satisfying solu-
tion would be to introduce full intersection types using the lessons learned in this paper. With
intersection types, the gap between Wyvcore and DOT would be largely bridged.

8.3 Decidability of Typing

It is fairly easy to demonstrate that as in the case of System F<:, the decidability of term typing in
Wyvcore (Figure 24) and any of its variants is reducible to the decidability of subtyping. It follows
that both variants Wyvself and Wyvfix represent subsets of Wyvcore in which typing is decidable.

8.4 Comparison with DOT

DOT is more expressive than Wyvcore (and thus Wyvself and Wyvfix) in several ways, primarily
related to the presence of Intersection and Union types, and the ability to provide both upper and
lower bounds to type members.
As we have already noted, intersection types form a core component of DOT, in the absence of

whichWyvcore includes an explicit distinction between term types and declaration types to model
structural subtyping and type refinements to gain some minimal instances of the expressiveness
of intersection types.
Beyond expressiveness, intersection types provide the ability to achieve type safety in a small

step semantics. While intersection types cause the so called “bad bounds” problem that plagued
the construction of a type safety proof, full intersection types provide facility for such a proof that
the type refinements ofWyvcore do not. If a type with incompatible bounds is constructed, the fact
that it is empty of any well-typed terms saves the soundness proof and is implicit in the semantics
of the type.The type refinements ofWyvcore in effect represent an overwrite, and while they do not
allow for the typing of ill-formed terms, they prevent a general transitivity property that allows
for ill-formed bounds from being derived.
For the above reason, type members in Wyvern were restricted syntactically to either a single

bound or an exact type. This prevents the occurrence of bad bounds, but is a restriction over the
type members of DOT that allow for both bounds to be defined. This more general form of type
members could likely only be added in the presence of intersection types.

8.4.1 Decidable D<:. Hu and Lhoták 2020 prove undecidability of subtyping in D<:, a calculus re-
lated to (and conceptually a predecessor to) DOT that includes dependent function types and path
dependent types, but does not include intersection or recursive types. They further develop two
decidable variants of D<:, Kernel D<: and Strong Kernel D<:, based on the Kernel F<: of Cardelli
and Wegner 1985. Similar to Wyvfix, Strong Kernel D<: also uses a double headed subtyping, and
similarly lacks transitivity.

9 FUTURE WORK AND CONCLUSION

9.1 Future work

As has already been discussed, the absence of full intersection types in Wyvcore limits the ability
to derive a type safety argument that is self contained and does not rely on DOT. Further, a lack
of intersection types represents a loss of expressiveness, particularly with respect to the encoding
Java style multiple inheritance subtype relationships. Both of these provide good reasons to want
to introduce full intersection types.
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Full intersection types would also facilitate the introduction of the double bounded type mem-
bers that are present in DOT compared with the single bound type members ofWyvcore by provid-
ing a way to allow ill-formed types but not ill-formed terms.
Muehlboeck and Tate have recently provided a general way to introduce intersection and union

types, along with several desirable properties such as distributivity of intersections, in a decidable
manner. Such an approach is potentially promising for constructing a variant of Wyvcore with
intersections that is decidable. In this case, it would be useful to start with a decidable calculus that
is free of type refinements before adding intersection types and the later subsumes the former.

9.2 Conclusion

We have explored and described the problems with constructing a language with path dependent
types, recursive types, dependent function types, and decidable subtyping. We have used this in-
sight to construct two variants of our core calculus Wyvcore: Wyvself and Wyvfix. Wyvself places a
syntactic restriction on recursive types while Wyvfix modifies the semantics to extricate environ-
ment narrowing from subtyping.
Wyvself has a predictable semantics in line with both Wyvcore and DOT, but the restriction on

the use of recursive types means popular patterns such as family polymorphism need to be re-
formulated. As has already been noted, these patterns can be reclaimed by using either the upper
bounded syntactic form for type members (L ⩽ τ ), or the newly introduced nominal form (L � τ ).
This is not without its problems; specifically the nominal form for type members does not exactly
fit with the manner in which other syntactic forms for type members work, but it is not so unusual
in wider the context of object oriented languages. Languages such as Java, and more importantly
Scala, already have distinct syntax that provides for nominal subtyping. Wyvcore’s nominal types
behave similarly to explicitly nominal subtype definitions such as the class or trait subtyping of
Scala or Java. If programmer intuition is of concern, the following sugaring might moderate pro-
grammer expectations.

1 type C � D{ ... } ⇒ 1 trait C extends D{ ... }

Wyvfix on the other hand allows recursive types to be freely used, but excludes some instances
of subtype transitivity in favor of reflexivity. While practically a programmer could work around
the lack transitivity by explicitly introducing a middle type in the form of casts, this implies some
confusing semantics in some examples that may appear at first glance to type check but do not.
This is seems like a more complex semantic peculiarity to convey to programmers. Further,Wyvfix
allows contra-variance in the parameter types of dependent function types, a property that is not
present in Kernel F<:.
Finally, the lack of full intersection types in either variant excludes a category of useful examples

that use multiple inheritance style type hierarchies. We theorize that stripping type refinements
fromWyvself in favor of full intersection types could be done by applying the work of Muehlboeck
and Tate. This might finally allow for something approaching a decidable variant of DOT. This is
likely easier said than done given the integral role intersection types play in DOT, and the integral
role that type refinements play in the definition of the Material/Shape separation of Wyvcore.
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