
Resource-Based Programming in Plaid

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

jonathan.aldrich@cs.cmu.edu

Abstract
Many modern programming challenges center on the correct han-
dling of abstract resources whose use is constrained in some
way. These constraints include initialization before use, resource
cleanup, safe coordination among threads, and usage protocols. Un-
like class-based languages, the resource-based programming lan-
guage Plaid models interfaces, representation, and behavior us-
ing states, and an object’s state can change. Plaid’s gradual, lin-
ear logic-based type system and runtime system will track both the
state of an object and aliases to it, ensuring that clients access ob-
jects safely in both sequential and concurrent programs.

1. Motivation: Resources
As the software industry has matured, software development has
shifted away from data structure and algorithm implementation and
towards building systems by tying resuable components together
with application-specific logic. This change has yielded great gains
in productivity, but reusing these components can also be difficult.
A central issue is managing resources: stateful objects whose use
is constrained in some way. These constraints include initialization
before use, resource cleanup, safe coordination among threads, and
other usage protocols. They can be complex: the ResultSet class
from Java’s JDBC library has 33 states and 200 methods with state
constraints. Protocols are also widespread, including many stateful
data structures and I/O libraries. They also cause problems for
developers in practice: Jaspan found that a substantial fraction (near
20%) of the understandable postings in an ASP.NET help forum
were related to protocol constraints [2].

Existing programming systems have minimal support for re-
sources. In Java, finally blocks assist with resource cleanup on ex-
ceptional paths, but it is easy to forget to add finalizers. Other re-
searchers have investigated analyses and type systems for avoiding
race conditions or verifying typestate properties [5]. However, no
language we know of explicitly models resources and their usage
constraints in the object model and native type system. In this pa-
per we sketch a design for such a language and argue that explicitly
modeling resources in the language can help programmers use them
better.

2. The Plaid Language

First-Class States in Plaid. We are developing a new program-
ming language, Plaid, which is designed to facilitate program-
ming with first-class resources. Plaid supports resources mainly via
typestate-oriented programming [1], a new programming paradigm
that extends object-oriented programming with first-class states.
Rather than be a member of a fixed class, each object has a type-
state that is changeable. Unlike typestate analyses, states in Plaid
are first-class, meaning they define not just an interface but also
representation and behavior.

1 state Buffer
2 comprises EmptyBuffer, FullBuffer { }
3

4 state EmptyBuffer case of Buffer {
5 method void put(unique Element≫ none e)
6 [EmptyBuffer≫ FullBuffer] {
7 this← FullBuffer { elem = e };
8 }
9 }

10

11 state FullBuffer case of Buffer {
12 requires unique Element elem;
13 method unique Element get()
14 [FullBuffer≫ EmptyBuffer] {
15 val e = elem;
16 this← EmptyBuffer { };
17 e;
18 }
19 }

Figure 1. A Buffer Implementation in Plaid.

For example, consider the Buffer implementation in Figure 1.
The Buffer state is abstract; the comprises clause ensures that ev-
ery Buffer is either an EmptyBuffer or a FullBuffer. EmptyBuffer
has a single operation put, which accepts an argument e. put is im-
plemented with a state change primitive (the left arrow), indicating
that the object this should be transitioned into the FullBuffer state.

The FullBuffer state requires a field elem, and so when we
transition from EmptyBuffer to FullBuffer we must provide a value
for this field—conveniently, we can use the element the client
passed to put. FullBuffer has a single operation get, which reads
the value in the elem field, transitions the receiver object back to
the EmptyBuffer state, and returns the old value of the field.

Note that the implementation in Figure 1 is clearer and less
error-prone than an equivalent Java implementation. Since Java
does not support states explicitly, we’d have to have a single class
Buffer that has an elem field as well as get and put methods. Then
the protocol that get can only be called when the buffer is full will
have to be enforced with some kind of run-time check; such checks
are often omitted in practice either by accident or because they are
costly. Furthermore, in Java we will have to set the element field
to some sentinel value (e.g. null) when the buffer is empty, and
then we must be very careful to associate the potential null value
with the state of the buffer, otherwise we may get a null pointer
exception. In contrast, Plaid’s explicit support for states means that
methods and fields are only present in the states where they make
sense. If the programmer uses the buffer incorrectly then the system
can give a good error message, either at compile time or at run time,
saying that get cannot be called on an EmptyBuffer.

A State Tracking Type System. We would like the Plaid compiler
to provide pragmatic help in using objects correctly, by analogy
with type systems in languages like Java. In this case, however, the
compiler must track the type of a buffer flow-sensitively as it will
change when an element is added or removed.

Each method therefore declares how it changes the state of the
receiver (and of each argument, if relevant). The declaration goes in
brackets after the method declaration, with≫ showing the direction
of state change. For example, the signature of put declares that the
receiver changes from the EmptyBuffer to the FullBuffer state.

Permission-based Types. Tracking states is easy if there is only
one reference to an object, but in the presence of aliasing it becomes
difficult because the state of the object can change due to an effect
through an alias. Our type system is thus based on a linear logic,
and we provide various permissions that express whether there can
be aliasing or not. For example, unique means that we have the
only reference to an object, while share means that there may
be other aliases. A unique permission can be converted into an
immutable permission (destroying the original unique), which
allows other aliases but ensures that the object cannot be modified
through them. Linear logic ensures that a variable’s permission is a
sound description of how it is aliased.

In Figure 1, the argument to put is unique and is in the Element
state. When the method returns, however, no permission to that el-
ement is returned to the caller, because we have created a unique
field reference to that element in the FullBuffer state, and returning
a permission back to the caller would violate the uniqueness in-
variant. That is, the caller may still have a reference in scope but it
does not have permission to use it. This is indicated with the none
permission.

Permissions default to unique for mutable states; for example,
the state transition of the receiver of put is really [unique Emp-
tyBuffer ≫ unique FullBuffer]. We also allow the declaration of
immutable states, which means the default permission for objects
of that state is immutable. This allows programs without aliasing,
or purely functional programs without mutation, to be expressed
without any additional permission annotation overhead.

Gradual Types and Dynamic Checks. We are designing Plaid to
be gradually typed [3], so in fact type declarations like those in
Figure 1 are optional. If present, they can help developers under-
stand interfaces better and find errors earlier, but if they are absent
then Plaid just falls back on run-time checking. Developers can also
insert casts to assert that an object is in a particular permission-
based type, or use pattern matching to test the state of an object.
The combination of gradual typing, typestate checking, casts, and
permission-based types is interesting—consider, for example, how
a cast to unique might be checked!

Concurrency by Default. Plaid’s permissions not only help track
state, they also allow the natural concurrent execution of pro-
grams [4]. If we have a function fill that fills a buffer, we can create
two unique buffers and if we call:

1 fill(buf1);
2 fill(buf2);
3 combine(buf1, buf2);

Plaid’s compiler will automatically execute the two calls to fill
in parallel, since they operate on different state. The compiler will
wait until both fills are complete before calling combine as this
requires the same resources as fill.

Of course, in some cases we want to concurrently access shared
state. Our model allows this if the programmer is explicit about her
intention to “split” the permission to the buffer, presumably having
considered the consequences of any possible interference. In the

example below, a producer and consumer access a shared buffer
concurrently. The Plaid compiler will ensure that the producer and
consumer acquire a lock before accessing the shared data, helping
to avoid the worst conflicts.

1 split (buf) produce(buf) || consume(buf);

Overall, our model supports a dataflow style of concurrency,
but we integrate the dataflow concurrency with mutable, potentially
shared state using permissions.

3. Status and Future Work
We have developed a prototype compiler for Plaid, which already
compiles simple dynamically-typed Plaid programs; we plan an
open-source public release1 concurrent with PLDI. In the summer
of 2010, we will be building a typechecker and extending the
compiler to support concurrent execution.

Many research questions remain:

• The buffer above stores a fixed unique Element; how can we
make the buffer generic in the type and permission?

• How can we provide efficient runtime support for representa-
tion changes, casts, and gradual types in Plaid?

• Can we keep the permission-based type system simple enough
to use in practice?

• Can a compiler automatically come up with an efficient ap-
proach to concurrent execution?

• Do programmers find Plaid natural, and does it help them avoid
errors and become more productive?

We look forward to answering these questions, and we be-
lieve that as programming becomes more and more centered on
resources, the ideas in Plaid will be of significant help in imple-
menting and using resource abstractions easily and correctly.

Acknowledgments
The author acknowledges the Plaid research group for their contri-
butions to the design and vision for Plaid. This research was sup-
ported by DARPA grant #HR00110710019 and NSF award #CCF-
0811592.

References
[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-Oriented

Programming. In Proc. Onward!, 2009.

[2] C. Jaspan. Proper Plugin Protocols, 2010. Carnegie Mellon University
Thesis Proposal.

[3] J. G. Siek and W. Taha. Gradual typing for objects. In ECOOP’07:
21st European Conference on Object-Oriented Programming, 2007.

[4] S. Stork, P. Marques, and J. Aldrich. Concurrency by Default: Using
Permissions to Express Dataflow in Stateful Programs. In Proc.
Onward!, 2009.

[5] R. E. Strom and S. Yemini. Typestate: A Programming Language
Concept for Enhancing Software Reliability. IEEE Transactions on
Software Engineering, 12(1):157–171, 1986.

1 http://www.plaid-lang.org/

2

http://www.plaid-lang.org/

	Motivation: Resources
	The Plaid Language
	Status and Future Work

