Wyvern: Impacting Software Security
via Programming Language Design *

Darya Kurilova

Carnegie Mellon University
darya@cs.cmu.edu

Abstract

Breaches of software security affect millions of people, and
therefore it is crucial to strive for more secure software sys-
tems. However, the effect of programming language design
on software security is not easily measured or studied. In the
absence of scientific insight, opinions range from those that
claim that programming language design has no effect on se-
curity of the system, to those that believe that programming
language design is the only way to provide “high-assurance
software.” In this paper, we discuss how programming lan-
guage design can impact software security by looking at a
specific example: the Wyvern programming language. We
report on how the design of the Wyvern programming lan-
guage leverages security principles, together with hypothe-
ses about how usability impacts security, in order to prevent
command injection attacks. Furthermore, we discuss what
security principles we considered in Wyvern’s design.

1. Introduction

Software systems have become an integral part of our lives,
and are responsible for managing important and confidential
information, such as bank accounts, medical records, and
the content of private communications. Having given such
responsibilities to software systems, it is important to en-
sure that they can reliably keep the information secure. One
would expect programming languages, as the primary tool
of the programmer, to be a factor in software security, yet
the extent by which programming languages can impact a
software systems’ security is a controversial topic.

Some suggest that designing a programming language
to provide security is futile, arguing that system safety and

* This work was supported by the U.S. National Security Agency lablet
contract #H98230-14-C-0140.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PLATEAU’14, October 21, 2014, Portland, OR, USA.

Copyright © 2014 ACM 978-1-4503-2277-5/14/10. .. $15.00.
http://dx.doi.org/10.1145/2688204.2688216

Alex Potanin

Victoria University of Wellington
alex@ecs.vuw.ac.nz

Jonathan Aldrich

Carnegie Mellon University
aldrich@cs.cmu.edu

security is a “completely programming language agnostic
topic” [2, 7]. We disagree with this opinion, and argue that
programming language design can have a direct influence on
the security of software systems. To support our position, we
describe how the design of the Wyvern programming lan-
guage addresses a specific type of security vulnerability—
command injections—and what hypotheses led us to make
the design decisions we did.

2. Command Injection Defense in Wyvern

Wyvern [4] is a web programming language that aims to
address the OWASP’s Top 10 most critical web application
security risks [6] and being secure by default. Wyvern is able
to prevent command injection vulnerabilities [3], and we
now illustrate how the design of the Wyvern programming
language is able to do it by looking specifically at SQL
injections.

Our investigation begins with a question: why are com-
mand injection vulnerabilities introduced? After all, pre-
venting them is easy: developers simply need to use pre-
pared SQL statements. However, developers often do not.
We formed the following usability hypothesis as to why:

H1: Command injection vulnerabilities are often intro-
duced because it is easier to compose queries by pasting to-
gether strings than to use secure libraries, such as prepared
SQL statements.

This hypothesis is suggesting that command injection
vulnerabilities are in part about psychological acceptability
of secure defaults: “It is essential that the human interface
[e.g., of a database access system] be designed for ease
of use, so that users routinely and automatically apply the
protection mechanisms correctly” [8]. Strings are easy to
use, while more secure means of constructing commands are
more difficult. This leads us to the following interconnected
hypotheses:

H2: If SOL is embedded natively in the host language, it
will be easier to use SQL directly than to construct queries
with strings.

H3: If developers use a host language’s natively embed-
ded, safe version of SOL, they will be less likely to introduce
SQOL injection vulnerabilities.



let authorName : String = user_input
let webpage : HTML = ~
<html>
<body>

<hl>Search results:</hl>
<ul id="results">
{query_results(db, ~)

authorName}}
</ul></body></html>

© W ~NOU D WNR

=

Figure 1. A sample Wyvern program. Code in black is
Wyvern (host language); code in purple is embedded HTML;
and code in orange is embedded SQL.

With SQL embedded in the language, we can provide a
positive security model for SQL (all queries are constructed
using the SQL language), rather than by using program anal-
ysis to identify unsafe cases (i.e., a negative, or blacklist,
model) of pasting commands together from strings. Further-
more, having programmers write queries in structured SQL
keeps security simple in contrast to using program analysis,
which may involve tracing the flow of user input through
multiple functions into an SQL query.

Figure 1 shows how domain-specific languages, such
as SQL, can be embedded in Wyvern. The code snippet
searches a database by author and then serves a simple web-
page that displays the search results. It uses two embedded
languages: HTML (shown in purple) and SQL (shown in or-
ange). Overall, using these embedded languages is as simple
as constructing queries using string concatenation, but it is
significantly safer. For example, in the SQL query, the value
in the authorName variable is provided by the user, and so if
we constructed the query using string concatenation, a SQL
injection could occur on line 9. However, because the SQL
language is embedded within Wyvern, the author name is in-
tegrated as data and cannot be misinterpreted as a command,
precluding the command injection vulnerability [5] while at
the same time enhancing code readability and potentially en-
abling better compiler and IDE support.

While prior languages have incorporated SQL as native
syntax, we designed Wyvern as an extensible language, so
that libraries can extend the base syntax of Wyvern [5].
Thus, any command language can be incorporated, guarding
against any kind of command injection attack [3], not just
SQL injections. In many prior extensible languages it was
possible for language extensions to conflict. Wyvern elimi-
nates these conflicts and the attendant usability problems by
using indentation as a way to delimit an embedded language
and using the expected type of an expression to determine
which embedded language to use [5].

3. Security Principles in Wyvern’s Design

In addition to specific language design decisions that miti-
gate command injections, Wyvern is designed to help devel-

opers adhere to more general security principles and soft-
ware development practices.

For example, one common principle prescribes the use
of secure defaults. To enforce this principle, Wyvern does
not allow null as a default value. Furthermore, we specifi-
cally chose the syntax for option types to be as convenient
as possible, supporting psychological acceptability for our
decision to forbid null defaults.

In order to support the principle of least privilege, we are
designing Wyvern’s module system to provide architectural
control, limiting the parts of the program that can access
security-critical resources such as the network or file sys-
tem [1]. The capability-based architectural-control mecha-
nisms in Wyvern can be used, for example, to ensure that
dynamically loaded code or third-party libraries are given
no more trust than necessary.

Finally, the principles of keeping security simple and us-
ing open design were addressed by making Wyvern’s syn-
tax and semantics straightforward and Wyvern’s type system
statically checked and as simple as possible.

4. Conclusion

In this paper, we examined how the Wyvern programming
language’s design addresses command injection attacks sug-
gesting that the programming language design can indeed
impact the security of the software written in it. Although
the arguments in this paper need further validation, they il-
lustrate ways in which language design can potentially im-
prove security.

References

[1] J. Aldrich, C. Omar, A. Potanin, and D. Li. Language-Based
Architectural Control. In IWACO, 2014.

[2] K. Hickey. Most secure Web programming language? It de-
pends., April 2014. URL http://gcn.com/articles/
2014/04/24/programming- language-security.aspx.

[3] D. Kurilova, C. Omar, L. Nistor, B. Chung, A. Potanin, and
J. Aldrich. Type-Specific Languages to Fight Injection Attacks.
In HotSoS, 2014.

[4] L. Nistor, D. Kurilova, S. Balzer, B. Chung, A. Potanin, and
J. Aldrich. Wyvern: A Simple, Typed, and Pure Object-oriented
Language. In MASPEGHI, 2013.

[5] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and
J. Aldrich. Safely Composable Type-Specific Languages. In
ECOOP, 2014.

[6] OWASP. Category:OWASP Top Ten Project, 2014.
URL https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project.

[7]1 P.  Perego. Which Is the Most Secure Program-
ming Language Ever?, July 2012. URL http:
//armoredcode.com/blog/which-is-the-most-
secure-programming- language-ever/.

[8] J. H. Saltzer and M. D. Schroeder. The Protection of Informa-
tion in Computer Systems. Proc. IEEE, 1975.



