Usability Hypotheses in the Design of Plaid

Jonathan Aldrich

Carnegie Mellon University
aldrich@cs.cmu.edu

Abstract

Plaid is a research programming language with a focus
on typestate, permissions, and concurrency. Typestate
describes ordering constraints on method calls to an
object; Plaid incorporates typestate into both its ob-
ject model and its type system. Permissions, incorpo-
rated into Plaid’s type system and runtime, describe
whether a reference can be aliased and whether aliases
can change that reference. Permissions support static
typestate checking, but they also allow Plaid’s compiler
to automatically parallelize Plaid code.

In this paper, we describe the usability-related hy-
potheses that drove the design of Plaid. We describe
the evidence, both informal and scientific, that inspired
and (in some cases) validated these hypotheses, and re-
flect on our experience designing and validating the lan-
guage.

1. Typestate in Plaid

Typestate is an abstraction that divides an object’s
lifetime into a sequence of abstract states, describing
in which state(s) each method can be invoked, and the
state transition caused by each method. For example,
a file may start out in the Closed state, transition to
the Open state when the open() method is invoked,
accept several calls to the read () method while in this
state, and finally transition to the Closed state when
the close () method is invoked.

1.1. Background Hypotheses

Our work on Plaid was motivated in part by the follow-
ing two background hypotheses, which developed out of
our prior work on object protocols:

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

PLATEAU 14, October 21, 2014, Portland, OR, USA.

Copyright © 2014 ACM 978-1-nnnn-nnnn-n/yy/mm...$15.00.
http://dx.doi.org/10.1145 /nnnnnnn.nnnnnnn

Joshua Sunshine

Carnegie Mellon University
sunshine@cs.cmu.edu

H1: Many components define protocols of interaction
that clients must follow

H2: When developers are not aware of a component’s
protocol, they often make mistakes using it, and fixing
these mistakes is hard

In prior work, we performed an empirical study on
a corpus of Java code to evaluate the first hypothesis,
finding that in Java approximately 7% of all types define
protocols [1]. That may not initially seem like much, but
it is more than twice as many types as define generic
type parameters.

We initially investigated hypothesis H2 in an empiri-
cal study of Spring and ASP.NET developer forums [5].
In our study, we observed that protocol problems with
developers took hours or days to solve, even with expert
help. Later, we mined protocol-related programming
problems from the Stack Overflow forum and carried
out observational studies in the laboratory. We observed
that programmers working on these tasks spent 71% of
their time searching the Java library documentation for
information about the relevant protocols—and found
that many of their searches were poorly supported by
the standard Javadoc library documentation [8].

In case studies of Plural, a Java-annotation typestate
specification and checking tool, we found few defects
in source code repositories [2]. Since we did observe
programmers making mistakes with protocols in our
laboratory studies, we hypothesize that:

H3: Protocol errors do not often make it into produc-
tion, perhaps because they are easily caught by testing.

If true, this hypothesis implies that tools and lan-
guages that support typestate should not have their
primary aim be to correct errors in production code,
but rather to help developers be more productive.
This could be accomplished by helping developers learn
about typestate constraints so they can write code more
quickly and avoid introducing errors in the first place,
or it could be accomplished by helping developers find
errors more quickly than they could through testing.

1.2. A Typestate-Based Object Model

Plaid provided a novel object model that incorporated
typestate in a first-class way [9]. For example, one might
declare a stateful File abstraction as follows:

state File {
val filename;

}

state Closed case of File {
method open() {
this <- Open { val filePtr = };
}
}

state Open case of File {

val filePtr;

method read() { %

method close() { this <- Closed; }
}

In this example, the state abstraction generalizes the
class abstraction from typical object-oriented lan-
guages to describe an abstract state. The different states
of File are represented as cases (similar to subclasses).
The open() method is provided only in the Closed
state. It is implemented with a primitive state tran-
sition operation, written this <- Open { }, which
changes the state of the current object this from the
Closed state to the Open state.

We based this design on several hypotheses which
bear on the usability of the language to represent con-
cepts that incorporate state:

H: Providing state in the language’s object model
will enable the code to more closely reflect the program-
mer’s intended design.

Hb5: Making states explicit will make state constraints
more salient to developers who need to be aware of them.

While our papers contain examples like the code
above that intuitively seem to represent state more di-
rectly than approaches such as the State design pat-
tern [3], it would be nice to evaluate this hypothesis
more rigorously. Plaid code is still arguably less explicit
than a statechart [4], but our state abstraction has the
advantage that individual states can be reused as part
of different stateful abstractions [9].

We also had hypotheses about how state support
might help developers more directly:

H6: Making states explicit will make the invariants of
objects easier to understand and will help programmers
avoid errors.

H'7: Making states explicit will enable the runtime
system to give developers better error messages when
they misuse typestate dynamically.

Hypothesis H6 was again not evaluated directly, but
the intuition behind it is shown in the example code
above. Because the filePtr field only exists in the
Open state, there is no need to set the field to null
or some other sentinel value in the Closed state, in
which there is no meaningful value for this field. As for
Hypothesis H7, Plaid’s runtime is indeed able to tell the
programmer when a method that does not exist in the
current state is invoked. Intuitively, this seems better
than allowing the call to proceed in a meaningless state
and relying on the library writer to provide defensive
code to check that the object is in the proper state.
However, as yet we do not have concrete evidence in
support of this hypothesis.

1.3. Checking Typestate Statically

We also worked on a type system that would allow us
to check that clients use stateful libraries correctly—
e.g. that they do not invoke read() on a File that
is Closed [11]. Because of our earlier experience with
Plural, we did not expect this type system to elimi-
nate many defects from production code. Instead, we
hypothesized that:

HB8: A significant benefit of types (including protocol
types) is that they provide correct and easily accessi-
ble (e.g. via the IDE) documentation for programmers,
helping programmers write code more quickly and cor-
rectly.

Recently, we were able to validate this hypothe-
sis indirectly. We looked at the protocol-related pro-
gramming tasks from the qualitative study mentioned
above [8] and isolated questions that programmers had
to answer about protocols in order to carry out these
tasks. One benefit of static typestate information is
that Javadoc-like documentation can be generated that
is organized by the state the object is in, and makes
state transitions explicit. In a laboratory experiment,
we showed that developers were able to answer protocol-
related questions in half the time and with fewer er-
rors when they used typestate-enhanced documentation
compared to plain Javadoc [10]. Our work reinforces
earlier result that also found that types provide docu-
mentation benefits [6].

2. Permissions in Plaid

In order to support static typestate checking in Plaid,
programmers must declare a permission for each vari-
able, describing whether the variable is aliased and
whether the aliases could change the state of the ob-
ject. For example, a unique variable is unaliased, and
so the type system can easily track changes to its types-
tate through that variable. On the other hand, a shared
variable may be aliased by other variables, and so the
static type system must conservatively assume that the

typestate of the object it points to could be changed
through other references.

Our earlier work in the Plural system also leveraged
permissions. However, we hypothesized that:

H9: We can provide an easier-to-use type system by
building permissions into the language’s type system,
compared to layering permissions on top of Java.

We did not evaluate this hypothesis empirically; how-
ever, the types in Plaid are quite obviously more suc-
cinct and anecdotally seem simpler to us than the previ-
ous systems we designed for Java. Building permissions
into the language also allowed us to explore run-time
checking of permissions, supporting casts and/or a grad-
ual type system [11]. This leads to another hypothesis:

H10: A type system that provides run-time checking
in the form of casts or similar constructs can be more
usable than a system without run-time checks, because
the latter may require complex static constructions in
places where the former uses a cast.

A concrete example of H10 is Java’s original type
system, which did not support generics. Generic collec-
tions were supported by using casts to get the proper
type of object out of a collection. This resulted in many
run-time checks that could fail, but it did keep Java’s
original type system very simple.

Another hypothesis regarding permissions was:

H11: Permission assertions are useful in their own
right for design documentation or encapsulation.

While we did not investigate this hypothesis in the
Plaid project, other research has applied permissions
similar to the ones we used in Plaid to a variety of
problems including both design documentation and en-
capsulation. We believe that identifying a core set of
permissions that provides a wide variety of benefits is a
fruitful direction for future work in language design.

3. Parallelism in Plaid

Plaid was designed not just to support typestate,
but also parallel programming. The central idea is
that Plaid’s permissions provide additional informa-
tion about aliasing that can be used to parallelize the
program automatically. We hypothesized that:

H11: By leveraging the same permissions for both
typestate and concurrency, we can provide programmers
with more benefit per unit cost compared to using sepa-
rate permission and type systems for these features.

In the Plaid project, we did indeed show that it was
possible to leverage the same core set of permissions for
both purposes [7], but did not explicitly evaluate the
comparative costs and benefits. A core aspect of Plaid’s
approach to parallelism (we used the name Aminium to
capture Plaid’s concurrency-related features) was that
programmers can focus on the dependencies within the

program rather than multiple threads of control, which
we hypothesized would provide usability benefits:

H12: It is easier for programmers to think correctly
about dependencies rather than multiple threads of con-
trol.

H13: Programmers using Aminium’s Parallel by
Default model will expose more concurrency than is
typically exposed in explicit concurrency models.

We hope these hypotheses can be evaluated empiri-
cally in the future.

4. Discussion and Conclusions

The Plaid language design was based on a number of
hypotheses that touch on the usability of programming
languages, especially with respect to typestate, type
systems, permissions, and concurrency. We were able to
validate a few of the hypotheses, especially those that
motivated our focus on typestate in the first place, and
examined the documentation benefits provided by type-
state. At the same time, many hypotheses that were
validated at best anecdotally. Providing empirical vali-
dation for hypotheses such as these is a challenging task:
while each of the papers on Plaid’s language design was
based (explicitly or implicitly) on several hypotheses,
the few hypotheses we did validate each took at least
one paper to validate, and more work could be done
even on these.

Most of the hypotheses listed in this paper deal
with the usability of particular features of Plaid as
independent entities. We have some evidence, however,
that some features work less in combination than they
do independently. In particular, in unpublished pilot
studies participants confused access permissions with
typestate annotations. For example, in one task all three
participants thought that the pure permission was an
abstract state. This confusion was likely due in part to
the fact that the study required participants to learn
two new concepts (access permissions and typestate
annotations) at once. More generally, these early results
are a worrying sign for those hoping to layer specialized
verification systems on top of one another. We would
like to investigate these combinations further.

While we would have liked to validate all the hy-
potheses on which the design of Plaid is based, in prac-
tice we are happy that some progress has been made to-
ward this goal. The process of science involves the gen-
eration of hypotheses, the generation of artifacts to test
them (concrete programming language designs, in this
case), and evaluation of the hypotheses. Each of these
has a role to play and a scientific paper may provide
value in any of the three areas. In particular, there is
value in designers of languages making their hypotheses
about usability more explicit, and we thank PLATEAU
for giving us a chance to do that for Plaid. Ultimately,

we hope that researchers (both in our group and out-
side it) will be able to evaluate some of these hypotheses
more fully in the future.

Acknowledgements

This research was supported in part by the National Sci-
ence Foundation under grant #CCF-1116907, “Founda-
tions of Permission-Based Object-Oriented Languages.”
This document was prepared using Madoko.

References

(1]

2l

(4]

[5]

(6]

(8]

(10]

(11]

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An
empirical study of object protocols in the wild. In
European Conference on Object-Oriented Programming,
2011.

Kevin Bierhoff, Nels E. Beckman, and Jonathan
Aldrich. Practical API Protocol Checking with Ac-
cess Permissions. In Proc. European Conference on
Object-Oriented Programming, 2009.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

David Harel. Statecharts: A visual formalism for
complex systems. Sci. Comput. Program., 8 (3): 231—
274, June 1987.

Ciera Jaspan and Jonathan Aldrich. Are object pro-
tocols burdensome? an empirical study of developer fo-
rums. In Workshop on FEwvaluation and Usability of
Programming Languages and Tools (PLATEAU), 2011.

Clemens Mayer, Stefan Hanenberg, Romain Robbes,
Eric Tanter, and Andreas Stefik. An empirical study of
the influence of static type systems on the usability of
undocumented software. In Object-Oriented Program-
ming Systems, Languages, and Applications, 2012.

Sven Stork, Karl Naden, Joshua Sunshine, Manuel
Mohr, Alcides Fonseca, Paulo Marques, and Jonathan
Aldrich. Aminium: A permission based concurrent-by-
default programming language approach. Transactions
on Programming Languages and Systems, 36 (1): 2:1—
2:42, March 2014.

Joshua Sunshine. Protocol Programmability. PhD
thesis, Carnegie Mellon University, 2013.

Joshua Sunshine, Karl Naden, Sven Stork, Jonathan
Aldrich, and Eric Tanter. First-class state change
in Plaid. In Object-Oriented Programming Systems,
Languages, and Applications, 2011.

Joshua Sunshine, James Herbsleb, and Jonathan
Aldrich. Structuring documentation to support state
search: A laboratory experiment about protocol pro-
gramming. In Proc. European Conference on Object-
Oriented Programming, 2014.

Roger Wolff, Ronald Garcia, Eric Tanter, and Jonathan

Aldrich. Gradual typestate. In Furopean Conference
on Object-Oriented Programming (ECOOP), 2011.

