
Considering Productivity Effects of Explicit Type Declarations

Michael Coblenz Jonathan Aldrich Brad Myers Joshua Sunshine
Carnegie Mellon University

{mcoblenz, aldrich, bam, sunshine}@cs.cmu.edu

Abstract
Static types may be used both by the language implemen-
tation and directly by the user as documentation. Though
much existing work focuses primarily on the implications
of static types on the semantics of programs, relatively little
work considers the impact on usability that static types pro-
vide. Though the omission of static type information may
decrease program length and thereby improve readability,
it may also decrease readability because users must then
frequently derive type information manually while reading
programs. As type inference becomes more popular in lan-
guages that are in widespread use, it is important to consider
whether the adoption of type inference may impact produc-
tivity of developers.

Keywords type inference, type declarations, programmer
productivity

1. Introduction
Recent work described some of the benefits of type declara-
tions in documentation. Sunshine et al. [1] found that users
of Plaiddoc, which documents type state, could answer state
search questions faster than users of Javadoc. Mayer et al.
[2] and Petersen et al. [3] found that static type declarations
improved performance on some programming tasks and de-
graded it on others, generally finding that static types are
helpful for understanding documented code and fixing type
errors but not for fixing semantic errors. However, a more
focused look is needed at the tradeoffs involved specifically
in type declarations and their longer-term effects.

In some languages, such as JavaScript, all variables are
dynamically typed. Some languages, such as C, require type
declarations, but the type declarations may contain very lit-
tle information (e.g. “void *”). In contrast, other languages,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLATEAU ’14, Oct 21, 2014, Portland, OR, USA.
Copyright © 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

such as SML [4], have static types that are very informative,
but programs vary in the extent to which static types are
declared due to type inference features in those languages.
Type inference is becoming popular among language de-
signers, as shown by its availability in new languages, such
as Swift, and recent revisions to existing languages such as
C++11, C# 3.0, and Visual Basic. As type inference becomes
more popular in languages that are in widespread use, it is
important to consider whether and in what cases adoption of
type inference may impact the productivity of developers.

Avoiding lengthy type annotations via type inference
and via dynamic types has some advantages. Reducing the
amount of typing required to enter a program, since the types
are either omitted or replaced by a terse keyword such as
“auto,” may improve programmer productivity both when
entering the program and when reading it by avoiding super-
fluous verbosity. This benefit may be particularly important
in languages with parametric polymorphism, in which types
can become especially verbose and the code can become
repetitious. Type inference may also reduce program main-
tenance costs by permitting programmers to modify code
without updating corresponding type declarations. Particu-
larly in cases of local type inference, type inference may im-
prove users’ productivity. Robin Milner, the inventor of type
inference, wrote: “Although it can be argued convincingly
that to demand type specification for declared variables, in-
cluding the formal parameters of procedures, leads to more
intelligible problems, it is also convenient–particularly in
on-line programming–to be able to leave out these specifi-
cations.” [4] Finally, type inference may help programmers
notice bugs when they discover that an expression does not
have the type they expected. If the type is inferred, the user
might notice that the type is unexpected because the inferred
type results in a type error. In this case, the type error could
occur when the expression of inferred type is used in a place
that expects an input of a different type. The user might also
notice the error because the compiler gave the user the type
name and the user finds it surprising.

The lack of explicit types may alternatively make code
more difficult to read and understand, especially in the case
of non-local type inference, where the information needed
to determine an expression’s type may be lexically or struc-
turally distant. For example, if the type of a variable is nei-

ther explicit nor obvious, the user might guess an incorrect
type and write code based on that type. Later, when the new
code fails to typecheck, the user may be forced to backtrack.

These incorrect beliefs may lead to more frequent bugs in
programs written in languages that do not specify types ex-
plicitly. Though tools might help by showing type informa-
tion, the utility of this information depends on whether the
tool shows the dynamic type in a specific execution of the
code (as in a debugger), or whether it provides a static guar-
antee regarding the type. But perhaps displaying type infor-
mation that can be easily inferred sometimes actually makes
programs more difficult to understand due to verbosity.

In some languages, users have established conventions
that incorporate type information into symbol names. For
example, Scheme users are expected to end predicates in
the question mark character [5]. Though this convention
isn’t enforced by the compiler and imposes a burden on
programmers, it may be helpful for readers.

The overall research question is: in what situations are
explicit static type annotations in programs helpful to pro-
grammers, and in what situations are they harmful? By iden-
tifying cases in which the presence of explicit types helps
or hinders users, we hope to inform future language designs
and to design tools to help users use types more effectively.

2. Hypotheses
Suppose a programmer wants to know the type of an expres-
sion e, where e has no type declared. The following hypothe-
ses might be interesting to consider regarding the difficulty
of determining the type.

2.1 Locality
In local type inference, type information for a given line of
code can be derived from only that line and its typing envi-
ronment. In contrast, non-local type inference also requires
information from other lines of code. For example, in SML:

let val l = List.rev [] in

42::l

end

The type of l depends on the next line; until then it
is of polymorphic list type. Therefore, a programmer can’t
determine the type of l by reading only its binding.

Hypothesis 1. Inferring types is easier for users (and there-
fore less of a usability problem) when the types can be in-
ferred with local type inference.

2.2 Scope
When a variable has narrow scope, its type may not be par-
ticularly important to the rest of the program. As a result, the
user may benefit from type inference because the benefits of
the terseness may outweigh the benefits of an explicit dec-
laration. A common example in C++: “auto” is sometimes
used for loop counters, which frequently have narrow scope:

std::vector<int> indices = ...

for (auto it = indices.begin();

it != indices.end();

++it)

{

...

}

We do not include types of function arguments here, since
those are part of the function’s type rather than part of the
function’s body’s scope.

Again considering the costs of navigation users bear in
dynamically-typed languages [2], narrow scope may im-
prove user productivity in dynamically-typed languages by
reducing navigation costs.

Hypothesis 2. If the scope of a variable is small, type infer-
ence is more beneficial than if the scope is large.

2.3 Function types
Finding the type of a variable without a type declaration
requires finding an assignment or binding to that variable,
but when functions have undeclared return types, this may
significantly increase the burden because users may need to
trace an input through a sequence of function calls to deter-
mine the type of a given expression. That is, a variable may
be bound to the result of a function call, whose implemen-
tation may itself call a function, etc. Likewise, if a function
or method’s arguments have unspecified types, determining
what operations can be performed on the arguments may be
difficult and require searching for calls to the function or
method.

In the example below, determining the type of something
requires knowing the function types of getCache() and
fetch().

Cache.fetch = function () {...}

function getCache () {return ...}

var cache = getCache();

var something = cache.fetch(username); // ??

However, some functions, particularly anonymous ones,
have narrow scope. In these cases, function type declarations
may be less useful.

Hypothesis 3. Programmer productivity is maximized when
function types are visible in the function’s declaration except
for functions of narrow scope.

2.4 Costs of unavailable type information
When type information is unavailable in systems with com-
plex types, users may need to take several steps in order to
determine the types of expressions. Users of SML frequently
find that fixing type errors in programs is difficult because
the source of the error may be distant from the place refer-
enced by the error message [6]. However, these costs vary
according to the language.

Hypothesis 4. In languages with more expressive type sys-
tems (in which types are more informative than in other sys-
tems), the costs of unavailable type information are higher.

2.5 Programmer usage of type inference
By understanding how and when users use type inference,
we might hope to better understand how users view the
tradeoffs of type inference. In particular, programmers may
be using type inference as a tactic to reduce typing and lexi-
cally shorten program text. In languages that support type in-
ference, users are saved significantly more typing (and pro-
grams are made much less verbose) when type inference is
used for complex types than for simple types.

Hypothesis 5. In languages in which type inference is used
relatively rarely, such as in C++11, it is used more often
with more complex types than it is with simple types.

3. Benefits of type inference
In languages that have expressive static type systems and
therefore would otherwise require users to insert type dec-
larations manually, type inference may save users signif-
icant time when used judiciously. It would be interesting
to quantify this benefit and compare it to the above trade-
offs. It has been shown that novices may have trouble using
type declarations correctly [7]; perhaps type inference would
help them program more successfully in languages that have
strong static type systems. However, the existing studies fo-
cus on the short-term effects on productivity on small code-
bases. Less is known about longer-term implications and ef-
fects on larger projects.

Parametric polymorphism can lead to longer type names
and repetition. This may be a particularly beneficial place
for type inference so users can reduce verbosity. From Java
example code [8], compare:

Map<String, List<String>> myMap =

new HashMap<String, List<String>>();

to:

Map<String, List<String>> myMap =

new HashMap<>();

Once more is known about the tradeoffs involved in ex-
plicit type declarations, languages and tools should be de-
signed accordingly. IDEs could fill in undeclared types when
users would benefit but not when it would only increase ver-
bosity. Some IDEs provide type information when a user
hovers over a symbol, but perhaps IDEs could show types
automatically if it was known where users needed to know
the types. Languages could be designed that support type
inference in places where it is useful, and language design-
ers could avoid spending effort supporting type inference in
places where it would be detrimental for users to use it.

4. Next Steps
To evaluate the above hypotheses, we should do studies of
programmers and of corpora of code from a variety of con-
texts. A corpus study might help address some of the hy-
potheses, particularly programmer usage of type inference.
User studies may be useful, particularly regarding locality
and scope. Novice programmers may have different needs
than experts; maintenance tasks may present different prob-
lems than original development tasks; large codebases may
impose different requirements than small ones.

By identifying cases in which type inference helps or
hinders programmers, we can design tools to help users
use type inference more effectively. In C++11, for example,
users must currently decide whether to use type inference in
each declaration. An editor could automatically insert type
declarations where helpful and remove them when inference
would improve readability and understandability of the code.

5. Acknowledgments
We appreciate the helpful input from Chris Martens. This
work was supported in part by the NSA lablet contract
#H98230-14-C-0140 and in part by NSF grant IIS-1314356.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect those of the NSA or NSF.

References
[1] J. Sunshine, J. D. Herbsleb, and J. Aldrich. Structuring Doc-

umentation to Support State Search: A Laboratory Experiment
about Protocol Programming. In Proceedings of ECOOP 2014.

[2] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik.
An Empirical Study of the Influence of Static Type Systems
on the Usability of Undocumented Software. In Proceedings of
OOPSLA, 2012.

[3] P. Petersen, S. Hanenberg, and R. Robbes. An Empirical
Comparison of Static and Dynamic Type Systems on API Usage
in the Presence of an IDE: Java vs. Groovy with Eclipse. In
ICPC 2014, Hyderabad, India, Jun. 2-3, 2014, 212-222. ACM,
2014.

[4] R. Milner. A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences, 17:348-375, Aug.
1978.

[5] R. K. Dybvig. The Scheme Programming Language, third
edition. The MIT Press. Sept. 2003.

[6] M. Beaven, R. Stansifer. Explaining Type Errors in Polymor-
phic Languages. In ACM Letters on Programming Languages
and Systems, Volume 2 Issue 1-4, Mar.-Dec. 1993, 17-30.

[7] A. Stefik, S. Siebert. An Empirical Investigation into Program-
ming Language Syntax. In ACM Transactions on Computing
Education, Volume 13 Issue 4, Nov. 2013, Article No. 19.

[8] Type Inference (The Java™Tutorials > Learning the Java
Language > Generics (Updated)). Oracle, 2014. Oct. 1 2014.
<http://docs.oracle.com/javase/tutorial/java/

generics/genTypeInference.html>.

http://docs.oracle.com/javase/tutorial/ java/generics/genTypeInference.html
http://docs.oracle.com/javase/tutorial/ java/generics/genTypeInference.html

	Introduction
	Hypotheses
	Locality
	Scope
	Function types
	Costs of unavailable type information
	Programmer usage of type inference

	Benefits of type inference
	Next Steps
	Acknowledgments

