
First-Class State Change in Plaid

Joshua Sunshine† Karl Naden† Sven Stork§† Jonathan Aldrich† Éric Tanter‡ ∗
†Carnegie Mellon University §University of Coimbra

‡PLEIAD Lab / Computer Science Department (DCC) / University of Chile
{sunshine, kbn, svens, jonathan.aldrich}@cs.cmu.edu etanter@dcc.uchile.cl

Abstract
Objects model the world, and state is fundamental to a faith-
ful modeling. Engineers use state machines to understand and
reason about state transitions, but programming languages
provide little support for building software based on state ab-
stractions. We propose Plaid, a language in which objects are
modeled not just in terms of classes, but in terms of changing
abstract states. Each state may have its own representation,
as well as methods that may transition the object into a new
state. A formal model precisely defines the semantics of core
Plaid constructs such as state transition and trait-like state
composition. We evaluate Plaid through a series of examples
taken from the Plaid compiler and the standard libraries of
Smalltalk and Java. These examples show how Plaid can more
closely model state-based designs, enhancing understandabil-
ity, enhancing dynamic error checking, and providing reuse
benefits.

Categories and Subject Descriptors D.2.10 [Software En-
gineering]: Design—Representation; D.3.2 [Programming
Languages]: Language Classifications—Object-oriented lan-
guages; D.3.3 [Programming Languages]: Language Con-
structs and Features—State

General Terms Design, Documentation, Languages, Relia-
bility

Keywords typestate, state-chart, plaid

1. Introduction
Object-oriented programming provides a rich environment
for modeling real-world and conceptual objects within the
computer. Fields capture attributes of objects, methods cap-
ture their behavior, and subtyping captures specialization

∗ Partially funded by FONDECYT Project 1110051

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

relationships among objects. A key element missing from
object-oriented programming languages, however, is abstract
states and conceptual state change. State change is pervasive
in the natural world; as a dramatic example, consider the state
transition from egg, to caterpillar, to pupae, to butterfly. Mod-
eling systems with abstract states and transitions between
them is also common in many engineering disciplines.

In computer science, state machines are important model-
ing concepts in the UML. Abstract states are also a critical,
though often implicit, part of many library APIs—and any
client using that API must be aware of those states to use
the API correctly. For example, a file may be in the open or
closed state. In the open state, one may read or write to a file,
or one may close it, which causes a state transition to the
closed state. In the closed state, the only permitted operation
is to (re-)open the file.

Files provide a simple example of abstract states, but there
are many more. Streams may be open or closed, iterators may
have elements available or not, collections may be empty
or not, and even lowly exceptions can have their cause set,
or not1. State spaces may be complex: In ResultSet from
the Java JDBC library, we found 33 unique states dealing
with different combinations of openness, direction, random
access, insertions, etc [7]. States are also common: a recent
study of protocols in Java suggests that almost three times
as many types define protocols as define type parameters [3].
They also cause significant pain: for instance, in a study of
problems developers experienced when using the ASP.NET
framework, 3/4 of the issues identified involved temporal
constraints such as the state of the framework in various
callback functions [16]. All this raises a natural question:
why not support abstract states in programming languages?

We previously proposed Typestate-Oriented Programming
as a new programming paradigm in which programs are made
up of dynamically created objects, each object has a types-
tate that is changeable, and each typestate has an interface,
representation, and behavior [1]. The term typestate refers
to a static abstract state checking methodology proposed by
Strom and Yemini [25]; this paper focuses on a dynamically-

1 E.g. in Java, the cause of an exception can only be set once.

typed setting, and so we will use the terms (abstract) state
and protocol in place of typestate to avoid confusion.

A programming language with abstract states can have
many benefits. First, in the case of stateful abstractions, the
code will more clearly reflect the intended design. This in turn
will make state constraints more salient to developers who
need to be aware of them. If state constraints are implicitly
enforced by the object model, there is no need to code
up explicit checks; thus code implementing states can be
more concise. Explicit state models raise the level of error
messages; instead of (perhaps) silently corrupting a data
structure when an inappropriate method is called, the runtime
can signal an error that that method is unavailable in the
current state. Finally, explicit modeling of states also exposes
new concepts for widespread reuse; candidates may include
open/closed resources or positioning (beginning, middle, end)
of streams.

Contribution. The contribution of this paper is the concrete
design and evaluation of Plaid, an object-oriented program-
ming language that incorporates first-class state change as
well as trait-like state composition. Plaid has been imple-
mented, and has proven effective for writing a diverse set of
small and medium-sized (up to 10kLOC) programs, including
a self-hosted compiler. For the purposes of this paper, Plaid
is dynamically typed, though there are plans to add a gradual
type system following recent work on gradual typestates [29].

The most interesting aspects of Plaid’s design come from
the intersection of state change with support for a trait-like
model of composition [12]. Central goals of the language
design include supporting the primary state modeling con-
structs from statecharts [14], as well as flexible code reuse.
Our design includes a hierarchical state space, so that the
open state of a stream can be refined into within and eof

substates indicating whether there is data left to be processed.
Handling real designs in a modular way requires support for
multi-dimensional state spaces, as in and-states from [14]; an
example is a separate dimension of a stream’s state indicating
whether the stream has been marked with a location or not.
Modularity further requires reasoning about dimensions sep-
arately; for example, the mark() method should affect the
marked state dimension but it should not affect whether the
stream is at eof. Dimensions also delineate natural points of
reuse; we would like to specify them separately and combine
them using a trait-like composition operator.

We position Plaid relative to earlier work in the next
section. Plaid’s design is described by example in section 3.
This section validates our design, using a number of carefully
chosen examples to concretely illustrate how Plaid provides
the potential benefits described above. We also discuss our
prototype implementation of Plaid, targeting the JVM.

In order to be precise about Plaid’s semantics, Section
4 provides a formal model that includes the semantics of
all of Plaid’s major features. Section 5 describes how the
surface Plaid language is elaborated into the core formal

model. The paper concludes with a discussion of ongoing
work on Plaid, together with an argument that the concrete
benefits validated by example lead to higher-level benefits in
software development and evolution.

2. Background and Related Work
Plaid’s state constructs are inspired and guided by state
modeling approaches such as Harel’s statecharts [14]. Other
modeling approaches include Pernici’s Objects with Roles
Model [20], which models objects using a set of roles, each
of which can be in one of several abstract states.

Strom and Yemini proposed typestate as a compiler-
checkable abstraction of the states of a data structure [25].
The Fugue system was the first to integrate typestates with
an object-oriented programming language [10]. Bierhoff et
al. later observed that the complexity of protocols such as the
one defined by the JDBC ResultSet interface requires rich
state modeling constructs like those proposed by Harel [7].
This paper considers a dynamically-typed setting, so we do
not discuss static checkers further.

State-dependent behavior can be encoded using the State
design pattern [13]. However, this pattern is less direct than
the language support we propose, and it does not help with
ensuring that a client only uses operations that are available
in the current state.

Dynamic languages such as Self [28] provide the ability
to add and remove methods, as supported by Plaid’s state
change operator. Changing a delegation slot in Self can also
be used to simulate state change, as can the become method
in Smalltalk [18]. We believe that Plaid’s more structured
and more declarative constructs for state modeling have
advantages in terms of error checking, succinctness, and clear
expression of design compared to these encodings. Plaid’s
prototype-based object model is also inspired by Self’s.

Prior State-Based Languages. The Actor model [15] treats
states in a first-class way, using the current state of an actor
to define the response to messages in a concurrent setting.

Taivalsaari extended class-based languages with explicit
definitions of logical states (modes), each with its own set of
operations and corresponding implementations [27]. Plaid’s
object model differs in providing explicit state transitions
(rather than implicit ones determined by fields) and in allow-
ing different fields in different states.

The Ferret language [8] provides multiple classification,
in which objects can be classified in one of several states in
each of multiple dimensions. Ferret attaches dimensions to
classes, not other states, so dimensions cannot come and go
with state changes (unlike in Plaid and Statecharts).

A number of CAD tools such as iLogic Rhapsody or
IBM/Rational Rose Real-Time support a programming model
based even more directly on Statecharts [14]; such models
benefit from many rich state modeling features but lack
the dynamism of object-oriented systems. Recently Sterkin

proposed embedding the principal features of Statecharts as
a library within Groovy, providing a smoother integration
with objects [23]. Our approach focuses on adding states to
object-oriented languages, rather than libraries.

Other researchers have explored adding a class change
primitive to statically-typed languages [4, 6, 11]. These
systems, however, do not support the richness of state models
(e.g. and-states) as provided in Statecharts and in Plaid.

Schaerli et al. proposed traits [12] as a composition mecha-
nism that avoids some of the semantic ambiguities of multiple
inheritance. Schaerli’s traits did not have fields, but Plaid fol-
lows prior designs [5] to add them. Like some other recent
work [9, 22], Plaid does not have the flattening property, in
which the composition structure of traits is compiled away
and does not affect the semantics of the resulting program. We
lose the simplicity of flattening but gain the ability to model
structured state spaces more directly, as described below.

An initial sketch of the Plaid language design was pre-
sented earlier [1] as an instance of the Typestate-Oriented
Programming paradigm. While we recap the motivation and
concept of the language from this earlier work, that paper de-
scribed an unimplemented language, and neither defined the
language semantics nor investigated the modeling of complex
state spaces, which are the key contributions of this paper. In
an earlier 4-page workshop paper, we explored the need for a
modular state change operator that affects only one dimension
of state change at a time [2]; this paper gives the semantics
for a concrete solution to that problem. Other recent work has
begun to explore a gradual, permission-based type system for
Plaid [29].

3. Language
In this section we will introduce Plaid by example. These
examples serve the dual purpose of explaining the language
and validating the concrete benefits of Plaid.

3.1 Basics of State Change
Object protocols are rules dictating the ordering of method
calls on objects. The concrete state of an object with a proto-
col can be abstracted into a finite number of abstract states
and the object transitions dynamically between these abstract
states. Therefore, clients must be aware of the abstract states
in order to use the object correctly.

Most programming languages provide no direct support
for protocols. Instead, protocols are encoded in the language
using some combination of the state design pattern [13],
conditional tests on fields, and other indirect mechanisms.
In Plaid, protocols are supported directly with states, which
are like classes in Java, with the crucial distinction that an
object’s state changes as the object evolves.

Consider the state space of files, the canonical protocol
example [1], shown in Figure 1. Some files are open and
some are closed. We close an open file by calling the close
method and open a closed file by calling the open method.

Closed

File

Open

read()

close()

open()

Figure 1. State space of File.

1 state File {

2 val filename;

3 }

4 state OpenFile case of File = {

5 val filePtr;

6 method read() { ... }

7 method close() { this <- ClosedFile; }

8 }

9 state ClosedFile case of File {

10 method open() { this <- OpenFile; }

11 }

Listing 1. File states in Plaid

One cannot open an open file so the open file state does
not include the close method. Similarly, one cannot read a
closed file so the closed file state does not include the read
method.

The state space of files can be encoded cleanly in Plaid as
shown in Listing 1. The state keyword is used to define a
state. The File state contains the fields and methods that are
common between open and closed files. In this case, only the
filename is shared. Fields are declared with the val keyword.

OpenFile and ClosedFile define the methods and fields
that are specific to open and closed states. Both are substates
of File. Specialization is declared with the case of keyword.
In addition, case of implies orthogonality: files can either
be open or closed, not both. Methods are defined with the
method keyword. Open files have a read method, a file
pointer field which is presumably used by the read method
to read the file, and a close method. Closed files have the
open method.

The open and close method bodies contain the most
novel bit of syntax. An object referred to by a variable x

can be changed to state S by writing x <- S. In the open

method we transition the receiver, referred to as in Java by
the keyword this, to the open state by writing this <-

OpenFile.
An example file client is shown in Listing 2. The

readClosedFile method takes a file as an argument, opens
it, reads from it, closes it, and returns the value read from
the file. All of the method calls are valid if a closed file is
passed to the method. If an open file is passed instead the
open method call will fail. The library writers do not need to
write any special error handling code to handle this condition

1 method readClosedFile(f) {

2 f.open();

3 val x = f.read();

4 f.close();

5 x; //return
6 }

Listing 2. File client in Plaid

Egg ChrysalisCaterpillar Imago

crawl() fly ()
hatch() anchor() metamorphosize()

Butterfly

Figure 2. Buttefly life-cycle.

like they would in Java. This has the concrete benefit that
Plaid code for the equivalent design is smaller.

In most programming languages, fields of an object are
often null in certain abstract states. For example, Java files
might contain a null filePtr when the file is closed. Null
pointers are a frequent cause of runtime errors and their cause
can be difficult to diagnose. For these reasons, Tony Hoare
recently called null pointers a “billion dollar mistake,” and
we have not repeated this mistake in Plaid.

Plaid objects are always consistent: in other languages a
programmer might forget to check the state before performing
an operation and perform the operation on an object in the
wrong state. Similarly, the operation might fail, but with a less
specific error message. For example, if a client calls the read
method, implemented in Java without error handling, on a
closed file, Java might throw a NullPointerException for
a null dereference of filePtr.

3.2 State Transtions
The file state space is a complete directed graph, every pair of
states is connected in both directions by an edge. Other kinds
of objects have incomplete state spaces. Consider the life-
cycle of a butterfly, which is illustrated by the state-space in
Figure 2. A butterfly egg hatches to a caterpillar, but it cannot
‘un-hatch’. Similarly, a butterfly never transitions directly
from a caterpillar to an imago, it always transforms to a
chrysalis first.

To preserve the integrity of incomplete protocols, only the
method receiver (this), can be the target of a state change op-
eration. If Plaid did not have this restriction it would be trivial
for programmers to inadvertently violate a protocol. Con-
sider: val x = new Egg; x<-Caterpillar; x<-Egg. This il-
legal Plaid code violates the protocol by restoring a caterpillar
to an egg. Instead, in legal Plaid code, methods defined in the
butterfly states perform all of the state transitions.

3.3 Dimensions of State Change
Many objects in the real world are not as simple as files or
butterflies. Some objects are composed of multiple states, par-
ticularly when objects are built up from reusable components.
These components may change their state independently, or
orthogonally. For example, cars have both gears and brakes
and when the car shifts gears it has no effect on the brakes.
States that change independently are in different dimensions.
State dimensions in programming languages were introduced
in [7].

More concretely, let us say a stream is in state unmarked
in dimension markable, and state within in dimension
position. If the object changes to state marked, also in
dimension markable, it will lose all of the fields and methods
defined in unmarked (such as mark), gain those in marked

(such as reset), and keep those in within (such as read).
The full power of Plaid comes when component states are

themselves composed of multiple states. In such a setting the
component states are gained and lost along with their parents.
Many of this kind of deep hierarchies exist in the wild [3].
For example, in the Java Database Connectivity library, the
ResultSet interface is composed from a combination of 33
states, four levels of nesting, and eight dimensions. A slightly
simplified schematic of the state space is shown in Figure 3.

The features of the language just described correspond
directly to the ‘hierarchical-states’, ‘and-states’ and ‘or-states’
proposed by Harel in his seminal state-chart paper [14].
Hierarchical-states are states that are composed of other
states. And-states are states that both must be present in an
object—separate dimensions that are modeled using with

composition in Plaid. Finally, or-states are states in the same
dimension, and therefore only one can be present in an
object—a state that is a case of another state. These features
are the fundamental building blocks of the Harel state chart
formalism (which forms the basis for UML state diagrams),
and are naturally encoded in Plaid exactly in the manner we
just described.

In the ResultSet diagram (Figure 3), or-states are sep-
arated by white space. For example, Open and Closed are
states in one dimension, ForwardOnly and Scrollable are
in another. Hierarchical-states are indicated by nesting of
the state rectangles. For example, Scrolling is a child of
Open and Begin of Scrolling. The names of states with
children, like Open appear outside the state-rectangle, and
the names of simple states without children, like Inserted,
appear inside the state-rectangle. Finally, and-states are sepa-
rated into orthogonal regions by dotted lines, so Direction

and Status are and-states.
There is a natural one-to-one correspondence between

the state rectangles in the diagram and the state declarations
in Plaid code. A subset of the declarations for ResultSet
states are shown in Listing 3. The or-states are all declared
to be cases of their dimensions. For example, ForwardOnly
and Scrollable are cases of the Direction dimension.

Insert Inserted

Begin End

Read NotYetRead

ForwardOnly

Scrollable

Updatable

ReadOnly

Direction

Status

Inserting

Valid

Scrolling

Action

Open Closed

ResultSet

Figure 3. ResultSet state-chart.

1 state Open case of ResultSet =

2 Direction with Status with Action;

3 state Direction;

4 state ForwardOnly case of Direction;

5 state Scrollable case of Direction;

6 state Status;

7 state ReadOnly case of Status;

8 state Updatable case of Status;

9 state Action;

10 state Scrolling case of Action;

11 state Inserting case of Action;

12 state Insert case of Inserting;

13 state Inserted case of Inserting;

14 ...

15

16 val myResultSet = new Open @ ForwardOnly

17 with Updatable with Insert;

Listing 3. ResultSet state declarations and instantiation

The dimensions are themselves states in which case their or-
states will inherit all of the dimension’s fields and members.
Sometimes, however the state is a pure dimension and does
not contain members. In this case the state only serves to
ensure that or-states do not appear together.

The and-states nested with Open, are declared using with

together into the myResultSet state. Any object in the Open
state is also in the Direction, Status, and Action states.
Often ResultSet objects will be instantiated with children
of the three dimensions Direction, Status, and Action.

For example, at the end of Figure 3, myResultSet is as-
signed to an open object in the ForwardOnly, Updatable and
Insert states. This object will contain the methods and fields
from Insert, Inserting, Action, Updatable, Status,
Forwardonly, Direction, Open and ResultSet. If we
were to change the state of myResultSet to Inserted by
calling a method that does so for us the object would have
all of the same states, with the exception that Insert will
be replaced with Inserted. This is because Insert and
Inserted are or-states from the same dimension. When we
close the object, we lose not only the Open state but all of
the states nested inside it. We are left only with Closed and
ResultSet.

The @ operator is syntactic sugar that allows an initializer
to conveniently choose nested sub-states. The myResultSet
initializer in Figure 3 is desugared to the following code:

1 var myResultSet = new Open;

2 myResultSet <- ForwardOnly with Updatable

3 with Insert;

First, an Open object is created. Then the object is changed
to specializations of the three dimensions using the state
change operator. Notice that the left side of the state-change
operator is not this in the de-sugared code which violates
the restriction discussed in Section 3.2. This is okay, because
the restriction only applies to Plaid source which in this case
uses the @ operator.

In this example the reader can see that the Plaid code
closely reflects the design embodied in the state chart. The
stateful design is salient in the state declarations. Since

the mapping between the code and the state chart is so
clear, a programmer reading the state declarations can easily
understand the relationship between the states. In fact, our
group has built a tool to automatically extract a state chart
from Plural2, a typestate checker for annotated Java code,
and although we have not built such a tool for Plaid, the
language design clearly enables it. A second potential benefit
is that code for each state can be given separately in the
appropriate state declaration, potentially permitting more
fine-grained reuse across multiple implementations of the
ResultSet interface.

3.4 State members
As we mentioned in the introduction, Plaid combines state
change with support for a trait-like model of composition [12].
We now illustrate a particularly novel feature of Plaid, namely,
state members. States can have other states as members, and
these state members can be customized upon composition.
This allows for consistent state update, in presence of com-
posite states.

We illustrate state members and their benefits through a
Plaid version of a ReadWriteStream adapted from [12], which
is in turn adapted from the Smalltalk standard library. The
Plaid components mirror the trait components, except in our
version the methods of a single trait are sometimes divided
across multiple states.

The Position state represents the position of the pointer
into a stream or collection. It has a very limited interface
which therefore makes it easy to reuse throughout an input-
output and collection library. The code for Position is
shown in Listing 4. Position declares two abstract methods
for setting the position, a reference to the underlying collec-
tion (vector), constant fields for minimum and maximum
position, and a variable field for the current position3.

Interestingly, Position contains two state members, one
for the end-state and one for the not-end-state. The state
members are initialized to NotEnd and End, also defined
in Listing 4. These states are sub-states of Position, as
specified by the case of declarations. They implement the
abstract methods of Position. In addition, NotEnd has an
additional method nextPosition, reflecting the fact that
in that state, the position can be advanced. This method
increments the current position, tests if the current position
is at or past the maximum position, and transitions the
receiver to the end state if the position is at the end. Similarly,
setToStart in End transitions the receiver back to the not-
end state.

The crucial part in this example is that the state tran-
sitions do not explicitly reference a specific target state,
but rather reference the state members of Position. For
instance, nextPosition in NotEnd transitions this to

2 http://code.google.com/p/pluralism/
3 Abstract methods are indicated by eliding the method body; constant fields
are declared with val, and variable fields with var.

1 state Position {

2 state notEndState = NotEnd;

3 state endState = End;

4 method setToEnd();

5 method setToStart();

6 val vector, minPos, maxPos;

7 var currPos;

8 }

9

10 state NotEnd case of Position {

11 method setToEnd() {

12 this.currPos = this.maxPos;

13 this <- this.endState;

14 }

15 method setToStart() {

16 this.currPos = this.minPos;

17 }

18 method nextPosition() {

19 this.currPos++;

20 if (this.currPos >= this.maxPos) {

21 this <- this.endState;

22 }

23 }

24 }

25

26 state End case of Position {

27 method setToEnd() { /∗ no op ∗/}
28 method setToStart() {

29 this.currPos = this.minPos;

30 this <- this.notEndState;

31 }

32 }

Listing 4. Position code.

1 state Reader { }

2

3 state Reading case of Reader {

4 method read() {

5 val ret = this.vector.get(this.currPos);

6 this.nextPosition();

7 }

8 }

9

10 state ReadEnd case of Reader { }

11

12 state ReadStream = Position {

13 val notEndState = Reading with NotEnd;

14 val endState = ReadEnd with End;

15 } with Reader;

Listing 5. ReadStream code.

this.endState, not End. This allows for consistent and
flexible reuse, composition, and extension of states, as illus-
trated hereafter.

1 state ReadWriteStream = Position {

2 val notEndState =

3 Writing with Reading with NotEnd;

4 val endState =

5 WriteEnd with ReadEnd with End;

6 } with Reader with Writer;

Listing 6. ReadWriteStream code.

Consider the code for a ReadStream, as shown in List-
ing 5. The ReadStream definition includes a pure dimen-
sion, Reader. This dimension has two children Reading and
ReadEnd, which correspond to the ReadStream in the not-
end-state and the end-state, respectively. In the not-end-state,
the ReadStream can read, and therefore Reading defines
the read method. This method reads from the underlying
collection at the current position and advances the position.

The ReadStream is composed from the two dimensions
Position and Reader. ReadStream specializes NotEnd

by overriding the two state members in Position. The state
members in ReadStream are composed from two states, one
from each dimension of ReadStream. Therefore, when the
methods in Position and its children change state, they
will change both dimensions of ReadStream. For example,
when nextPosition advances the stream to the end, the
ReadStream object composed of Reading with NotEnd will
change to a ReadEnd with End.

Initializing a ReadStream requires two-phase initializa-
tion like for ResultSet. In particular, the code to create
a ReadStream x that is not at the end is val x = new

ReadStream; x<-this.notEndState;. Here again, tran-
sitioning x to the state member notEndState ensures that
the consistent composition of actual states is used.

Since the Reader dimension has the same structure as the
Position dimension it is natural for transitions in Position
to change Reader as well. In this example, there is no code
in the Reader states that enacts the state change. Instead,
the Reader dimension relies on the Position dimension to
perform state changes. The state members in this example
allow for this kind of dimensional reuse without extensive
glue code4. The only code required to required to reuse
the dimension is the specialization of state members in
ReadStream.

We now illustrate a further step of consistent composition
of states with the definition of ReadWriteStream in List-
ing 6. The definition uses a new dimension, Writer, with
two substates Writing and WriteEnd, defined in the same
manner as the Reader states.

This ReadWriteStream reuses code from all three dimen-
sions with very little effort. The ReadWriteStream is the

4 State members also have a more traditional purposes. State members, like
all states, can be used to create objects. They allow us to encode ML-style
structures and functors. These abstraction mechanisms can be very powerful,
especially in a typed version of Plaid. However, these purposes are not novel
to Plaid so we do not focus on these here.

natural extension of ReadStream. The state members are
composed from all three dimensions. The state transitions in
a ReadWriteStream object will change all three dimension
at once.

The ReadWriteStream example demonstrates both the
power of a trait-like composition model and its novel ex-
tension to states. We reuse ReadStream and WriteStream

with little effort, as we could achieve in a language with traits.
In addition, we have a new unit of reuse, the Position di-
mension, which is shared with two other dimensions. This
reuse eliminates duplicate code, and helps avoid bugs. Both
the Reader and Writer of a ReadWriteStream are in the
end-state or not-end state. Because the dimension is reused
we can guarantee that no programmer will err and end up
with an object in an inconsistent state like WriteEnd with
Reading.

One important note is that the Writer and Reader contain
no members in common, and therefore no conflict arises.
Plaid requires explicit conflict resolution at the point of
composition. This conflict resolution will be described in
Section 4.2.

3.5 Validation
The introduction claims four concrete benefits of Plaid: code
closely reflects design, programs are concise, error checking
is implicit, and new opportunities for reuse. These benefits
were illustrated in the examples in this section and they were
discussed while describing the examples. We summarize the
case here for emphasis. We then reflect on our experience
writing mid-sized programs in Plaid, in diverse domains.

3.5.1 Concrete benefits

Code reflects design. Designs with stateful abstractions are
clearly reflected in Plaid code. This is clear in of all three
examples in this section. The implementation of the file,
result set, and read-write streams all match their designs.
Arbitrarily complex state-charts can be encoded in Plaid with
the simple rules described alongside the result set example.
Each abstract state maps to its own state in code, so the design
of the abstraction and its protocol as a whole is highly salient
in the code.

Concise programs. Since state constraints are implicitly
enforced by the object model, none of our examples included
any error checking code. The implementation are therefore
smaller.

Error Prevention. Plaid’s explicit state models make error
checking more consistent, because the programmer cannot
forget to check state constraints when a method is called. The
level of abstraction of error messages is also thereby raised:
when an inappropriate method is called, instead of triggering
an internal run-time exception such as a null pointer, or (what
is worse) silently corrupting data, the runtime can signal an

Project Lines of Code # Files
CodeGenerator 1205 24
AeminiumCodeGen 2610 8
Typechecker 4196 55
ASTtranslator 9506 107
PlaidApps 528 21
Standard Library 372 18
TestCompiler 2811 96
TestTypechecker 363 9
Total 21591 338

Table 1. Plaid code written for eight projects.

error that a particular method is unavailable in the current
state. Also, we have shown how state members can be used to
enforce consistency of multiple dimensions of state at once.

Reuse. Plaid provides new reuse opportunities. Some state
machines are used in many objects. For instance, the
Position dimension was reused in both read and write
streams, and it could also be reused in many IO and Collec-
tion libraries. Open and closed resources like the File and
ResultSet are also very common.

3.5.2 Applicability to diverse domains
In order to gain practical experience with the language and ex-
periment with typestate-oriented programming beyond small
examples, we have written several mid-sized programs in
Plaid. These programs further demonstrate the expressive-
ness of Plaid in a diverse set of domains including compi-
lation, input-output, GUIs, and web. They are all available
for download from the Plaid repository5. In total, we have
written 22KLOC across 338 files. A breakdown of our im-
plementations is in Table 1. We call out items of particular
interest here.

Compiler. Plaid is self-hosting; the CodeGenerator project
compiles Plaid code into Java source. Plaid code can easily
use Java libraries and many of our examples are implemented
that way. In a sister project [24], we have implemented a
separate compiler for parallel-by-default code, which is the
AeminiumCodeGen project. We are currently working on a
Plaid typechecker; the implementation is the Typechecker
project. All these projects are supported by AST transforma-
tions performed by the ASTtranslator project.

GUI Library. GUI libraries often impose state constraints
on their clients. We implemented Plaid wrappers for a few
key Java Swing classes, including Window, Pane, and Canvas
abstractions. We use states to enforce proper initialization of
these abstractions. In particular, windows should have some
contents added, otherwise they are created with size zero.
Furthermore, windows are Hidden until show() is called,
then they become Visible. Panes should also have contents

5 http://code.google.com/p/plaid-lang/

Obj Val ov ::= mv
∣∣ dv ∣∣mv 7 ov

∣∣ dv 7 ov
Dim Val dv ::= tag{ov}

∣∣ tag{ov} <: dv
Mbr Val mv ::= methodm(x){e}

∣∣
val n = v

ObjExp oe ::= me 7 oe
∣∣ de 7 oe

∣∣ e 7 oe
∣∣

me
∣∣ de ∣∣ e

Dim Exp de ::= dv
∣∣ tag{oe} ∣∣ tag{oe} <: de

∣∣
e
∣∣ e{to}

Mbr Exp me ::= mv
∣∣ val f B x = e

∣∣
recstate{val sB x = proto sd}

State Decl sd ::= freshtag{oe} <: de
∣∣

freshtag{oe}
∣∣ oe

Trait Op to ::= \n
∣∣ n→ n′

∣∣me
∣∣ (tagOf e).me

Val v ::= `
∣∣ ov ∣∣ proto oe

∣∣ fn(x)⇒ e
Exp e ::= x

∣∣ v ∣∣ let x = e in e
∣∣

e(e)
∣∣ e.m(e)

∣∣ e.n ∣∣
e← e

∣∣ e� e
∣∣ new e

∣∣
match(e){c}

∣∣
freeze e

∣∣ recstate{mv}#l

Case c ::= case(tagOf e) {e}
∣∣ default {e}

Figure 4. Internal Syntax

added. Both panes and canvases must be assigned a parent
window, and canvases should be given a preferred size. Our
library is not comprehensive, but it is sufficient to build
demonstration applications—in our case, a Turing machine
that uses Plaid’s states to represent the finite state control, the
marks on the tape, and the illusion of an infinite tape. Both
the windowing library and Turing demonstration application
are in the PlaidApps project.

Miscellaneous The Plaidapps project includes the examples
discussed earlier and a small web server and workflow engine.
The Plaid standard library includes integers, rationals, strings,
options, and standard control (e.g. if) and looping (e.g. for,
while) structures. Finally, two testing projects include a
number of smaller tests and examples.

4. Semantics
In this section we present the formal definition of the Plaid
language and give it a precise semantics. At its core, Plaid
is an object system with first-class generators and functions.
Individual generators can be combined and specialized using
composition and operators inspired by traits [12], instantiated
to create objects, or used to specify the abstract state the
object should change to. We start by describing the syntax
and object model of a core language, which is intended to be
simpler than Plaid source code yet be capable of representing
all of the major semantic elements of Plaid. Then we discuss
the execution semantics of the core language.

4.1 Core Syntax
The syntax of the internal representation of Plaid is given in
Figure 4. In these definitions, x ranges over bound variables,
while members of objects are represented by f,m, and s,
which respectively range over fields, methods, and state
members. We use n to represent any kind of object members
when we do not distinguish between them. Abstract states are
represented using tags which are generated as needed. We
will introduce each syntactic category in turn, describing its
purpose and motivations.

4.1.1 Expression Syntax
Plaid contains the standard expressions found in object sys-
tems, including object creation through new, field selection,
and method calls. Because Plaid also has first-class functions,
we include standard function definition and application as
well. For sequential expressions, we include let bindings and
bound variable references.

The rest of the expression forms are related to Plaid’s
encoding of abstract states and the transitions between them:

Changing state. The Plaid core has two state change oper-
ators.← represents a state update and only removes portions
of the receiving object that are mutually exclusive with the
incoming states. For completeness and flexibility, Plaid also
includes a state replacement operator,�, which wipes the re-
ceiving object clean before adding the incoming states, much
like an in-place new operation. One could imagine using this
operator in a situation where an object needed to be in a
particular state and no other states. This cannot be guaran-
teed by the state update operator because state update leaves
dimensions unrelated to the updating state alone.

Unlike the source language, Plaid’s core does not require
the target of a state change operator to be this. This makes
the core simpler and more flexible since the restriction can
be enforced at the source level.

proto values. First class instance generators are provided
by proto expressions. These are values which can be stored
in fields and passed as parameters. During a well-formed
execution, the target of new expressions and the right-hand
side of state change expressions will evaluate to a proto
value. This is because they encapsulate object expressions,
oe, which are uninitialized objects. The state change and
new expressions cause the initialization steps specified by
the object expression wrapped in the proto to be evaluated
for use in creating a new object or changing the state of an
existing one.

State expressions. To allow states to be chosen dynamically
at runtime, we include several expression forms that can
evaluate to a proto. As they are values, standard deference or
bound variables could result in proto expressions. Because
most states included in protocols must be defined with
(mutual) recursion, proto values represented source-declared

states are wrapped into a recstate. A particular proto can be
selected from the recstate as from a standard record.

The freeze expression is a more novel way to get a proto.
It takes the object and wraps it up in a proto allowing new
instances to be generated from it. As an example of the
use of freeze, consider the myResultSet value defined in
Listing 3. Say we wanted to do some extra initialization of
the ResultSet before using it and that over the course of a
program we would create the same ResultSet over and over.
To avoid needing to do the same initialization repeatedly, one
could freeze the object the fully initialized object and then
instantiated it each time a new ResultSet of this form was
needed. freeze has already been used in the Plaid compiler to
more cleanly support certain initialization paradigms, such
as the transformation to let-normal form, where strings of let
bindings must be concatenated together.

Matching tags. Finally, the match construct allows pattern
matching based on tags. Each case tests the target object
against the tagOf another expression. This expression is
expected to evaluate to a proto value with a single outer tag
which is grabbed by tagOf and compared with the tags of the
target object. If the object contains the tag, the corresponding
case is executed. Cases are evaluated in order.

An example of the use of match comes from the Plaid
standard library. Plaid’s syntax does not include control
structures. Instead, if and while are encoded as functions
that make use of match. The states True and False are
each defined as a case of Boolean. Thus, the if function
determines whether or not to evaluate the body based on
whether the object returned by the condition matches the
True tag.

4.1.2 Object Value Syntax
Plaid objects are collections of tags representing the states
that the object is in along with fields and methods that provide
the representation and operations of those states. In order
to implement the desired semantics these object must be
organized to formally encode the relationships between tags
and members that the semantics depend on. In particular, we
need to represent the following relationships between the
abstract states that the tags represent:

1. Superstates: An object in state, S, which is defined to
be a case of a superstate, T , must also be in state T . For
instance, an object in the NotEnd state defined in figure 4
is also in the Position state.

2. Or-states: Distinct cases of a given state, such as the
OpenFile and ClosedFile case of File, cannot exists
together in an object.

3. And-states: Both objects and states can be defined as a
composite of other states. For example, the Open state
from Listing 3 is defined in terms of states Direction,
Status, and Action. Objects in the composite state are
considered to be in each of the component states as well.

4. Defining states: Members must be associated with the
state that declares them so that they can be removed from
an object when their defining state is removed.

To formalize these relationships, objects values are organized
as hierarchical collections of dimensions, which contain tags
for the state and all of its transitive super states, and members.

Object values. The basic component of an object is an
object value, ov, which is a list of dimension values, dv,
and member values, mv. They are used to represent both
top-level objects and the dimensions and members that define
a given state (see dimension values below). The 7 operator
that separates each element of the list represents composition.
Object values encode and-states by allowing two dimensions
to coexist together inside the definition of a state. For instance,
the object value that defines a ReadStream would have two
composed dimensions, one for the Position dimension, and
the other for the Reader dimension.

Dimension values. Dimension values, tag{ov}[<: dv],
encode the structure of a state and its super states. They are
represented by a tag, tag, which is a unique name for the most
specialized state from the dimension. Associated with the tag
is an object value which represents the collection of members
that the state defines along with any other dimensions that
make up the and-states of the state. A dimension value may
optionally contain another dimension value encoding the
superstate relationship.

By containing the representation of a given states super-
states, dimension values give us a way to encode the or-state
relationship as well. Two states that are the case of the same
superstate would be encoded as separate dimensions with the
same state at the root of the dimension. Because the tags in
the dimensions partially overlap, by restricting tags to ap-
pear only once in a given object value, we can ensure that no
or-states can coexist in a single object.

Concretely, we would represent an instantiated Open state
from Listing 3 as

Open{Direction 7 Status 7 Action} <: ResultSet.

Here the most specific state of the represented dimension
value is Open. This state is defined based on the three states
Direction, Status, and Action (defining object values
not shown), and specializes the ResultSet state, which it
was defined as a case of.

A dimension is also Plaid’s version of a trait. Multiple
inheritance is achieved by allowing multiple dimensions to
be composed in an object value as well as in the object val-
ues associated with the tags of a dimension. The hierarchical
nature of Plaid’s dimension prevent us from using all of the
trait mechanisms for solving the problems of multiple in-
heritance. In particular, a multiple inheritance system must
deal with the case when one class inherits from two classes
that share a (transitive) parent. This situation is challenging
because it is non-obvious how to inherit members from the

common grandparent. This problem is commonly referred to
as the diamond problem [19], because of the shape of the
inheritance hierarchy diagram. The original traits proposal
[12] flattens 6 composed traits and forces any conflicts be-
tween method names to be explicitly resolved (field were
not allowed in traits). However, as Plaid’s semantics depend
on members being related to the tag they are defined in, we
cannot use flattening. Instead, Plaid prevents the diamond
problem by preventing or-states from coexisting, thereby pre-
venting the same tag and member definition from appearing
more than once (following Malayeri’s no-diamonds rule [19]).
Plaid’s solution follows recent extensions of traits including
[5, 9, 22]. Like Plaid, these system support traits with fields
and work in a variety of object models including those that,
like Plaid, add hierarchy and do not enforce the flattening
property. As with the original trait proposal, all name con-
flicts across dimensions must be explicitly resolved in Plaid
via the trait operators described below.

Member values. A member value is either a method, with
a set of arguments and a body, or a field, val f , bound to
a value, v. The member is said to be defined in the state
represented by its immediately enclosing tag. As a concrete
example, an object in the ClosedFile state described in List-
ing 1 would be represented formally as

ClosedFile{method close(){e}}
<: File{val filename = v}

This indicates that the object is in both the ClosedFile and
the File states, one of which is a substate of the other, and
each of which defines a single member.

4.1.3 Uninitialized Object Syntax
Plaid has corresponding syntax for uninitialized objects or-
ganized into object expressions, dimension expressions, and
member expressions. When compared to their value counter-
parts, they share the same structure but contain expressions
which are not yet values. In this section, we discuss the places
where execution can occur in these forms and the motivation
behind them.

Object expressions. Object expressions, oe, are made up of
the composition of dimension expressions, member expres-
sions, as well as raw expressions. The purpose of unevaluated
expressions in dimension and member expressions will be
explained below. Raw expressions as components of object
expressions allow part of an uninitialized object to be deter-
mined at the time of initialization. These expressions evaluate
to proto values which are then incorporated into the initial-
izing object. This provides for Plaid’s implementation of
dynamic trait composition by allowing portions of the object
to be selected at runtime.

6 The flattening property from [12] states that members of an are treated
equally regardless of what trait they were defined in.

Dimension Expressions Dimension expression can contain
unexecuted expressions in the object expression associated
with the most specific tag as well as in tags up the hierarchy
if they exist. Dimension expressions may also have associ-
ated trait operations, to, which need to be evaluated. Trait
operations allow standard manipulations such as renaming,
n → n′, and removal, \n. Note that these operate on the
whole dimension, renaming or removing all members of the
specified name defined directly in tags in the hierarchy (not
including nested dimensions). This allows the changes to be
preserved by state change in the dimension as we will see
below.

Members can also be added or replaced7. By default, they
are (re)placed in the most specific tag of the dimension expres-
sion. However, In cases where members need to be added or
replaced in a particular tag, they can be qualified by a particu-
lar tag, specified as with tags in case statements by tagOf an-
other expression. The redefinition of Position.EndState
for the ReadStream in Listing 5 is an example of using qual-
ified trait operations. This mechanism is important in Plaid
because of the hierarchical nature of Plaid’s object model and
when and how member definitions are removed during state
change.

Member expressions. Only fields can be member expres-
sions, me, as methods do not have any initialization code. On
the other hand, fields can be defined with initialization expres-
sions that require evaluation as a part of object creation or
update. In order to allow fields to refer to the initialized value
of previous fields in the same state, field expressions define
an internal bound variable in addition to their external name
(this is a standard approach from [21], chapter 8). Fields are
also generated by state declarations. Since the definitions of
related states, such as the OpenFile and ClosedFile from
Listing 1, are typically recursive, the initialization of state
members occurs in a recstate binding.

State members are also special in that when an uninitial-
ized object containing state members is initialized, new tags
may need to be generated. The proto expression encapsu-
lates uninitialized objects as discussed above. Normally they
contain object expressions, but when appearing in a recstate,
they contain state declarations, sd which may contain the
freshtag operations that generates a new tag when executed,
resulting in an object expression. This feature means that
new tags are generated for states defined inside states each
time the outer state is instantiated. Because these tags can
then be used to pattern match on objects, this allows Plaid
to implement ML-style generative functors8. Functors have

7 The semantics defined here do not allow fields and states in trait operations
to refer to other trait operation members. The formalism could be extended
to support this, mirroring the case for declarations in states
8 Generative functors, in contrast to applicative functors, generate new
abstract types for each application of the functor. This impacts pattern
matching when using these generated types in a similar way as pattern
matching on freshly generated tags in Plaid.

Heap H ::= [` ov], H
∣∣ ·

Eval E ::= []
∣∣ let x = E in e

∣∣ E(e)
∣∣ v(v,E, e)

∣∣
E.m(e)

∣∣ v.m(v,E, e)
∣∣ E.f

∣∣ E ← e
∣∣

v ← E
∣∣ v ← proto E

∣∣ E � e
∣∣

v � E
∣∣ v � proto E

∣∣ new E
∣∣

new proto E
∣∣ match(E){c}

∣∣
match(v){case(tagOf E) {e}, c}

∣∣
freeze E

∣∣ ov 7 E
∣∣ O 7 oe

∣∣ O
Obj O ::= val nB x = E

∣∣ tag{oe} <: E
∣∣

tag{E}
∣∣ tag{E} <: dv

∣∣ E{to} ∣∣
dv{to, val n = E, to}

∣∣
dv{to, (tagOf e).(val n = E), to}

∣∣
dv{to, (tagOf E).mv, to}

Figure 5. Contexts

well recognized modularity benefits that we do not discuss
here.

4.2 Dynamic Semantics
We now introduce the dynamic semantics of Plaid. We for-
malize the execution using a small step operational semantics.
The basic evaluation judgment has the form e@H 7→ e′@H ′

and is read “expression e with heap H evaluates to ex-
pression e′ in heap H ′”. We define a similar judgment
oe@H 7→ oe′@H ′ for the evaluation of object expressions.
In this section, we will define the form of the heap and the
invariants that we maintain on it. We will also discuss the
Plaid-specific evaluation rules, in particular those that use
ancillary judgments for implementing state change. As state
change is at the core of Plaid’s design and is the most com-
plicated we go into depth about the motivation and design
of the rules that implement it. Finally, we describe object
initialization and trait operations that may be involved.

4.2.1 Heap
A heap, H , is a mapping from locations, `, to object values.
We place additional well-formedness requirements on all
object values stored in the heap. These restrictions prevent
ambiguities from multiple inheritance.

Tag uniqueness. We require that all well-formed object
values have no duplicate tags. As alluded to above, this
property ensures that an object is not in two cases of a single
or-state at the same time. This is because the tags representing
two mutually exclusive or-states must come from the same
dimension and thus must have at the least the root tag of the
dimension in common. It also prevents the diamond problem
of multiple inheritance by ensuring that a particular member
definition does not appear multiple times in a single object.
This invariant is encoded in the helper judgment uniqueTags
also defined in Figure 10.

Member uniqueness. Even though a given definition for
a member cannot appear more than once, it is still possible

e@H 7→ e@H

let x = v in e@H 7→ e[v/x]@H
E-LET

|{x}| = |{v}|
(fn (x)⇒ e)(v)@H 7→ e[v/x]@H

E-APP

H[`] = ov
lookup(m, ov) = (methodm(x){e})

|{x}| = |{v}|
`.m(v)@H 7→ e[`/this][v/x]@H

E-CALL

H[`] = ov
lookup(f, ov) = (val f = v)

`.f@H 7→ v@H
E-FIELD

H[`] = ov1 uniqueTags(ov2)
ov1 ← ov2 ⇒ ov3 uniqueMembers(ov3)

`← proto(ov2)@H 7→ void@H[` ov3]
E-SU

uniqueTags(ov) uniqueMembers(ov)

`� proto(ov)@H 7→ void@H[` ov]
E-REPLACE

` /∈ H uniqueTags(ov)
uniqueMembers(ov)

new (proto ov)@H 7→ `@H[` ov]
E-NEW

de = tag{oe}[<: de′] tag /∈ tags(H[`])

match(`){case (tagOf proto de){e}, C}@H 7→ match(`){C}@H
E-CASENOMATCH

de = tag{oe}[<: de′] tag ∈ tags(H[`])

match(`){case (tagOf proto de){e}, C}@H 7→ e@H
E-CASEMATCH

match(`){default{e}, C}@H 7→ e@H
E-CASEDEFAULT

H[`] = ov

freeze `@H 7→ proto ov@H
E-FREEZE

l = ls oe = oels [recstate{val si = proto oei}#li/si]

recstate{val si = proto oei}#l@H 7→ proto oe@H
E-RECSTATESELECT

Figure 6. Expression Evaluation

that multiple tags define members with the same name. To
prevent ambiguities in this case we require that all members
of an object are provided by exactly one dimension. Because
the hierarchy of dimensions gives us a natural way to choose
the visible definition (the one from the most specific tag in
the dimension) we allow a single name to be defined directly
in multiple tags from a single dimension. Formally, two tags
are in the same dimension is one is a transitive case of the
other. This relaxation of classical traits allows, for instance, a
common super state to define a default behavior for a method
which can be overridden by (some of) its substates. The
judgment uniqueMembers defined in Figure 10 captures this
requirement. It uses the judgments mv :: tag.x@ov, which
states that member value mv from tag tag defines name x
in object value ov, and tag << tag′@ov which asserts the
property that tag tag is a transitive subtag of tag′ in object
value ov. Based on these helper judgments, an object value
has unique members if whenever we find the same member
defined in two tags, then one of these tags is a transitive subtag

of the other. We prove that evaluation preserves member and
tag uniqueness in the companion technical report [26].

Member lookup. As an object can contain multiple mem-
bers with the same name, we need an unambiguous way to
choose which one is visible. The lookup function also in
Figure 10 defines this logic. When multiple definitions are
found, we know by uniqueMembers that they all come from
the same dimension. Since the tags of a dimension form a
total order, we know that one of tags defining the member will
be a transitive subtag of all other tags defining the member.
The definition from this most specific tag is the one returned
by lookup.

4.2.2 Expressions
The evaluation rules for expressions in Plaid are given in
Figure 6. We only list only computation rules here, defining
congruence rules using evaluation contexts shown in Figure 5.
In these, each expression with a subexpression that requires
evaluation defines a hole, [], into which any expression can

be placed. Evaluation proceeds by using the computation rule
that evaluates the expression in the hole.

Standard rules. The computation rules for the evaluation
of the expressions from general object systems and the
lambda calculus are almost all completely standard in our
system. These include the rules E-LET, E-APP, E-CALL,
and E-FIELD for let expressions, application, method calls
and field dereferences respectively. One note is that mem-
ber selection during calls and dereferences use the lookup

judgment described above. We also use standard record
evaluation rules when selecting a label from a recstate (E-
RECSTATESELECT).

Match. Plaid uses a first-match semantics, so that we find
the first case clause whose tag matches the target object. We
find the tag to match against by grabbing the most specific
tag (tagOf) from a dimension expression wrapped in a proto
value. Note that in this case the dimension expression is
not evaluated since we are only interested in the tag. If the
tag is found in the target object, the code for this case is
evaluated (E-CASEMATCH); otherwise, execution proceeds
to the next case (E-CASENOTMATCH). Default cases are
always executed and terminate the match if reached (E-
CASEDEFAULT). Evaluation gets stuck if no matching case
is found.

Freezing. To freeze a location in the heap (E-FREEZE), we
simply pull the object value from the heap and wrap it in a
proto expression.

Manipulating objects in the heap. The state change oper-
ators and new cause objects in the heap to be changed or
allocated. Because we only allow object values to appear in
the heap, we must first initialize the object that will be used
to alter the heap by reducing it to an object value. Evaluation
is mostly handled by the evaluation contexts: first the expres-
sion representing the object is reduced to a proto value and
then the object expression wrapped in the proto is evaluated
down to an object value. An important design decision in
Plaid was to run the initializers for all members of an object
expression. This happens despite the fact that not all mem-
bers may end up in the object (see the explanation of state
update below). In particular, any effectful initializers will al-
ways be run and update the wider context. We experimented
with other possible semantics but decided that a clear and
unambiguous rule for when initializers were run (always)
was better than a flexible but complicated one. Furthermore,
we consider it good Plaid style to avoid the use of effectful
initializers and instead use other design techniques, such as
factory methods, when effectful operations are required as a
part of object initialization.

Once the initialization code in the proto has been run,
the resulting object value can be used to update the heap. In
the case of new and state replacement (�) expressions it is
clear what the object value that is inserted into the heap will
be. new allocates a new location on the heap and maps it

1 val rs = Open {

2 Inserted <: Inserting <: Action,

3 Scrollable <: Direction,

4 Updatable <: Status }

5 <: ResultSet

Listing 7. Open, Inserted, Scrollable, Updatable ResultSet

to the resulting object value. State replacement replaces the
mapping of the target location on the heap with the updating
object value. Since we know the precise form of the object
value that is being inserted into the heap, in order to maintain
the heap invariants on object values, we can simply check
that uniqueTags and uniqueMembers both hold on the new
object value as done in the rules E-REPLACE and E-NEW.
On the other hand, the semantics of updating an object on the
heap using state update are much more complicated, and so
we devote the next section to a discussion of its design and
proof that they maintain the necessary invariants.

4.2.3 State Update
At the core of the rule E-SU which updates the heap with
the result of a state update is the state update judgment,
ov ← ov ⇒ ov, which is described in Figure 7. The
judgment takes two object values and determines the resulting
object value when the target object on the left side of the
arrow is changed to the state given by the update object
from the right side. The semantics of this judgement are
the most complicated and important part of Plaid’s dynamic
semantics. Thus, before describing the semantics given by
the rules, we step back and give a high-level overview of
the desired behavior. We then define some general properties
and assumptions of the judgment before describing the rules
themselves.

Design considerations. Our goal is that the design of the
state change judgment should match the semantics of stateful
abstractions as modeled by state charts and similar tools.
Thus, a state update should transition a target object from its
current set of abstract states to a possibly new set of abstract
states as specified by the update object. To do this, we need
to formalize this intuition in terms of object values.

Update dimensions. Our first task is to determine which
abstract state the update object is changing. That is, which
dimensions of the target object need to be updated? Consider
the object value (without members) of an Open ResultSet

in the Inserted, Scrollable, Updatable state, stored in
val rs as depicted in Listing 7. What should happen if we
update rs to the ReadOnly state?

rs← ReadOnly <: Status

While there are clearly matches between tags in the target and
update objects, since the tags are nested inside the Open tag
of the target object, it is not clear that they should be updated.

ov ← ov ⇒ ov

ovt ← ov ⇒ ov′ ov′ ← ovu ⇒ ovo

ovt ← ov 7 ovu ⇒ ovo
SU-LIST

ovt ← mvu ⇒ ovt 7 mvu
SU-MV

tags(ovt) ∩ tags(dvu) = ∅ uniqueTags(dvu)

ovt ← dvu ⇒ ovt 7 dvu
SU-ADDH

tags(dv) ∩ outerTags(dvu) 6= ∅
dv ← dvu ⇒ dvr

tags(ov) ∩ tags(dvr) = ∅
ov 7 dv ← dvu ⇒ ov 7 dvr

SU-MATCHDIM

outerTags(dvu) ∩ tags(ov) 6= ∅ ov ← dvu ⇒ ovr
[tags(dvu) ∩ tags(dv) = ∅] tag 6∈ tags(dvu)

tag{ov}[<: dv]← dvu ⇒ tag{ovr}[<: dv]
SU-MATCHINNER

outerTags(dvu) ∩ innerTags(dv) 6= ∅ dv ← dvu ⇒ dvr
tags(tag{ov}) ∩ tags(dvu) = ∅

tag{ov} <: dv ← dvu ⇒ tag{ov} <: dvr
SU-MATCHSUPERINNER

tag /∈ outerTags(dvu) outerTags(dvu) ∩ outerTags(dv) 6= ∅ dv ← dvu ⇒ dvr

tag{ov} <: dv ← dvu ⇒ dvr
SU-MATCHSUPER

dvu = [dvsub] <: tag{ov′} <: [dvsup] [tags(dvsub) ∩ tags(tag{ov}[<: dv]) = ∅] uniqueTags(dvsub)

tag{ov}[<: dv]← dvu ⇒ [dvsub] <: tag{ov}[<: dv]
SU-MATCH

Figure 7. State Update

However, if we think of the state update as an transition to
a new abstract state, then we can see that the nesting in the
target object should not matter. This state update specifies
that the Status dimension should transition to the ReadOnly
substate, and thus out of the Updatable state.

The converse question is does nesting matter in the other
direction? In other words, can a nested state trigger a change
in an abstract state? Concretely, would this state update

rs← Foo{ReadOnly <: Status}

result in an object in the ReadOnly state? Based on the
semantics of state charts, the answer would be “no”. Our
definitions of object dimension indicates that the Status

dimension of the Foo state is part of the definition of Foo.
Thus, it is brought along with the transition to the Foo state.
The Status state is also a defining and-state of the Open state.
Thus the resulting object cannot be consistent because two
separate dimensions are claiming the Status state meaning
there would need to be duplicate tags.

Therefore, we define the dimensions along which a state
update occurs to be only those found at the top level of
the object value that describes the update object. All other
dimensions that are a part of the update object are considered
definitions of these dimensions and do not induce transitions
but are only added to the object with their enclosing state.

Dimension updates. Once we know which dimensions will
be updated, we need to know what in those dimensions is
changed. We first note that we can treat the transition in each
dimension independently as dimensions are orthogonal by
definition. Second, recall the file example from Listing 1.
In this example, we stated that the filename member was
shared between the OpenFile and ClosedFile states. Thus,
when we transition from an ClosedFile to an OpenFile the
members of the File state should remain constant. This is
the semantics behind the restricted update semantics of state
change described in [2]. We use and extend these semantics
in a natural way to account for our hierarchical object model.

Properties of object and state update. With the intuition
we have for the design, we can define some terminology that
is used in the judgment itself.

Inner and outer tags. In the informal description of state
change, we differentiated between dimensions and tags de-
fined at the top level of the update object and those that
appear within a top-level dimension. Figure 10 defines two
judgments, outerTags and innerTags, which capture this
distinction. The outerTags of an object value, ov, are all
the tags which appear as the most specific tag and any of
its super tags from dimensions appearing directly in ov. For
example, using rs, the ResultSet object from Listing 7,
outerTags(rs) = {Open, ResultSet}. Conversely, the
innerTags of an object value are all of the tags defined in

dimensions that are recursively included in the definition of
each of the outer tags. For example,

innerTags(rs) = {Inserted, Inserting, Action,
Scrollable, Direction, Updatable, Status}

Unique dimension property. Given a dimension within
which to transition the target object, we need to find the
location of the matching dimension within the target object
value. To do this, we look for the part of the object that has
tags which overlap the outer tags of the update dimension.
We ignore all super-tags of the matching tag in the update
dimension under the assumption that these supertags will
match the tags in the target. This assumption is based on the
the Unique Dimension Property which states that a single
unique tag can only ever appear in a single dimension. That
is a tag is either has no super tags or always appears with the
same supertag. While this property is not guaranteed by the
syntax and semantics of the internal language, it is enforced
by the elaboration from Plaid’s source syntax so we assume
it in our rules.

Maintaining the uniqueTags property. Rule E-SU in Fig-
ure 6 does not check whether the object returned from
the state update judgement has unique tags. Therefore the
state update judegment must maintain this property. For-
mally: If uniqueTags(ov1) ∧ ov1 ← ov2 ⇒ ov3, then
uniqueTags(ov3). A proof of this property is in the compan-
ion technical report [26].

Inference rules. With this understanding, we can describe
the rules that produce the object value after a state update
operation. The rules start by breaking apart the update object
ov into the individual member values and dimension values
and processing the state changes for each dimension or
value individually (SU-LIST). This is allowed since each
dimension can be treated independently. We can assume that
uniqueTags holds for each dimension individually since it
holds for the object as a whole. For member values (SU-
MV) and dimension values for which there is no overlap
between the tags of the target object and update dimension
(SU-ADDH), we just compose the update object with the
target object. The rest of the rules assume that there is a match
between the outer tags of the update object and the tags of
the target object. If that is not the case, then the evaluation
gets stuck.

SU-MATCHDIM covers the case where we have found
a particular dimension of the target object that contains the
tags that are changing. By the unique dimension property
explained above, we know that the outerTags(dvu) will not
appear in ov, so it suffices to calculate the state update on
just the matched dimension. To ensure that we maintain the
unique tags property, we can assume that both the result of
the state update and the unmatched portion of the object have

unique tags, and so it suffices to check that the tags of these
two portions of the object do not intersect.

SU-MATCHINNER handles the case where there is over-
lap between the innerTags of the current tag and the
outerTags of the update dimension. We recursively find
the state update on just this matching portion and then check
that the tags from the resulting object value do not intersect
with the tags of the super tag, if it exists, to maintain the
uniqueTags invariant.

In SU-MATCHSUPERINNER, we find that the matching
dimension is defined somewhere inside of a super tag. Thus,
we run state update on just the supertags. We then verify that
the tags of the result are distinct from the tags of the subtag
and its innerTags to maintain the uniqueTags invariant.

SU-MATCHSUPER represents the case where we have
found the right dimension, but have not reached the level of
the dimension where the tags overlap. The current tag of this
dimension is not in the outer tags of the update dimension,
but there is overlap somewhere in its super tags and so we
find the updated state from that portion of the dimension. In
this case, we know that the current tag will be removed with
any of its nested tags, which means that we do not need to
check if these tags would conflict with tags that enter the
object with the update dimension to preserve uniqueTags.

The base case SU-MATCH handles the actual alteration
of the target dimension. The current tag matches a specific
tag in the outer tags of the update dimension, which indicates
that the state update only affects states below this point
in the dimension. In particular the tags below this one in
the dimension in the target object are discarded, as already
occurred through the SU-MATCHSUPER rule. In their place
are put all the subtags of the matched tag from the incoming
dimension. To make sure that we do not have duplicate tags
anywhere, we only need to check that the tags added from
the update dimension do not intersect with the tags that are
in its new supertags.

Example. To give a specific example, consider evaluating
the following state update on the object defined in Listing 7:

rs← ReadOnly <: Status

The state updates proceeds first by finding that there is
tag overlap between the incoming and target objects and
a match for the Status tag of the incoming state nested
inside the Open state with the SU-MATCHINNER. Next it
finds the correct dimension Updateable <: Status using
the SU-MATCHDIM rule. It discards the Updateable tag
and recurses up the dimension in the SU-MATCHSUPER
rule and finally adds the ReadOnly tag in its place with the
SU-MATCH rule.

Reduction rule The E-SU reduction rule uses the state up-
date judgement to determine what object value to update
the target object to. The state update judgement incremen-
tally checked that uniqueTags was maintained. It does not

oe@H;T 7→ oe@H;T

[oe′ = oe[v/f ′]]

val f B f ′ = v[7 oe]@H 7→ val f = v[7 oe′]@H
E-RECFIELD

sd = freshtag{oe}[<: de] tag is fresh
r = recstate{val sd B xd = v, val sB x = proto (tag{oe}[<: de]), val sr B xr = proto sdr}[7 oe]

recstate{val sd B xd = v, val sB x = proto sd, val sr B xr = proto sdr}[7 oe]@H 7→ r@H ′
E-RECSTATE1

oe′i = oei[recstate{val si = proto oei}#si/xi] [oe′ = oe[recstate{val si = proto oe}#si/xi]]

recstate{val si B xi = proto oei}[7 oe]@H 7→ val si = proto oe′i[7 oe′]@H
E-RECSTATE2

(tag{oe} <: proto de[{to}])[7 oe′]@H 7→ (tag{oe} <: de[{to}])[7 oe′]@H
E-DE

proto[ov 7](proto oe[{to}])[7 oe′]@H 7→ proto[ov 7](oe[{to}])[7 oe′]@H
E-OE

dv{to} ⇒ dv′

(dv{to})[7 oe]@H 7→ dv′[7 oe]@H
E-TRAITOPS

Figure 8. Object Evaluation

guarantee that uniqueMembers is satisfied and so the rule
checks that the resulting object value has unique member
declarations.

4.2.4 Object Evaluation
The final class of reductions that we must model is that
of state expressions, including the initialization of object
expressions within a proto. These rules are defined in Figure
8. Congruence rules are again taken care of by evaluation
contexts from Figure 5.

• E-RECFIELD: When field members have been evaluated
down to values, we propagate them forward into the rest of
the declarations that need to be initialized by substituting
the value in for the bound variable on the right of the
B. This allows subsequent fields to use the values of
previously declared fields during their initialization. After
this propagation, we do not need to keep track of the bound
variable any longer and so do not record it in the member
value. Note that these semantics force us to be strict about
the order in which portions of the object are initialized. In
particular member declarations are initialized from left to
right as specified by the evaluation contexts.

• E-RECSTATE1: If there are freshtag directives in the
state declarations of a recstate, new tags are generates
by picking a fresh tag not previously mentioned.

• E-RECSTATE2: After assigning new tags to all of the
state declarations inside a recstate, we need to remove
the recstate construct and convert it into a list of val
declarations. This is done in a manner similar to the fix
construct in the lambda calculus. Since our recstate is

modeled as a record, we replace all references to the
inner bound variable of each of the nested state vals with
selections of the external name from the recstate. We do
this both inside the object expressions of each proto as
well as in subsequent declarations. Note again that after
propagation we can remove the bound variable from the
val declaration.

• E-DE and E-OE: These rules state that it is possible to un-
wrap a proto that is nested inside another proto. This can
occur when a proto is part of an object expression inside
another proto (E-OE), or when a proto is in a dimension
expression, which only appear in proto expressions (E-
DE). In either case, if trait operations are associated with
this proto, then they are retained. Execution will continue
by evaluating the wrapped object expression if needed.

• E-TRAITOPS: This rule applies only once the all of the
trait operations have been fully reduced and proceeds
using the trait operations judgment defined below to
produce a new dimension value.

4.2.5 Trait Operations
As with state change, we define a separate judgement for
trait operations that applies once all trait operations have
been fully initialized, meaning that they can all be applied
atomically without reduction. The rules for initialization of
trait operations are all congruence rules handled by evaluation
contexts (see Figure 5). Thus, the judgement, ov{sp} ⇒ ov,
does not require a heap. In general, trait operations follows
previous work on traits. However, Plaid’s object model,
unlike traditional traits models, is hierarchical. Hence, trait

ov{to} ⇒ ov

dv{to} ⇒ dv′ dv′{to} ⇒ dv′′

dv{to, to} ⇒ dv′′
T-GENERAL

ov = ov′[7 mv′] [name(mv′) = x = name(mv)]

(tag{ov}[<: dv]){mv} ⇒ tag{ov′ 7 mv}[<: dv]
T-MEMBER

ov{\n} ⇒ ov′ [dv{\n} ⇒ dv′]

(tag{ov}[<: dv]){\n} ⇒ tag{ov′}[<: dv′]
T-REMOVEDV

dv{\n} ⇒ dv′ ov{\n} ⇒ ov′

(dv 7 ov){\n} ⇒ dv′ 7 ov′
T-REMOVEOV1

name(mv) = n ov{\n} ⇒ ov′

(mv 7 ov){\n} ⇒ ov′
T-REMOVEOV2

name(mv) 6= n ov{\n} ⇒ ov′

(mv 7 ov){\n} ⇒ mv 7 ov′
T-REMOVEOV3

ov{n→ n′} ⇒ ov′ [dv{n→ n′} ⇒ dv′]

(tag{ov}[<: dv]){\n} ⇒ tag{ov′}[<: dv′]
T-RENAMEDV

dv{n→ n′} ⇒ dv′ ov{n→ n′} ⇒ ov′

(dv 7 ov){n→ n′} ⇒ dv′ 7 ov′
T-RENAMEOV1

name(mv) = n rename(n′,mv) = mv′ ov{n→ n′} ⇒ ov′

(mv 7 ov){n→ n′} ⇒ mv′ 7 ov′
T-RENAMEOV2

name(mv) 6= n ov{n→ n′} ⇒ ov′

(mv 7 ov){n→ n′} ⇒ mv 7 ov′
T-RENAMEOV3

de = tag{oe}[<: de′] ov{tag.mv} ⇒ ov′

(ov){(tagOf proto de).mv} ⇒ ov′
T-STATEMEMBER

tag /∈ tags(dv) ov{tag.mv} ⇒ ov′

(dv 7 ov){tag.mv} ⇒ dv 7 ov′
T-STATEMEMBEROV1

tag ∈ tags(dv) dv{tag.mv} ⇒ dv′

(dv[7 ov]){tag.mv} ⇒ dv′[7 ov]
T-STATEMEMBEROV2

tag 6= tag′ ov{tag′.mv} ⇒ ov′ [dv{tag.mv} ⇒ dv′]

(tag{ov}[<: dv]){tag′.mv} ⇒ tag{ov′}[<: dv′]
T-STATEMEMBERDV1

(tag{ov}[<: dv]){mv} ⇒ dv′

(tag{ov}[<: dv]){tag.mv} ⇒ dv′
T-STATEMEMBERDV2

Figure 9. Trait Operations

operations other than the local member addition must take
this hierarchy into account.

Local member updates are agnostic to whether the added
member is already a member of the tag and simply add the
new member, replacing the existing member if one exists (T-
MEMBER). Updates of members in specific tags act the same,
but first must recurse through the object value looking for
the specified tag before performing the member update. The
computation will get stuck if the tag is not found. Because
each of these trait operations, as well as member renaming
described below, may potentially add new members, there is
the danger that the object value might no longer satisfy the
uniqueMembers invariant. However, since the specialization
must be occurring as part of object instantiation, it will be
checked at the point that the object is created, so we do not
make the check here.

Member removal and renaming operate on the whole
object, removing or renaming instances of members with
the given name throughout. This is in contrast to lookup,
which stops at the first declaration of the member. These
semantics are required in order to allow trait composition,

which includes the ability to remove members from a trait
and instead provide them in another trait. This would result
in a conflict if some members were left in the old dimension.

5. Elaboration
The core language defined in the previous section shares
much in common with the full Plaid programming language,
but there are still differences. The semantics of the full Plaid
language are defined as an elaboration into the core language.
Space does not permit including the full elaboration in this
paper, but we present the highlights and refer the interested
reader to the accompanying technical report [26].

For most expressions, the elaboration proceeds struc-
turally, without changing the construct itself. For field bind-
ings, we add the internal variable referred to above, and re-
place references to the field in later field initializers with
the fresh variable. Sequences of state declarations are trans-
formed into recstate blocks. Each state declaration is trans-
formed into a val declaration which binds to a proto repre-
senting the uninitialized state, with a freshtag expression
for generating the state’s tag when the declaration is executed.

uniqueTags(ov) uniqueMembers(ov) lookup(x, ov) = mv dv ∈ ov mv :: tag.x@ov
tag <<: tag@ov validTagMembers(ov) rename(n,mv) = mv name(mv) = n
tags(ov) outerTags(ov) innerTags(ov)

tag /∈ tags(ov) [∪ tags(dv)] [tags(ov) ∩ tags(dv) = ∅]
uniqueTags(ov) [uniqueTags(dv)]

uniqueTags(tag{ov}[<: dv])
UNIQUETAGSDV

tags(dv) ∩ tags(ov) = ∅ uniqueTags(dv) uniqueTags(ov)

uniqueTags(dv 7 ov)
UNIQUETAGSOV1

[uniqueTags(ov)]

uniqueTags(mv[7 ov])
UNIQUETAGSOV2

mv1 :: tag1.x@ov ... mvn :: tagn.x@ov
tagi <<: tag1@ov ... tagi <<: tagn@ov

lookup(x, ov) = mvi
LOOKUP

validTagMembers(ov)
∃n(∃tag mv :: tag.n@ov ∧ ∃tag′ mv′ :: tag′.n@ov) =⇒ (tag <<: tag′@ov ∨ tag′ <<: tag@ov)

uniqueMembers(ov)
UNIQUEMEMBERS

dv ∈ dv
LEAF1

dv ∈ ov′

dv ∈ mv 7 ov′
LEAF2

tag 6= tag′ tag{ov}[<: dv] ∈ dv′

tag{ov}[<: dv] ∈ tag′{ov′} <: dv′[7 ov′′]
LEAF3

tag 6= tag′ tag{ov}[<: dv] ∈ ov′

tag{ov}[<: dv] ∈ tag′{ov′} <: dv′[7 ov′′]
LEAF4

tag{[ov1 7]mv[7 ov1]} <: dv ∈ ov

mv :: tag@ov
MBRINTAG

tag{ov′} <: dv ∈ ov
tag′ ∈ outerTags(tag{ov′} <: dv)

tag <<: tag′@ov
CASEOF

name(mv) 6∈ names
[validTagMembers(names ∪ name(mv), ov′)]

validTagMembers(names,mv[7 ov′])
VTM1

validTagMembers(∅, ov) [validTagMembers(∅, dv)] [validTagMembers(names, ov′)]

validTagMembers(names, (tag{ov}[<: dv])[7 ov′])
VTM2

n = name(val n = v)
NAME1

m = name(methodm(x){e})
NAME2

rename(a, val n = v) = val a = v
RENAME1

rename(n,methodm(x){e}) = method n(x){e}
RENAME2

tags(ov) = innerTags(ov) ∪ outerTags(ov)
TAGS

outerTags(tag{ov}[<: dv]) = {tag} [∪ outerTags(dv)]
OUTERDV

outerTags(dv[7 ov]) = outerTags(dv) [∪ outerTags(ov)]
OUTEROV1

outerTags(mv[7 ov]) = ∅ [∪ outerTags(ov)]
OUTEROV2

innerTags(tag{ov}[<: dv]) = tags(ov) [∪ innerTags(dv)]
INNERDV

innerTags(dv[7 ov]) = innerTags(dv) [∪ innerTags(ov)]
INNEROV1

innerTags(mv[7 ov]) = ∅ [∪ innerTags(ov)]
INNEROV2

Figure 10. Helper Judgements

Declarations D ::= SD
∣∣ methodm(x){SE}

∣∣
val f = SE

State Decl. SD ::= val s = S
∣∣ state s = S

∣∣
state s case of s{TO} = S

States S ::= freeze(SE)
∣∣ {D} ∣∣ s{T} ∣∣

S with S
∣∣ SE.s

∣∣ s
Trait Ops TO ::= \n

∣∣ n→ n′
∣∣

val f = SE
∣∣ val s = S

∣∣
val s.f = SE

∣∣ val s.t = S
∣∣

methodm(x){SE}
∣∣

method s.m(x){SE}
Expression SE ::= x

∣∣ let x = SE in SE
∣∣ SE.f

∣∣
SE(SE)

∣∣ SE.m(SE)
∣∣

SE ← S
∣∣ SE � S

∣∣ new S
∣∣

match(SE){C}
∣∣

Case C := case SE.s {SE}
∣∣

case s {SE}
∣∣ default {SE}

Compil. Unit CU ::= D

Figure 11. Source Syntax

Our formal semantics defines all of the Plaid language ex-
cept for module linking and cross language binding. Module
linking currently follows the Java standard, including pack-
ages, imports, and a classpath for loading elements. Plaid
primitives are defined using Java classes and methods, which
can be directly accessed in Plaid via their fully-qualified Java
names. Details of both of these aspects of Plaid are discussed
in more detail in the Plaid language definition [17].

6. Discussion and Future Work
The primary contribution of the Plaid language is providing a
way for programmers to express state machine abstractions
directly in the source code of their programs. Plaid supports
the major state modeling features of Statecharts, including
state hierarchy, or-states, and and-states. The explicit rep-
resentation of states makes the design more salient in the
code, enhancing programmer understanding. For example,
the separation of members into different abstract states helps
programmers quickly learn what operations are available in
each state. In the future, visualization tools that leverage ex-
plicit state constructs to automatically generate statecharts
from Plaid code could provide even greater benefits.

Plaid has the potential to make code more reliable. Not
only do explicit states help programmers understand libraries
better, avoiding errors in the first place; the runtime will also
verify that the libraries are used correctly according to their
state abstractions. Even a “method not available in this state”
error is better than a silent corruption, but in future work, we
believe we can leverage explicit states to do much better. For
example, a state-related error message could be paired with
a suggestion about what methods could be called in order to
move the object into a correct state.

Plaid’s trait-like state composition model provides a way
of reusing not just fields and methods, but state abstractions.
This additional layer of reuse has the potential to reduce
redundancy in code and specifications, while enhancing
developer productivity. The confidence that comes with the
error checking in Plaid’s state model may also help developers
to evolve and refactor software with greater confidence.

In future work, we plan to build more programs with
Plaid in order to investigate the possible benefits outlined
above. We are also developing a gradual type system that
can complement Plaid’s dynamic state checking with static
checking, where desired by programmers [29]. We believe
Plaid demonstrates a new kind of language, and we are
excited to explore the consequences that language may entail.

Acknowledgments
We thank Nels Beckman and Robert Bocchino for their work
on the semantics of Plaid; Manuel Mohr, Mark Hahnenberg,
Aparup Banerjee, Matthew Rodriguez, and Fuyao Zhao for
their work on the Plaid compiler; and the PLAID group for
their helpful feedback and suggestions. This research was
supported by DARPA grant #HR00110710019. Sven Stork is
supported by the Portuguese Research Agency FCT, through
a scholarship (SFRH/BD/33522/2008). Joshua Sunshine was
supported by the Department of Defense (DoD) through
the National Defense Science and Engineering Graduate
Fellowship (NDSEG) Program.

References
[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-

oriented programming. In Proc. Onward, 2009.

[2] J. Aldrich, K. Naden, and É. Tanter. Modular composition and
state update in Plaid. In Proc. MechAnisms for SPEcialization,
Generalization and inHerItance, MASPEGHI, 2010.

[3] N. E. Beckman, D. Kim, and J. Aldrich. An empirical study
of object protocols in the wild. In European Conference on
Object-Oriented Programming 2011.

[4] A. Bejleri, J. Aldrich, and K. Bierhoff. Ego: Controlling the
Power of Simplicity. In Proc. Foundations of Object-Oriented
Languages, 2006.

[5] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful
traits and their formalization. Journal of Computer Languages,
Systems and Structures, 34(2):83–108, 2008.

[6] L. Bettini, S. Capecchi, and F. Damiani. A Mechanism
for Flexible Dynamic Trait Replacement. In Proc. Formal
Techniques for Java-like Programs, 2009.

[7] K. Bierhoff and J. Aldrich. Lightweight object specification
with typestates. In Proc. Foundations of Software Engineering,
2005.

[8] B. Bloom, P. Keyser, I. Simmonds, and M. Wegman. Ferret:
Programming language support for multiple dynamic classifi-
cation. Computer Languages, Systems and Structures, 35(3):
306 – 321, 2009.

[9] T. V. Cutsem, A. Bergel, S. Ducasse, and W. D. Meuter. Adding
state and visibility control to traits using lexical nesting. In
Proc. European Conference on Object-Oriented Programming,
2009.

[10] R. Deline and M. Fahndrich. Typestates for Objects. In Proc.
European Conference on Object-Oriented Programming, 2004.

[11] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and
P. Giannini. Fickle: Dynamic Object Re-classification. In
Proc. European Conference on Object-Oriented Programming,
2001.

[12] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black.
Traits: A mechanism for fine-grained reuse. ACM Transactions
on Programming Languages and Systems, 28(2):331–388,
2006.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-
Wesley, 1995.

[14] D. Harel. Statecharts: A visual formalism for complex systems.
Science of computer programming, 8(3):231–274, 1987.

[15] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Ac-
tor Formalism for Artificial Intelligence. In Proc. International
Joint Conference on Artificial Intelligence, 1973.

[16] C. Jaspan. Proper plugin protocols: Cost-effective verification
of frameworks. Technical Report CMU-ISR-11-101, Institute
for Software Research, Carnegie Mellon University, April 2011.
Thesis Proposal, originally accepted April 2010.

[17] Jonathan Aldrich. The Plaid Language: Dynamic Core Specifi-
cation, 2010. http://plaid-lang.googlecode.com/hg/
docs/spec/current/current.pdf.

[18] A. C. Kay. The Early History of Smalltalk. SIGPLAN Notices,
28(3), 1993.

[19] D. Malayeri and J. Aldrich. CZ: multiple inheritance without
diamonds. Proc. Object-Oriented Programming, Systems,
Languages, and Applications, 2009.

[20] B. Pernici. Objects with Roles. In Proc. Conference on Office
Information Systems, 1990.

[21] B. C. Pierce. Advanced Topics in Types and Programming
Languages. MIT Press, 2005.

[22] J. Reppy and A. Turon. Metaprogramming with traits. In Proc.
European Conference on Object-Oriented Programming, 2007.

[23] A. Sterkin. State[chart]-Oriented Programming. In Proc.
Multiparadigm Programming with Object-Oriented Languages,
2008.

[24] S. Stork, P. Marques, and J. Aldrich. Concurrency by default:
using permissions to express dataflow in stateful programs. In
Proceeding of the 24th ACM SIGPLAN conference compan-
ion on Object oriented programming systems languages and
applications, pages 933–940. ACM, 2009.

[25] R. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions
on Software Engineering, 12(1):157–171, 1986.

[26] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and É. Tanter. First-
class state change in plaid. Technical Report CMU-ISR-11-114,
Institute for Software Research, Carnegie Mellon University,
October 2011.

[27] A. Taivalsaari. Object-Oriented Programming with Modes.
Journal of Object-Oriented Programming, 6(3):25–32, 1993.

[28] D. Ungar and R. B. Smith. Self: The Power of Simplicity. In
Proc. Object-Oriented Programming, Systems, Languages, and
Applications, 1987.

[29] R. Wolff, R. Garcia, É. Tanter, and J. Aldrich. Gradual typestate.
In European Conference on Object-Oriented Programming
2011.

