
Permission-Based Programming Languages (NIER Track)∗

Jonathan Aldrich† Ronald Garcia† Mark Hahnenberg† Manuel Mohr†? Karl
Naden† Darpan Saini† Sven Stork† Joshua Sunshine† Éric Tanter‡ Roger Wolff†
†School of Computer Science, Carnegie Mellon University ?Karlsruhe Institute of Technology

‡PLEIAD Lab, Computer Science Dept (DCC), University of Chile
jonathan.aldrich@cs.cmu.edu (contact author)

ABSTRACT
Linear permissions have been proposed as a lightweight way
to specify how an object may be aliased, and whether those
aliases allow mutation. Prior work has demonstrated the
value of permissions for addressing many software engineer-
ing concerns, including information hiding, protocol check-
ing, concurrency, security, and memory management.

We propose the concept of a permission-based program-
ming language—a language whose object model, type sys-
tem, and runtime are all co-designed with permissions in
mind. This approach supports an object model in which the
structure of an object can change over time, a type system
that tracks changing structure in addition to addressing the
other concerns above, and a runtime system that can dynam-
ically check permission assertions and leverage permissions
to parallelize code. We sketch the design of the permission-
based programming language Plaid, and argue that the ap-
proach may provide significant software engineering benefits.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Representation;
D.3.3 [Programming Languages]: Language Constructs
and Features—Permissions

General Terms
Design, Documentation, Human Factors, Languages, Per-
formance, Reliability, Security, Theory, Verification

Keywords
types, permissions, programming languages

∗partially funded by Fondecyt project 1110051, NSF grant
CCF-0811592, the NSF CIFellows grant #0937060 to the
CRA, and CMU|Portugal grant CMU-PT/SE/0038/2008.
We thank the anonymous reviewers for helpful feedback.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

1. INTRODUCTION
Permissions are annotations on pointer variables such as

“unique” [2] or “read-only” [11] that specify how an object
may be aliased, and which aliases may read or write to the
object [7]. Permissions systems have been proposed to ad-
dress a diversity of software engineering concerns, includ-
ing encapsulation [12], protocol checking [8, 4], safe concur-
rency [6], security [5], and memory management [17, 10].

The broad range of these concerns demonstrates the gen-
eral utility of understanding the aliasing and mutation char-
acteristics of programs. However, each existing permis-
sion system above focuses on a particular issue, and differs
slightly from all the others, so adding permissions to code
for one concern does not aid in checking any other concern.
In addition, previous permission systems lack key charac-
teristics that make modern type systems practical, such as
the ability to carry out dynamic checks (typically as casts)
when a static checking system is overly conservative.

In this paper, we propose the concept of a permission-
based programming language—a language whose object
model, type system, and runtime are all co-designed with
permissions in mind. In such a language, every pointer vari-
able is associated not just with a type describing the object
pointed to, but a permission describing aliasing, mutability,
and other aspects of how the object may be used.

Such a language would generalize existing concern-specific
permission systems to provide a single set of permissions
that can check multiple software engineering concerns in a
unified way. A language-based approach could go beyond
mere checking, however, to enable completely new capabili-
ties in the runtime system and object model of the language.

For example, just as the runtime system of object-oriented
languages tracks the type of objects, the runtime system in
a permission-based language can track permissions. Thus,
if a programmer has a pointer with a shared permission
(indicating aliases to the pointer are possible), and casts it
to unique (indicating there are no aliases to the pointer), the
runtime system will allow the cast to succeed only if there
are no other pointers to that object. The runtime system
can also execute different operations concurrently whenever
permissions show that the operations are independent.

Permissions also support interesting new object models–
for example, the ability to change the interface, representa-
tion, and behavior of an existing object at run time, as in
typestate-oriented programming [1]. Permission-based lan-
guages thus enable new design and modeling capabilities,
verification of diverse properties, and a level of practicality
that prior permissions systems have lacked.

After a brief survey of prior work on language designs with
permissions in section 2, section 3 sketches the design of the
Plaid permission-based programming language. Although
Plaid is still under development, section 4 briefly examines
how evidence from prior permission systems supports the
idea of integrating permissions into programming languages.

2. RELATED WORK
Most earlier work on permissions focuses on annotations

added to existing languages, and supports purely static
checking—although Boyland et al. define the dynamic se-
mantics of their permission assertions (without implement-
ing them) [7]. There has been considerable work on theoret-
ical languages with permission-like type systems based on
linear logic, starting with Wadler’s let! construct [16].

A few languages that support permissions have been im-
plemented. Vault is a systems-programming language that
uses permissions to verify interface protocols [8]. Cyclone
uses unique permissions to support safe manual memory
management [10], building on an earlier calculus of capa-
bilities [17]. Clean used permissions to integrate state into a
purely functional language [13]. Concurrent with Plaid, the
Alms functional programming language was developed with
a permission-like type system based on linear logic that can
enforce correct protocol use [15]. Each of these languages
uses permissions for a single narrow concern; none considers
run-time checks of permissions or the ways in which permis-
sions can enable changes to a language’s object model.

Earlier papers on Plaid described its typestate [1] and
concurrency [14] features; here we focus on the concept of a
permission-based language and its consequences for software
engineering.

3. A PERMISSION-BASED LANGUAGE
Plaid is a general-purpose high-level permission-based

programming language. It is designed to investigate the
design space of permission-based languages, including their
potential applications, costs, and benefits.

In order to evaluate the tradeoffs of permission-based lan-
guages, Plaid is intended to be practical; that is, it should
support the construction of large software systems at a rea-
sonable cost. For example, in our prototype, Plaid compiles
to Java bytecode, allowing Plaid programs to easily interop-
erate with existing Java libraries. While a rigorous evalua-
tion of “reasonable cost” has yet to be done, we have reim-
plemented the Plaid compiler in Plaid, demonstrating that
reasonably-sized programs can be written in the language.

Plaid’s permission system is driven by the software engi-
neering properties we wish to analyze using those permis-
sions. These properties include safe parallelism, protocol
checking, encapsulation, and security properties that derive
from these. Since Plaid, like Java, is intended for applica-
tions programming, we provide a garbage collector and thus
do not use permissions for memory management.1

Permissions for Parallelism. Modern multicore proces-
sors require the use of parallelism to achieve high perfor-
mance. However, parallel programming is difficult and error-
prone in today’s programming models, with one of the major

1A permission-based systems programming language might
leverage ideas from Cyclone for this purpose [10]

reasons being the potential for race conditions when multiple
threads access shared mutable data structures.

1 method void initialize(unique Model m);
2 method ... summarize(immutable Model m)
3 method ... analyze(immutable Model m)
4 ...
5 val unique Model m = new Model;
6 initialize(m);
7 // split unique into immutable
8 val s = summarize(m);
9 val a = analyze(m);

Listing 1: Implicit Parallelism with Permissions

Listing 1 demonstrates in the context of Plaid how permis-
sions can be used to safely and automatically parallelize an
application. In the example code, a Model object is created,
yielding a unique object. The initialize method requires
a unique Model because it is going to update the model
during initialization. Once initialized, though, the other op-
erations to be performed will not change the object; Plaid’s
type system infers that the unique permission can be safely
split into two immutable permissions. Because it is safe to
share any immutable data structure between threads, Plaid’s
runtime can execute the summarize and analyze methods in
parallel.

This automatic parallelization goes beyond earlier work
that used permissions to check explicitly parallel programs,
and demonstrates the benefits of co-designing the type sys-
tem and runtime of a permission-based language. While
functional programming also allows automatic paralleliza-
tion, permissions allow the functional part of the program
to be parallelized even when other parts are imperative. Fur-
thermore, permissions allow data structures to be mutated
during construction, then made immutable, a common pat-
tern that is poorly supported by mainstream functional lan-
guages.

Permissions for Protocol Checking. Building on our
earlier permission-based protocol checking work, we leverage
permissions to check the correct usage of stateful abstrac-
tions. For example, consider the example of a pipe that can
be open or closed. We can model this with Plaid’s state

construct, declaring a global Pipe state and substates for
OpenPipe and ClosedPipe, as shown in listing 2. Note that
the OpenPipe state has an internal buffer as well as methods
for reading, writing, and closing the pipe, while ClosedPipe

has none of these methods, as they are not applicable to
closed pipes.

The signatures of the methods in OpenPipe show what
permissions these methods require and whether they change
the state of the pipe. Permissions to the receiver object (the
pipe in this case) are given in square [brackets] after the
method arguments. Because a pipe is often used to com-
municate between two processes, and this communication
involves mutating the pipe’s internal buffer, we cannot use
a unique or immutable permission for the read and write
operations. Instead, we use shared OpenPipe, which indi-
cates there may be multiple pointers to the object, and while
each may be used to mutate the object’s state, all clients
have agreed to maintain a state guarantee [4] that the pipe
remains in the OpenPipe state. Because of the shared per-
mission, we must synchronize using atomic when reading
from the buffer to avoid races between threads.

1 state Pipe { }
2 state OpenPipe case of Pipe {
3 val unique Buffer buf;
4 method int read() [shared OpenPipe] {
5 atomic { /∗ read from the buffer ∗/ }
6 }
7 method void write(int) [shared OpenPipe];
8 method void close()
9 [unique OpenPipe >> unique ClosedPipe] {

10 this <− ClosedPipe;
11 } }
12 state ClosedPipe case of Pipe { }
13

14 method unique OpenPipe createPipe();
15 method void forkWriter(shared OpenPipe >> none p);
16 method void readAndClose(shared OpenPipe
17 >> unique ClosedPipe p) {
18 val data = p.read();
19 // done reading, assert unique
20 val closeablePipe = (unique OpenPipe) p;
21 closeablePipe.close();
22 }
23

24 // client code
25 val unique OpenPipe p = createPipe();
26 // split unique permission into shared permissions
27 forkWriter(p);
28 readAndClose(p);

Listing 2: State Change with Permissions

The close method’s signature shows an example of a
method that changes the state of the receiver: two permis-
sions are given, one for the precondition state OpenPipe and
one for the postcondition state ClosedPipe. We require a
unique permission because we are changing the state of the
object in a way that would interfere with any other clients
trying to use the pipe.

A key benefit of building permissions into the language is
that we can model states as a run-time construct: in Plaid,
the OpenPipe and ClosedPipe states are essentially different
classes, each with a different interface, behavior, and repre-
sentation. The state change primitive on line 12 demon-
strates this, changing the receiver’s state from OpenPipe to
ClosedPipe. Contrast this to previous typestate checkers [8,
4] in which typestates were used for static checking but ig-
nored at run time. Because of runtime support for states,
we can test the state of an object at run time if we lose
track of it. We can also make our code more true to the
abstract model, and thereby simplify reasoning about cor-
rectness. For example, an open pipe has a buffer, but a
closed pipe does not, in the abstract. In a Java pipe class,
we would still have the buffer field around when the pipe
was closed, and we would have to set it to null and reason
about the correlation between the state of the pipe and the
nullness of the field. In Plaid, since states are a run-time
construct, we can declare that the buffer field only exists in
the OpenPipe state, and there is never any question about
what it contains in the ClosedPipe state (it doesn’t exist)
or when it is null (it never is—Plaid types do not allow the
null value by default).

Dynamic Permission Tests. A second advantage of
building permissions into the language is that the runtime

system can keep track of permissions, enabling dynamic
checks that a permission is valid. This is important because
of the conservative nature of type systems: any (decidable)
type system will inevitably statically reject some valid pro-
grams, so popular languages support casts as escape hatches
that replace a static check with a dynamic one.

To illustrate the value of casts in permission-based lan-
guages, consider the client code in listing 2. After creating
a pipe, its unique permission is split into two shared per-
missions, one of which is passed to a writer thread, and the
other of which goes to the reader. After reading the data
and getting an end of file, the reader knows that the writer
is done with the pipe. This knowledge is difficult to encode
in a decidable type system, but we can simply assert that
the pipe reference that we have is unique (line 24). When
this cast executes, the runtime system will check that there
are no other pointers to the pipe—i.e., the writer thread is
done. At this point, it is safe to close the pipe, as we have
the required permission.

Implementing casts efficiently and with appropriate se-
mantics is a challenge. Our initial plan is to use reference
counts, which can be made efficient, but requires program-
mer care in the case of cycles. Casts to unique could also
be allowed to succeed, checking lazily if the object is later
accessed by another reference; this avoids errors from refer-
ences that exist but will never be used, at the cost of delayed
notification of the cast failure. Adding type system features
could reduce the need for casts; for example Cyclone and
Clean included parameterization for unique references [10,
13], while recent work in our group extended the ideas to
other permission forms [3].

Encapsulation and Security. Final concerns that may
benefit from permissions include encapsulation and, partly
as a consequence, security. Bokowski and Vitek cite an ex-
ample Java security hole in which an internal array holding
the list of principals that have signed a class was leaked from
a public member function [5]. Malicious applets could get
the list of signers and then mutate it to make an untrusted
class appear to be trusted. Bokowski and Vitek provide a
type system that allows the designer of a secure program to
specify that certain data should be confined. If the designer
neglects that particular specification, however, the program
may still be insecure—an omission may result in a security
vulnerability.

Building similar permissions into the language provides
stronger protection, because in a permission-based language,
every reference must be given a permission. When consider-
ing the list of signers of a class, the designer must explicitly
consider which permission is appropriate; choosing unique,
immutable, or full (i.e. unique write) are all sufficient to
ensure security. The designer can still make an error, for
example, by specifying a shared permission, which allows
the data to leak. However, this is an error of commission,
not of omission, and thus ought to be less likely.

Implementation Status. Appropriately for NIER, he
Plaid language is still emerging. We have implemented a
prototype compiler for the language, first in Java and now
in Plaid, but work on the typechecker is still ongoing as of
this writing. The runtime system includes support for unop-
timized parallelization of Plaid code, as well as basic support
for checking casts to unique.

4. POTENTIAL IMPACT
While true validation is not feasible given the emerging

nature of the permission-based language concept, cautious
extrapolation from experience with related permission sys-
tems can provide insight into the possible benefits and costs
of the approach.

Many of the benefits of permission-based programming
languages come from the synergy between the many high-
impact applications of permissions. This impact has been
documented in a number of existing projects. With respect
to concurrency, the Fluid tool [9] leverages permissions such
as uniqueness to verify correct thread usage; Fluid has been
used in 100kloc+ case studies at several top software ven-
dors, identifying race conditions that resulted in patches to
shipping code. In the area of typestate, the Plural [4] tool
has been applied to multiple open source programs total-
ing 125kloc+, assuring hundreds of protocol uses and find-
ing many protocol errors and race conditions in well-tested
code [3]. A recent study of protocols in Java suggests that
almost three times as many types define protocols as define
type parameters, suggesting that significant benefits may ac-
crue from modeling protocols explicitly in the language and
type system [3]. Designing a language around permissions
allows programmers to gain the benefits of checking both
concurrency and typestate, while specifying the relevant per-
missions only once. In addition, native language support al-
lows the expression of permissions in a lower-overhead way
than in annotation-based approaches.

A second benefit of permission-based languages stems
from the ability to support permissions in the runtime sys-
tem as well as in the type system. While permission-based
static checkers are good, every static checker yields either
false positives or false negatives. In a permission-based lan-
guage, we can use a sound checking approach (which has no
false negatives) and use casts to address false positives, as
is done in static type systems. The resulting system shares
the benefits of static checkers in providing assurance that
checked code is correct, but provides a dynamic check as a
backup when the programmer believes a permission warning
is a false positive. Run-time support for permissions can also
automatically parallelize the program, as discusssed before.

Permission-based languages have costs as well. In princi-
ple, every type in the program must now include a permis-
sion, and supporting concerns like typestate requires permis-
sions in some places (e.g. the receiver of a method) where
existing languages do not require types. We plan to mit-
igate this cost through the sensible use of defaults: many
types are designed to be immutable (e.g. purely functional
data structures), or are typically unaliased (e.g. iterators,
which are mostly used on the stack), and so we can put a
default permission on the type declaration rather than at
every use of the type. Perhaps more important than the
syntactic cost is the semantic cost: programmers must con-
sider how each object might be aliased. Considering the
problems that are caused by aliased, mutable state in mod-
ern software systems, however, a case can be made that
when the permission is obvious, a default is likely applica-
ble, and when the permission is not obvious, it should be
documented anyway. Perhaps the greatest value of types
is not in the checking they perform, but rather in the pro-
vision of automatically-checked, up-to-date documentation
that can be used by programmers, IDEs, and tools alike:

permission-based languages extend this documentation to a
new class of important design constraints.

In summary, a permission-based language integrates in-
formation about aliasing and mutation within both the type
system and the runtime of the program. This permission
information can then be leveraged for checking a wide range
of software engineering concerns, and can also provide pow-
erful new modeling capabilities in the object model of the
language. The combination of static and dynamic checking
facilitated by a language-based approach increases both the
power and the practicality of the checking. Although much
research remains to be done, permission-based programming
languages show the potential to significantly improve the en-
gineering of modern software systems.

5. REFERENCES
[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks.

Typestate-Oriented Programming. In Proc. Onward!, 2009.

[2] H. G. Baker. ’Use-once’ variables and linear
objects—storage management, reflection, and
multi-threading. ACM SIGPLAN Notices, 30(1):45–52,
1995.

[3] N. Beckman. Types for Correct Concurrent API Usage.
PhD thesis, Carnegie Mellon University, 2010.

[4] K. Bierhoff and J. Aldrich. Modular typestate verification
of aliased objects. In Object-Oriented Programming,
Systems, Languages, and Applications, 2007.

[5] B. Bokowski and J. Vitek. Confined Types. In
Object-Oriented Programming, Systems, Languages, and
Applications, November 1999.

[6] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for
Safe Programming: Preventing Data Races and Deadlocks.
In Object-Oriented Programming, Systems, Languages, and
Applications, November 2002.

[7] J. Boyland, J. Noble, and W. Retert. Capabilities for
sharing: A generalization of uniqueness and read-only. In
European Conference on Object-Oriented Programming,
2001.

[8] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Programming Language
Design and Implementation, 2001.

[9] A. Greenhouse and W. L. Scherlis. Assuring and evolving
concurrent programs: annotations and policy. In
International Conference on Software Engineering, 2002.

[10] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang,
and J. Cheney. Region-based memory management in
cyclone. In Programming Language Design and
Implementation, 2002.

[11] J. Hogg. Islands: Aliasing Protection in Object-Oriented
Languages. In Object-Oriented Programming, Systems,
Languages, and Applications, October 1991.

[12] J. Noble, J. Vitek, and J. Potter. Flexible Alias Protection.
In European Conference on Object-Oriented Programming,
1998.

[13] R. Plasmeijer and M. van Eekelen. Keep it Clean: A unique
approach to functional programming. In ACM Sigplan
Notices, 1999.

[14] S. Stork, P. Marques, and J. Aldrich. Concurrency by
Default: Using Permissions to Express Dataflow in Stateful
Programs. In Proc. Onward!, 2009.

[15] J. A. Tov and R. Pucella. Practical affine types. In
Principles of Programming Languages, 2011.

[16] P. Wadler. Linear types can change the world! In Working
Conference on Programming Concepts and Methods, 1990.

[17] D. Walker, K. Crary, and G. Morrisett. Typed memory
management via static capabilities. ACM Trans. Program.
Lang. Syst., 22(4):701–771, 2000.

