
Interdisciplinary Programming Language Design
Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
mcoblenz,jonathan.aldrich,bam,sunshine@cs.cmu.edu

Abstract
Approaches for programming language design used com-
monly in the research community today center around
theoretical and performance-oriented evaluation. Re-
cently, researchers have been considering more approaches
to language design, including the use of quantitative and
qualitative user studies that examine how different de-
signs might affect programmers. In this paper, we argue
for an interdisciplinary approach that incorporates many
different methods in the creation and evaluation of pro-
gramming languages. We argue that the addition of
user-oriented design techniques can be helpful at many
different stages in the programming language design
process.

Keywords programming language design, user-centered
design, programming language evaluation
ACM Reference Format:
Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua
Sunshine. 2018. Interdisciplinary Programming Language
Design. In Proceedings of the 2018 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward! ’18),
November 8, 2018, Boston, MA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3276954.3276965

1 Introduction
Empirical studies suggest that the choice of program-
ming language can significantly impact software quality
and security [54], as well as performance and program-
mer productivity [48]. Understanding how to design lan-
guages better could clearly improve the way we engineer
software. However, in many cases, language designers
choose limited sets of techniques according to their skills

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Onward! ’18, November 8, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6031-9/18/11. . . $15.00
https://doi.org/10.1145/3276954.3276965

Evaluation
Performance evaluation
User experiments
Case studies
Expert evaluation
Formalism and proof
!alitative user studies

Requirements
and Creation
Interviews
Corpus studies
Natural Programming
Rapid Prototyping

Figure 1. A typical design process

and goals. For example, Stefik et al. advocate a ran-
domized controlled trial-based approach [64]. SIGPLAN
created an evaluation checklist [5] that does not include
methods of evaluating human factors-related aspects of
languages, instead focusing on performance. The authors
say “Because user studies are currently relatively infre-
quent in the papers we examined, we have not included
them among the category examples.” Neither of these
two approaches is particularly helpful in the early stages
of a language design, when a prototype is unavailable
for evaluation.

We argue that these approaches are shortsighted and
often insufficiently focused on understanding the relation-
ship between design decisions and the impact of those
decisions on programmers who use those languages. The
commonly used approaches focus narrowly on a partic-
ular kind of evidence, which is often used to evaluate
a particular design rather than to guide it. As an al-
ternative, we propose a design process incorporating a
wide variety of both formative and evaluative methods,
integrating diverse kinds of evidence to guide the design
of programming languages.

Languages, like other kinds of software projects, fre-
quently follow an iterative design process, summarized
in Fig. 1:

1. In the requirements elicitation and creation phase,
the designer studies the application domain for the
language. The designer creates a draft version of
the language, likely including a language specifica-
tion and language implementation.

2. In the evaluation phase, the designer evaluates how
well the language fulfills its requirements.

After evaluation, the design process may repeat to
address shortcomings that were identified. We use the
word design to refer to the entire process, including

https://doi.org/10.1145/3276954.3276965
https://doi.org/10.1145/3276954.3276965

Onward! ’18, November 8, 2018, Boston, MA, USA M. Coblenz, J. Aldrich, B. A. Myers, J. Sunshine

requirements analysis, specification, implementation, and
evaluation. We use the word creation to refer to the part
of the process that includes specifying the language as
well as the implementation phase because these phases
are usually intertwined.

Language designers face unique challenges relative to
designers of other kinds of tools. Programming language
designs must meet a unique set of interdisciplinary con-
straints and objectives, which may include mathematical
foundations, performance characteristics, the ability of
individual programmers to work efficiently (i.e. usability),
and the ability of teams to construct large-scale soft-
ware effectively. However, all these considerations may
conflict. For example, mathematical modeling can be
used to create a type-safe language. However, implement-
ing the necessary checks at run time typically imposes
performance overhead, while implementing those checks
at compile time may make the language less usable by
forcing the compiler to reject some safe programs.

We use interdisciplinary to emphasize that the pro-
cess benefits from combining multiple techniques into a
unified method, since multiple techniques are required
in order to address the diverse set of goals that apply
to each language design. Unfortunately, language de-
sign is too often done in an ad-hoc way that ignores
one or more disciplines that should inform it. For ex-
ample, many languages are designed without formal
user-centered evaluations [64], resulting in designs that
may fulfill theoretical and performance requirements
but impose unnecessary burdens on their users. Other
authors have argued for more user studies and focus
on using randomized controlled trials (RCTs) [64]. As
we will argue in the following, RCTs are an important
evaluation technique, but should be complemented with
other methods that are more effective at guiding designs.

We argue that the large, complex design space of
programming languages justifies treating the design of
production languages as an engineering activity—one
that makes principled tradeoffs among considerations
from multiple disciplines. As with software development,
language development should be iterative, and incorpo-
rate not just summative evaluation on completed designs
but also formative methods during the design process
itself. We show how we and other researchers have used a
wide range of methods to make programming languages
as effective as possible for programmers. Our account
will emphasize human-centered methods, as these tend
to receive less emphasis in the existing literature, but
will also demonstrate synergies between these methods
and traditional approaches such as type theory. Finally,
we show how qualitative evaluation methods can comple-
ment quantitative methods to inform the search through
the language design space.

Overall, we argue for an approach to language design
that:

1. Uses a diverse array of complementary methods to
address a variety of design questions and evaluate
the design from a wide range of perspectives.

2. Prioritizes specific quality attributes of a language
according to domain needs, rather than assuming
that a particular set of attributes is best for all
languages.

3. Strategically selects which methods to apply at
each step in the design process.

The intent of this essay is to provoke thought regarding
language design methodologies for language designers.
We present some criticisms of historical language designs
not to berate those designers for not using methods of
which they were unaware, but instead to show how our
methods could have been used to avoid making decisions
that are now regarded as mistakes.

2 Context of Language Design
The goals of a particular language design depend on the
intended set of programmers and their backgrounds as
well as the target applications for programs written in the
language. Below, we decompose the space of language
goals into categories. For each category, we show in
Table 1 several relevant quality attributes [36]. By using
a diverse set of methods, a designer can obtain many
different kinds of evidence regarding many different kinds
of design questions.

1. Formal properties concern the mathematical prop-
erties of the language, separate from its environ-
ment.

2. Observational properties characterize how a lan-
guage affects programs as they are compiled and
executed in the real world. These properties are
affected by the language design as well as by the
language implementation. For example, dynamic
dispatch incurs some runtime costs relative to static
dispatch; a language designer may avoid these costs
by requiring static dispatch (although then the pro-
grammer must likely manually replicate some of
avoided dynamic dispatch work).

3. Effects on programmers: although much of the im-
pact of a language is on its direct users, the science
of designing for programmers is much less devel-
oped than the science of reasoning about programs
directly (in terms of their behavior and perfor-
mance).

The context of language design also includes the his-
torical and computational environment in which the
language is to be used. Some of the methods we pro-
pose in this paper might not have been appropriate to
apply early in the history of computing. For example,

Interdisciplinary PL Design Onward! ’18, November 8, 2018, Boston, MA, USA

Property Cat. Summary
Type safety 1 A type-safe language guarantees that all programs written in the language will be-

have only according to the language specification, rather than exhibiting undefined,
potentially dangerous behavior.

Correctness guarantees 1 Absence of particular bugs or adherence to formal specifications
Computational power 1 Model of computation, e.g. Turing-completeness
Security properties 1 Formal properties pertaining to security, e.g. information flow
Efficiency 2 Execution cost
Portability 2 Execution on different platforms
Compilation time 2 Time to compile individual files and whole systems
Learnability 3 How hard is it for people of particular backgrounds to learn the language?
Error-proneness 3 To what extent does the language make it easy for programmers to write buggy code?
Expressiveness 3 To what extent can users specify their intent using the formal mechanisms of the

language?
Understandability 3 How easy is it for readers of code to answer their questions about the program?
Ease of reasoning 3 How easy or hard is it for readers to draw inferences about properties of programs?
Modifiability 3 How easy or hard is it to adapt software to changing requirements?
Local reasoning 3 To what extent is it possible to make inferences about software by understanding

small pieces of larger systems?
Coordination 3 How does the language facilitate coordination of activities among multiple developers?

Table 1. Common language design objectives

consider the early development of LISP [38]. In that
environment, there were few users from whom one might
try to gather data, and few machines on which to ex-
periment. Although this may reflect the context of some
domain-specific languages today, many languages are
now targeted at larger audiences of programmers, whom
the designer may not understand well.

Some approaches that were available early in the
history of language design seem infeasible for general-
purpose computers in 2018. For example, LISP was de-
signed in a tightly coupled way with the machines on
which it would run, and inspired custom hardware accord-
ing to the language semantics [38]. Now, tight coupling
with significant hardware architectural modifications for
the purpose of running a novel programming language
is unlikely. On the other hand, this approach may serve
as a model for designing languages for special-purpose
hardware, such as GPUs or embedded systems.

Many languages are designed or maintained by com-
mittees of experts. We argue in this paper that these
committees would do well to take data from users into
account – not as a replacement for their experience, but
as a supplement to it. An analogous approach is used in
the design of user interfaces: companies employ expert
designers to make the best decisions they can, but even
so, they gather data from users throughout the design
process.

3 Integrating design perspectives
3.1 Stereotypes
For comparison and discussion purposes, we describe
several stereotypical approaches to language design. Our
intent here is to draw contrasts between important lan-
guage design styles and observe that although designers
from a different perspectives may have different priorities,
they can each benefit from using more diverse methods
than are currently in use.

A logician is primarily concerned with the relation-
ship between programming and mathematics. A logical
approach is useful for quickly eliminating from consid-
eration many designs that are not internally consistent.
Viewing programming as the practice of writing cor-
rect programs — that is, programs that meet particular
mathematical specifications — the logician is focused
on the concise, convenient, and correct expression of
algorithms. Programming is considered to be a task
that is best suited to experts, who can be thoroughly
trained in the appropriate mathematics so that they can
write correct programs. In the logician’s view, the best
programming languages are those that are discovered,
rather than designed [76]; these languages’ constructs
follow inevitably from the Curry-Howard correspondence
between programs and proofs in mathematical logic.

A pragmatist is interested in designing languages that
are effective for software systems in order to achieve var-
ious pragmatic or commercial goals. Some pragmatists
think in terms of productivity [39], but others think in

Onward! ’18, November 8, 2018, Boston, MA, USA M. Coblenz, J. Aldrich, B. A. Myers, J. Sunshine

terms of exploration [31, 59]. Another kind of pragmatist
is interested in using programs to understand some phe-
nomenon of interest. The common thread among prag-
matists is that the language is a tool for doing some other
kind of activity, and the language must be evaluated
against that activity. We can think of effectiveness as per-
taining to programmers’ abilities to achieve their goals.
As such, performance and adoption (which depends on
many different attributes, including learnability [40] and
interoperability) are often priorities. In many cases, a
pragmatic approach is community-oriented, as in the
Java Community Process and the Python Enhancement
Proposals mechanism. In other cases, a pragmatist may
be focused on their own needs, creating a language for
a particular domain or industry. Of course, design of
a completely new language is relatively infrequent; in-
stead, designers make incremental changes to languages
in order to make them more effective for users.

Some pragmatists design languages in the context of
a project that would benefit from a new language. For
example, C was designed in the context of the UNIX
operating system [57]. Designers of domain-specific lan-
guages may be embedded in the domain rather than
focusing on language design per se. For example, SQL
was developed by database researchers [13]. Lua was
designed in part for Petrobras, a Brazilian petroleum
company [28].

A pragmatic approach is useful for designing service-
able languages. Risk aversion frequently results in the se-
lection of well-proven techniques, such as object-oriented
and imperative programming. It is not necessary for
designers to show that the design is the best possible
one, since a high-quality design that is of practical use
suffices. Knowing what aspects of the design contribute
to or detract from programmer success may be of lower
priority than quickly and cost-effectively finishing a use-
ful design. Over time, as the community gains experience
with the language, the design will be modified to make
writing certain programs more convenient. However, it
will be difficult to fix major design flaws in a deployed
language due to backwards compatibility constraints, so
users will have to learn workarounds for deficiencies.

An industrialist is interested in designing languages
that are effective for writing large software systems in
order to achieve various pragmatic or commercial goals.
As such, performance and adoption (which depends on
many different attributes, including learnability [40] and
interoperability) are often priorities. In many cases, an
industrial approach is community-oriented, as in the
Java Community Process and the Python Enhancement
Proposals mechanism. These approaches codify methods
used to evolve programming languages that are in use.

Of course, design of a completely new language is rela-
tively infrequent; instead, practitioners evolve existing
languages in order to make them more effective.

An empiricist views programming languages as criti-
cal tools for programmer productivity. The methodolog-
ical focus is on using carefully designed experiments to
demonstrate effects of specific design decisions on pro-
grammers’ success on programming tasks. The empiricist
expects that by doing a large number of experiments, re-
searchers will learn how language designs affect program-
mers; after gathering sufficient data, designers will be
able to make a large portion of their design choices on the
basis of experimental evidence. The Quorum program-
ming language claims to be the first evidence-oriented
programming language [66]. Quorum incorporates em-
pirically validated results obtained to date. For example,
empirical methods have been used to show, for example,
that certain static type systems have particular benefits
over dynamic type systems in specific situations [20].

An educator focuses on pedagogical benefits of pro-
gramming languages: to what extent will learning and
using a particular language achieve particular educa-
tional objectives? This approach has been taken in the
design of many programming languages [17]. Some, such
as Alice and Scratch, use structured editors to address
the barrier typically imposed by formal syntax [29, 55].
Logo uses a graphical environment to make abstract
concepts more concrete and fun [49]. Some educators
prioritize real-world applicability, preferring to teach
languages that are in current industrial use.

3.2 Interdisciplinary design: calls to action
Each of the stereotypes is useful for language design
and yet individually too limited, focusing on particular
design goals but not others.

While the logician’s formal methods can link language
constructs to program properties, they cannot directly
tell us which program properties are the most important.
Logicians sometimes argue that programming constructs
derived from mathematics may also relate closely to the
way the logician is thinking, as in the closeness of map-
ping usability heuristic [23]. Unfortunately, this has yet
to be shown empirically; the logical community has not
yet been convinced that human factors-related methods
are relevant. There are promising exceptions, though.
Hudak et al. conducted a study comparing Haskell to
several other languages [27]. The authors refer to an
experiment, but we think of this as a case study be-
cause each language was used once by one or two (non-
randomly-assigned) programmers each, so it is not clear
how to generalize the results. The case study resulted
in Haskell implementations that appeared to be shorter
than those in other languages, but no statistics were
computed (or would have been appropriate to compute)

Interdisciplinary PL Design Onward! ’18, November 8, 2018, Boston, MA, USA

for the study. The authors also report several subjective
quality metrics that were assessed by a panel of experts,
but it is not clear whether these metrics correlate with
any kind of real-world programmer performance.

We challenge the Haskell community (and other re-
lated communities) to provide direct empirical evidence
of the benefits of their approaches via randomized con-
trolled trials. The question of purity is a particularly
interesting one: the language design centers around the
supposed benefits of purity, but we lack evidence regard-
ing whether, overall, the tradeoff is a good one. If purity
is helpful, then for which users and which applications
– and for which users and applications is it harmful?
Does hiding side effects inside monads actually help pro-
grammers, or is the net effect that the program is more
difficult to write and maintain?

The empirical approach focuses on summative evalua-
tions. However, summative evaluations are only useful
on systems that are complete enough to withstand user
tests, which can require significant engineering work;
furthermore, of the thousands of design decisions in-
volved in a particular programming language design, a
particular experiment can only consider a small set of
options. For example, a 2 x 2 factorial study studies
two design options in each of two dimensions, and even
this would require a large number of participants if one
wants statistically significant results. In cases where de-
sign choices interact—something we have observed to
be very common in language design—it quickly becomes
impossible to evaluate the cross product of the possible
choices. These interactions between design features make
it difficult to go from study results to holistic language
designs. In contrast, language designers need approaches
that enable them to explore and evaluate a larger por-
tion of the design space. Additional challenges include
the difficulty of studying longer and more complex tasks
in a controlled, laboratory setting; and the difficulty of
recruiting a representative sample of software engineers
and retaining them in a laboratory environment long
enough to obtain results.

Some researchers have argued that the programming
languages community might look to the field of medicine
for insight regarding appropriate evidence in scientific
fields [64, 65]. We observe, however, that evidence-based
medicine rests on three pillars: individual clinical exper-
tise; external clinical evidence from systematic research
(particularly from controlled trials when considering ther-
apeutic options, when available); and patient values,
preferences, and characteristics [19, 58, 63]. Notably,
controlled trials form only one component of the three;
the medical community considers other relevant aspects
of a clinical situation when recommending treatment.
In addition, an epidemiological approach considers the

population-level effects of decisions rather than just the
effects on individuals.

Even if language designers were to use a medical ap-
proach, then, they would need to consider arguments
beyond those which are directly supported by controlled
experiments. However, although clinicians can typically
choose to not recommend a treatment, this option is
not available to programming language designers, whose
closest moral equivalent might be to abandon the pursuit
of language design (instead recommending that users use
existing languages). Language designers are frequently
forced to make decisions or recommendations lacking
direct experimental evidence.

When comparing to a medical approach, is impor-
tant to consider that medical trials are done to evaluate
treatments, not to design them. Before starting a drug
trial, drug designers use separate methods to design
new drugs; evaluation of efficacy is done much later [21].
Furthermore, fortunately for programming language de-
signers, the risks of testing a bad design are substantially
lower than in drug designs, which suggests that a less
risk-averse process is likely appropriate.

We challenge the empiricists, then, to develop ways
of validating formative design techniques: methods that
can be used to elicit evidence from users in the absence
of a working system that can be evaluated. How can we
know whether insights obtained from qualitative work
with programmers are likely to generalize?

The perspective of the educator is useful in the de-
sign of practical languages because languages that are
difficult to learn are less likely to be adopted. Insights
from pedagogy may also provide hints as to which ap-
proaches are more or less natural for users. This approach
was incorporated into the design of C++: “If in doubt,
pick the variant of a feature that is easiest to teach”
[68]. However, languages that focus on pedagogical goals
may not be ideal for creating large, complex systems.
Educators must choose whether to prioritize teaching
particular aspects of programming so that students can
be effective when using other languages, or to prioritize
practical application. There is a tradeoff of authenticity:
students who learn languages that are not used for “real”
development may feel they are not learning authentic
programming methods.

Our challenge for educators is twofold. First, they
should ensure that their perspective reaches past the
question of how to teach students how to use specific
programming constructs (e.g. for loops) and into the
question of how to design languages that facilitate rea-
soning about computation. By doing so, they may uncover
new approaches to programming that make all program-
mers more effective — not just novices.

Onward! ’18, November 8, 2018, Boston, MA, USA M. Coblenz, J. Aldrich, B. A. Myers, J. Sunshine

3.3 Use of multiple methods
The number of design decisions involved in designing a
particular programming language is immense; we hope
that future work will analyze this space comprehensively,
but our experience suggests that there are at least thou-
sands of decisions that are made in the design of any
given language. These include high-level decisions such as
what paradigms and type systems to use, medium-level
decisions such as what control structures and modu-
larity features to provide in the language, and lower
level decisions such as the concrete syntax and which
reserved words to use. In practice, designers complete
their work by making many decisions on the basis of
prior successful systems and their own intuition and ex-
perience. Although orthogonality of constructs is one of
the canonical recommendations for language designers
[52, 61], it is our experience that many language design
decisions are not orthogonal. For example, in a language
we are working on now, the design of an alias control
mechanism interacts with the design of a mechanism
that facilitates static reasoning about state. We argue,
then, that it is risky to combine the results of individ-
ual experiments without performing an additional, more
holistic evaluation: one that either provides evidence
that the decisions are in fact orthogonal, or provides
enough guidance about how the decisions interact to
properly interpret the experimental results.

Instead of relying on exhaustive experimentation, then,
we propose using many different methods from the field
of design to triangulate when making design decisions;
although a particular method might only suggest a par-
ticular region in the design space, we can obtain further
guidance helping us narrow it further by using different
methods. Although this approach lacks the statistical
satisfaction of randomized controlled trials, it has the
benefit of producing evidence grounded in real users that
can be obtained practically and applied to a wide variety
of different language designs.

An important aspect of an interdisciplinary approach
is that it allows us to collect detailed qualitative results
regarding tradeoffs among different designs. Rather than
focusing on whether a particular design promotes faster
task completion times compared to another, we seek to
learn why [34]: when programmers are confused, what
is the cause of the confusion? What concrete improve-
ments can we make to the language, the programming
environment, and the training materials to improve task
performance?

We seek to use human-centered approaches broadly
in order to first obtain lower-cost, qualitative knowledge
about designs, and then later to obtain quantitative
results showing how new designs compare to existing
ones. Our assumption is that we are likely to obtain a

better design (one for which a quantitative evaluation is
likely to show a superior result) if we take user data into
account throughout the design process [43] rather than
limiting the use of user-oriented methods to the end of
the process.

In general, the discipline of design is about creating
tools that help people achieve their goals while consid-
ering practical constraints [11]. Design is applicable to
large design spaces, such as that of programming lan-
guages, including in high-stakes situations. For example,
an airplane cockpit is designed taking human factors into
account in order to reduce error rates to improve airplane
safety [77]. The design recommendations are drawn from
a variety of sources, including human factors texts and
industry standards. The aviation industry learns how to
design safe cockpits with a interdisciplinary approach; it
does not restrict itself to quantitative studies of pilots
with candidate interfaces.

4 Methods
We divide the methods into those that are primarily
oriented around eliciting and iterating on design ideas
(without needing a prototype to evaluate) and those that
are oriented around evaluation (requiring a prototype or
a finished design). Each method is used to obtain data,
but the validity of the data depends on the method and
how it is applied. Importantly, validity is not a binary
concept. One cannot say that a use of a method was valid;
instead, one must enumerate the threats to validity and
discuss how those threats were mitigated in the study.
Key kinds of validity that trade off include:

∙ External validity considers to what extent the data
generalize to other situations. For example, the
results of a study involving undergraduates may
not generalize to professional software engineers.

∙ Internal validity asks to what extent the results
may be confounded by variables that were not con-
sidered. For example, although participants were
randomly assigned to the experimental conditions,
the experimenter might (unwisely) run all of the
participants in one condition before all of the par-
ticipants in the other condition, risking a confound-
ing variable of time (perhaps a major world event
occurred later in the study, impacting the later
participants’ ability to focus on the experiment).

The methods, which are described below, are also
summarized in Table 2.

4.1 Methods for requirements and creation
Interviews can be a valuable source of information for
areas in which researchers can find experts. These can
be a useful approach to quickly obtain knowledge about

Interdisciplinary PL Design Onward! ’18, November 8, 2018, Boston, MA, USA

existing problems and their existing solutions. For ex-
ample, we interviewed experienced software engineers
and API designers to understand how practitioners use
immutability in their software designs [16]; the insights
led to a new extension to Java, Glacier [15], which is
designed around the needs of real users instead of around
maximizing expressiveness. Glacier extends Java to sup-
port transitive class immutability, a kind of immutability
that the interviewees expressed would be useful in real
software. Interviews are limited in external validity be-
cause it may be difficult or impossible to interview a
representative sample of any particular population. The
results strongly depend on the participants themselves
as well as the skill of the interviewer in eliciting as much
useful information as possible with minimal bias.

Surveys are a useful way to assess opinions and expe-
rience among a large sample, for example for assessing
whether a proposed problem is one that a large fraction
of practitioners face, or assessing which problems are
the most important to solve from a practitioner’s point
of view. Some researchers have also used surveys to get
direct insight into programming language designs [73],
but the results have been inconclusive regarding specific
design guidance. Most surveys ask people what they
believe, but in some cases people’s beliefs do not lead
to designs that benefit users in practice. Furthermore,
survey results can be difficult to interpret or clouded
with noise. Sometimes, little verifiable information is
known about participants, and there may be motives
that detract from data validity (e.g. Mechanical Turk
workers may want to complete the survey as fast as
possible to maximize their hourly wage).

Corpus studies can show the prevalence of particular
patterns in existing code, including patterns of bugs in
bug databases. For example, Callaú et al. [12] investi-
gated the use of dynamic features in Smalltalk programs,
Malayeri et al. [37] investigated whether programs might
benefit from a language that supported structural sub-
typing, and we studied how Java programmers used
exception handling features [30]. Corpus studies can
show that a particular problem occurs often enough
that it might be worth addressing; they can also show
how broadly a particular solution applies to real-world
programs, as in Unkel and Lam’s analysis of stationary
fields in Java [75]. However, it can be difficult to obtain
a representative corpus. For example, though GitHub
contains many open source projects, they can be difficult
to build; it can be difficult to sample in an unbiased
way; and open source code may not be representative of
closed source code.

Natural programming [43] is a technique to elicit how
people express solutions to problems without any special
training. It aims to find out how people might “nat-
urally” write programs. These approaches have been

useful for HANDS [47], a programming environment for
children, as well as professionally targeted languages,
such as blockchain programming languages [2]. However,
the results are biased by participants’ prior experience
and education, and results depend on careful choice of
prompts to avoid biased language.

Rapid prototyping is commonly used in many differ-
ent areas of human-computer interaction research, and
can be used for language design as well [42]. Low-fidelity
prototypes, such as paper prototypes, can be used to
obtain feedback from users on early-stage designs ideas.
Wizard-of-Oz testing involves an experimenter substi-
tuting for a missing or insufficient implementation. For
example, when evaluating possible designs for a type
system for a blockchain programming language, we gave
participants brief documentation on a language proposal
and asked them to do tasks in a text editor. Because
there was no typechecker implemented, the experimenter
gave verbal feedback when participants wrote ill-typed
code. This allowed us to learn about the usability of vari-
ous designs without the expense of implementing designs
that were about to be revised anyway. However, low
fidelity prototypes may differ in substantive ways from
polished systems, misleading participants. The results
depend on the skill and perspectives of the experimenter
and the participants, which threatens validity.

Participatory design [9, 46] invites domain experts to
help explore the design space and analyze tradeoffs. The
assumption is that their specific expertise is likely to
complement the general language design expertise of the
language designer.

Programming language and software engineering the-
ory provide a useful guide when considering the require-
ments for a programming language. For example, the
guarantees that a transitive immutability system can
provide in the areas of both security and concurrency—
which have been well-established in the programming
language theory literature—were key reasons that we
chose transitive immutability for the Glacier type sys-
tem [16]. Similarly, an understanding of how modularity
affects modifiability from the software engineering litera-
ture [50] motivates the module systems present in many
languages, and more recent theories about how software
architecture [62] influences software development moti-
vated our design of the ArchJava language [1]. However,
theoretical guarantees that pertain to optional language
features will not be obtained if the features are misun-
derstood or not used. Furthermore, guarantees can be
compromised by bugs in unverified tool implementations.

4.2 Methods for evaluation
Qualitative user studies have been used to evaluate many
different kinds of tools, including programming languages
[16, 47], APIs [44], and development environments [33].

Onward! ’18, November 8, 2018, Boston, MA, USA M. Coblenz, J. Aldrich, B. A. Myers, J. Sunshine

Some of these consist of usability analyses, in which par-
ticipants are given tasks to complete with a set of tools
and the experimenter collects data regarding obstacles
the participants encounter while performing the tasks.
Unlike randomized controlled trials, these are usually
not comparative; that analysis is left to a future study.
Instead, they focus on learning as much as possible in
a short amount of time in order to test feasibility of a
particular approach and improve the tool for a future
iteration of the design process.

Qualitative user studies can also be used to under-
stand a problem that a language design is intended to
solve, and help to guide other research methods used
to evaluate the eventual solution. We studied program-
mers solving protocol-related programming problems
that were gleaned from real StackOverflow questions in
order to understand the barriers developers face when
using stateful libraries [70]. The results of the study were
useful in developing a language and its associated tools,
and produced a set of tasks that were used in a later
user experiment. Because of the qualitative user study,
we knew these tasks were the most time-consuming com-
ponent of real-world programming problems, mitigating
the most significant external threat to the validity of the
user experiment.

Qualitative user studies are usually limited to short-
duration tasks with participants that researchers can
find. In practice, this sometimes limits the sizes of the
programs that the tasks concern because larger programs
typically require more sophisticated participants and
more participant time. Although a typical qualitative
user study might only take an hour or two per participant,
even a small real-world programming task might take a
day or more.

Case studies show expressiveness: a solution to a par-
ticular programming problem can be expressed in the
language in question. Many case studies aim to show
concision, observing that the solution is expressible with
a short program, particularly in comparison to the length
of a typical solution in a comparison language. Case stud-
ies are particularly helpful when the language imposes
restrictions that might cause a reader to wonder whether
the restrictions prevent application of the language to
real problems.

Case studies can also be used to learn about how a
programming language design works in practice. For ex-
ample, we used exploratory case studies on ArchJava to
learn about the strengths and limitations of the language
design and to generate hypotheses about how the ap-
proach might affect the software engineering process [1].

Case studies have limited external validity because
they necessarily only consider a small set of use cases
(perhaps just one). As a result, the conclusions are biased
by the selection of the cases. Furthermore, the results

may not generalize to typical users, since the case stud-
ies may be done by expert users of the system under
evaluation.

Expert evaluation methods, such as Cognitive Dimen-
sions of Notations [23] and Nielsen’s Heuristic Analysis
[45], provide a vocabulary for discussing design tradeoffs.
Although they do not definitively specify what decision
to make in any particular case because each option may
trade off with another, they provide a validated mech-
anism for identifying advantages and disadvantages of
various approaches. This approach has been widely used
in the visual languages community. However, expert eval-
uation requires access to experts and a validated and
relevant set of criteria. The traditional criteria, such as
Cognitive Dimensions of Notations, have not yet been
validated against traditional textual languages by show-
ing that their results are correlated with quantitative
experiments.

Performance evaluation, typically via benchmarks, is
well-accepted for comparing languages and tools. Per-
formance evaluation can be critical if it is relevant to
the claims made about a language, but many popu-
lar languages are not as fast as alternatives (consider
Python vs. C), so it is important to decide how much
performance is required. SIGPLAN released a checklist
[5] for empirical evaluations of programming languages;
although is title is “Empirical Evaluation Checklist,” it
describes only performance evaluations. The checklist
hints at limitations of this approach, such as a mismatch
between benchmark suite and real-world applications,
an insufficient number of trials, and unrealistic input.

User experiments, also known as randomized con-
trolled trials (RCTs), have been used to address a variety
of programming language design questions, such as the
benefits of C++ lambdas [74], static type systems [20],
and typechecking [53]. In some ways, RCTs represent the
gold standard for summative evaluations. However, they
do not always lead to insights that can be used to design
or improve systems, and unless they are supplemented by
theory (e.g. gleaned from qualitative studies), it can be
difficult to be certain that results on a narrow problem
studied in the laboratory will apply to a more complex
real-world setting. For example, Uesbeck et al. discuss
in what contexts their conclusions about C++ lambdas
might apply [74], but not how one might improve lamb-
das to retain possible advantages but mitigate identified
shortcomings.

Formalism and proof are traditional tools for showing
that a specific language design has particular properties,
such as type soundness [51]. In many languages, a formal
model provides key insight that inspires a new language
design; in these cases, the formal analysis might be
the first step in a language design. However, in other
languages, a formalism serves primarily to provide a

Interdisciplinary PL Design Onward! ’18, November 8, 2018, Boston, MA, USA

specification and a safety guarantee, in which case this
work might be done much later.

A typechecker provides some safety guarantees once
a program typechecks, but one must compare the diffi-
culty of writing a type-correct program to the difficulty
of obtaining safety some other way (for example, with
runtime checks, at the cost of deferring verification to
runtime) and to the option of not providing the guar-
antee at all. In some systems, safety guarantees are not
necessary; for example, the consequences of a bug in a
video game may be smaller than the consequences of a
bug in avionics software. Recently, Misailovic et al. have
argued that in many cases, approximating the language
semantics suffices [41].

Formal verification via tools such as Dafny [35] or
Coq [6] can provide even stronger guarantees, likely at
greater implementation cost. However, if the tools are
too difficult to use, programmers may not obtain the
guarantees because they may circumvent the tools (e.g.
by implementing difficult procedures in a lower-level
language) or because they may fail to complete their
projects within their cost and time constraints.

In practice, there is typically a gap between what is
actually specified in a formal specification of correctness
and what is desired by the programmer. For example, a
programmer may specify the correct output of a factorial
function in a recursive way, implement the function itera-
tively to avoid overflowing the stack for large input, and
leave unwritten the specification that the program shall
not overflow the stack for input within the expressible
range of machine-size integers.

5 Examples
In this section, we show how combinations of the above
methods have been helpful in particular examples of
programming language designs. We also relate cautionary
tales showing how specific language design mistakes may
have been prevented if the designers had applied the
methods we suggest in this essay.

5.1 Exemplars
Typestate is a way of tracking the conceptual states of
objects in a type system, ensuring that state-sensitive
operations such as read on a File are not applied when
the object is in an inappropriate state, such as closed [67].
Two of us were involved in a decade-long interdisciplinary
research project that illustrates how different research
methods complement one another in exploring language
and type system support for typestate.1

1We present the work in a logical order; the actual research was
done in an order that reflected the interests of students as well as
our group’s ongoing exploration of different research methods.

We wanted to know how common it is in practice
to have state protocols, so we carried out a code cor-
pus study identifying and classifying classes that define
protocols in Java library and application code [4]. Our
study was a bit unusual for corpus studies: while we
used tools to identify code that might define protocols,
because the definition of protocols includes the notion of
abstract states, we had to manually examine each candi-
date identified by the tool to verify that it really defined
a protocol. We found that at least 7% of types in our cor-
pus defined protocols, and that nearly all these protocols
naturally fall into one of seven protocol categories.

That suggests that protocols are reasonably common,
but do they cause problems for developers? To answer
that question, we carried out another study which identi-
fied Stack Overflow questions about object protocols and
then carried out a think-aloud study watching program-
mers perform tasks abstracted from those questions [70].
We found that when performing these tasks, developers
spent 71% of their time answering four types of protocol-
related questions. These two studies are complementary:
one suggests that protocols are reasonably common, the
other that there are real development problems that
programmers struggle with involving protocols. By com-
bining these studies we gain more confidence that object
protocols are an important problem to work on than we
would have gotten with either study in isolation.

We designed typestate support both as a set of anno-
tations and an analysis on top of Java, and as a separate
language, Plaid [71]. Formal models of a typestate check-
ing system in each setting were proved sound [8, 22].
Although some of the design and formal work was done
before publishing the papers above, the design of these
formal systems was driven by examples from the Java li-
braries that were included in those studies, ensuring that
the formal approach had real-world applications. This
was further verified by case studies in Java, verifying
that our tool could successfully check real uses of type-
state in 100,000 lines of Java code [3, 7], and in Plaid,
verifying that the language could express complicated
state machines in real examples ported from Java [71].

While run-time performance was not a driving moti-
vation for our work on typestate, our initial implementa-
tion of Plaid was very slow. Therefore, two of us advised
a student whose thesis demonstrated that Plaid could
be implemented with a modest slowdown compared to
previous dynamic languages [14].

Determining directly whether Plaid helps program-
mers is difficult because of confounding effects: Plaid is
different from Java in many ways, not just in its support
for typestate. However, support for typestate (either in
Plaid or in Java) affects not only the language, but the
surrounding set of tools. We modified the javadoc tool
to produce documentation that included an ASCII-art

Onward! ’18, November 8, 2018, Boston, MA, USA M. Coblenz, J. Aldrich, B. A. Myers, J. Sunshine

Method Phases
supported

Key benefits Challenges and
limitations

Interviews Requirements,
Creation

Gathers open-ended qualita-
tive data from experts

Depends on skill of interviewer and selection of
participants; results may not generalize

Surveys Requirements,
Creation

Assesses opinions among a
broad audience; can generalize
interview results

Output is subjective; may not reflect reality

Corpus
studies

Requirements,
Creation

Assesses incidence of problems
or applicability of solutions in
a large dataset

Depends on appropriate datasets and efficient
methods of analysis

Natural
programming

Requirements,
Creation

Obtains insights from people
without biasing them toward
preferred solutions

Data may be biased toward participants’ prior
experiences

Rapid
prototyping

Requirements,
Creation

Facilitates efficient design
space exploration

Lack of fidelity in prototypes may hide faults

Programming
language
theory

Requirements,
Creation,
Evaluation

Ensures sound designs High cost; applying formal methods too early may
limit ability to iterate, but applying too late can
waste time on unsound approaches

Software
engineering
theory

Requirements,
Creation,
Evaluation

Improves practicality of
designs

Unclear how to prioritize recommendations when
they conflict

Qualitative
user studies

Requirements,
Creation,
Evaluation

High-bandwidth method to
obtain insight on user behav-
ior when using systems

Results may not generalize; Results depend on
skills of experimenter and participants

Case studies Evaluation Tests applicability of systems
to real-world cases; allows in-
depth explorations of real-
world difficulties

Requires finding appropriate cases; generalizability
may be limited

Expert
evaluation

Evaluation Benefit from experience
acquired by experts

Biased by opinions of experts, which may not
reflect real-world implications of the design

Performance
evaluation

Evaluation Reproducible way of assessing
performance

Results depend heavily on selection of test suite

User
experiments

Evaluation Quantitative comparison of
human performance across
systems

Results may not generalize to non-trivial tasks,
other kinds of participants, expert users, long-term
use, or use on large systems

Formalism
and proof

Requirements,
Creation,
Evaluation

Provides definitive evidence of
safety

Results are limited to the specific theorems proven

Table 2. Summary of methods

state machine, listed state pre- and post-conditions for
each method, and grouped methods by state. In a con-
trolled experiment, we found that programmers were
able to answer state-related questions 2.2 times faster
and were 7.9 times less likely to make errors [69]. This
experiment offers the most direct evidence for the benefit
of our approach, but one of the major threats to external
validity is that the experiment was done in a controlled
setting; how do we know that the results will transfer

to the real world? Fortunately, the qualitative proto-
col study described earlier addresses this threat: in the
experiment, we chose questions that were asked by pro-
grammers doing real StackOverflow tasks. This example
shows that a properly designed pairing of experiments
and formative studies can be much more convincing than
either study in isolation.

Glacier [15] is an extension to Java that supports
transitive class immutability [16]. We started with the

Interdisciplinary PL Design Onward! ’18, November 8, 2018, Boston, MA, USA

question “What kinds of immutability should a program-
ming language support, and how should it support them?”
We began with a literature review to understand exist-
ing approaches. We found a progression of increasingly
complex research systems [10, 24, 25, 32, 72] supporting
increasing numbers of kinds of immutability, but little ev-
idence regarding which of these were actually needed in
practice. However, immutability is a frequently discussed
topic in the software industry so it is an area where ex-
perts are like to have well-formed opinions. Therefore, we
conducted interviews of professional software engineers
to see what kinds of evidence we could gather regarding
the utility of different kinds of immutability approaches.
These interviews suggested, among other things, that
developers would like immutability to help in develop-
ing concurrent systems. Language theory tells us that a
transitive immutability system could be effective for this
and other identified goals, an observation also supported
by the interviews themselves. Interested in evaluating
the effect of supporting transitive immutability, we built
a prototype (informed by a formal model) and conducted
a small qualitative study comparing an existing research
tool, IGJ [78], with our prototype, IGJ-T. We noted that
our participants had difficulty understanding the error
messages in IGJ, which resulted in part from the wide
variety of scenarios that IGJ was designed to support,
such as both class and object immutability.

To improve our chances of obtaining a system that
people could use effectively, we focused on a simpler
system, which supported only transitive, class-based
immutability. We hoped that this point in the design
space would result in a simple, usable system that ex-
pressed constraints that were relevant to real programs.
We evaluated this hypothesis in an RCT. We assigned
ten participants to use plain Java with final and ten
others to use our extension, Glacier, on code writing
tasks. We found that most of the participants who only
had final accidentally modified state in immutable ob-
jects, resulting in bugs. We also asked participants to
use their assigned tools to specify immutability in a
small codebase. We found that most of the participants
who had Glacier could specify immutability correctly;
in contrast, every final user made mistakes when at-
tempting to enforce immutability. Both of these results
were statistically significant.

Does Glacier’s simplicity restrict its utility to con-
trived tasks in lab studies? We conducted a case study
applying Glacier to real-world systems [15]. We were able
to express the kinds of immutability used in a real Java
spreadsheet implementation and in a Guava collections
class (with one caveat for caching). On this basis, we
argue that Glacier is likely to be applicable to a variety

of real-world systems. In fact, we argue that its sim-
plicity increases its value by providing usability so that
programmers are able to use it effectively.

Glacier shows one example of how researchers can in-
form their research with qualitative methods, including
interviews and qualitative lab studies, and then show
benefit of their tools in a quantitative lab study after-
ward. We were able to show a successful quantitative
result after significant iterations and qualitative human-
centered evaluations, arguably because our design had
been informed by other research methods.

AppleScript is a scripting language that was designed
in 1991. Unlike the above examples, which were aca-
demic research projects, AppleScript was designed in a
commercial environment. The designers had a practical
goal: allow users, many of whom would not be trained
as programmers, to write scripts that automate tasks
involving GUI applications. Although it was based on
an existing language, HyperTalk, the designers wanted
it to be a more general way of interfacing with applica-
tions via Apple Events, the platform’s mechanism for
inter-process communication.

The AppleScript team collected requests for features
in interviews and in a focus group; they also collected
early feedback from key developers [18]. In addition,
they used user studies to assess the usability of their
language. For example, they asked novice users what be-
havior they expected of particular code. Users were also
asked for their preferences: for example, between window
named "fred" and window "fred". This approach is
one example of earlier work that resembles the natu-
ral programming technique [43]. For example, an early
version used the syntax put x into y, but participants
thought that after executing that statement, x would no
longer be defined. The designers changed the language
to use copy x into y instead.

The work on AppleScript also included controlled user
experiments, but Cook reported that they were done too
late to affect the design of the language [18]. Perhaps
surprisingly, although the team included a member with
a background in formal semantics, formal methods were
not a significant part of the development process – in
part because the other members were unfamiliar with
those techniques, making them ineffective for communi-
cation, in part because that work would not have yielded
interesting results for the traditional parts of the lan-
guage, and in part because the required time was not
available for the novel parts of the language. Most of
the language design insight came from user studies and
informal case studies.

5.2 Cautionary Tales and Missed Opportunities
Dennis Ritchie wrote about the design of the C language
[56]. Interestingly, some of the design decisions in C came

Onward! ’18, November 8, 2018, Boston, MA, USA M. Coblenz, J. Aldrich, B. A. Myers, J. Sunshine

out of the experience of convenience of the language de-
signers. For example, part of the justification for using
terminators at the ends of strings rather than storing the
size of strings separately was convenience. Unfortunately,
this decision has led to decades of security vulnerabil-
ities [60]. The decision may have been convenient for
programmers, but it disregarded the bug-prone nature
of this design decision. Perhaps user studies would have
revealed the risk of this kind of bug, motivating a design
change. Although security was not a design priority at
the time, the designers surely knew of the risk of bugs
in general.

Ritchie also described the process by which the opera-
tor precedences were established [56], based on historical
precedent from the B language and the B-language ex-
ample, if (a == b & c). This code compares a to b
and then checks whether c is nonzero. The precedence of
&& was inherited from &, which binds less tightly than ==.
Then, Ritchie commented: “Today, it seems that it would
have been preferable to move the relative precedences
of & and ==, and thereby simplify a common C idiom:
to test a masked value against another value, one must
write if ((a & mask) == b) where the inner parenthe-
ses are required but easily forgotten.” This represents a
missed opportunity for empirical studies: perhaps they
could have revealed the error-prone nature of this lan-
guage decision and motivated a change to prevent a large
number of bugs.

Learners of C sometimes ask about the distinction be-
tween arrays declared with empty brackets and pointers,
e.g. the function void f(int a[]) vs. void f(int *a).
This was a remnant from a predecessor of C called NB,
with the idea that it would communicate to readers that
a should be interpreted as an array rather than a pointer
to a scalar, but Ritchie later viewed this as confusing
[56]. Perhaps empirical studies would have revealed this
language design flaw too.

Tony Hoare included NULL references in ALGOL. He
later argued that the inclusion of NULL references was
a billion-dollar mistake [26]: “But I couldn’t resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in
the last forty years.” In this essay, we argue that language
design should be done with respect to the behavior of the
users of the language, not with respect to the convenience
of the language designer. Hoare now seems to agree
[26]: “[Language design] is a serious activity; not one
that should be given to programmers with 9 months
experience with assembly; they should have a strong
scientific basis, a good deal of ingenuity and invention
and control of detail, and a clear objective that the

programs written by people using the language would
be correct.”

Hoare hypothesized: “By investigating the logical prop-
erties of your programming language and finding out
how difficult it would be to prove correctness if you
wanted to, you would get an objective measurement of
how easy the language was to use correctly. If the proof
of program correctness requires a lot of proof rules and
each rule requires a lot of side conditions. . . then you
know that you’ve done a bad job as a language designer.
You do not have to get your customers to tell you that.”
We challenge the community to evaluate this hypothesis
scientifically rather than either ignoring it or taking it
as an assumption.

6 Conclusions
We summarize the lessons of this essay as follows:

∙ Language design should be interdisciplinary, ap-
plying a wide variety of methods

∙ Designers should use more human-oriented, quali-
tative, and formative methods

∙ Designers should draw more on empirically based
software engineering principles

∙ The application of one method should be guided
by results from complementary methods

∙ Methods should be chosen to mitigate critical risks
to achieving the language design goals

Our experience applying the ideas above indicates that,
while every design method has limitations, an interdis-
ciplinary approach to combining theoretical methods
with quantitative and qualitative user-oriented methods
is effective in the process of creating and evaluating
programming languages and programming language ex-
tensions.

An individual researcher or language designer may not
be familiar with the entire breadth of methods we pro-
mote; indeed, none of us is an expert in all the methods
mentioned in this paper, nor even all the ones used in our
collective research. Instead, we recommend collaborative
efforts, where designers work together to apply theoret-
ical, formative, and summative techniques in order to
provide evidence of relevant properties, explore fruitful
portions of the design space, and show that their designs
benefit users in specific, quantifiable ways.

Acknowledgments
We appreciate the insightful comments from James No-
ble, Mary Shaw, Richard Gabriel, the anonymous re-
viewers, and the participants of Dagstuhl Seminar 18061.
This material is based upon work supported by the US
Department of Defense, by NSF grants CNS-1734138
and CNS-1423054, by NSA lablet contract H98230-14-
C-0140, by the Software Engineering Institute, and by

Interdisciplinary PL Design Onward! ’18, November 8, 2018, Boston, MA, USA

AFRL and DARPA under agreement #FA8750-16-2-
0042. Michael Coblenz is supported by an IBM PhD
fellowship. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
the sponsors.

References
[1] Jonathan Aldrich, Craig Chambers, and David Notkin. 2002.

ArchJava: Connecting Software Architecture to Implemen-
tation. In Proceedings of the 24th International Conference
on Software Engineering (ICSE ’02). ACM, New York, NY,
USA, 187–197. https://doi.org/10.1145/581339.581365

[2] Celeste Barnaby, Michael Coblenz, Tyler Etzel, Eliezer Kanal,
Joshua Sunshine, Brad Myers, and Jonathan Aldrich. 2017. A
User Study to Inform the Design of the Obsidian Blockchain
DSL. In PLATEAU ’17 Workshop on Evaluation and Usabil-
ity of Programming Languages and Tools.

[3] Nels E. Beckman. 2010. Types for Correct Concurrent API
Usage. Ph.D. Dissertation. Carnegie Mellon University, 5000
Forbes Ave., Pittsburgh, PA, USA. CMU-ISR-10-131.

[4] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. 2011. An
Empirical Study of Object Protocols in the Wild. In European
Conference on Object-Oriented Programming.

[5] E. D. Berger, S. M. Blackburn, M. Hauswirth, and M. Hicks.
2018. Empirical Evaluation Checklist (beta). http://www.
sigplan.org/Resources/EmpiricalEvaluation/

[6] Yves Bertot and Pierre Castran. 2010. Interactive Theorem
Proving and Program Development: Coq’Art The Calculus
of Inductive Constructions (1st ed.). Springer Publishing
Company, Incorporated.

[7] Kevin Bierhoff. 2009. API Protocol Compliance in Object-
Oriented Software. Ph.D. Dissertation. Carnegie Mellon Uni-
versity, 5000 Forbes Ave., Pittsburgh, PA, USA. CMU-ISR-
09-108.

[8] Kevin Bierhoff and Jonathan Aldrich. 2007. Modular Types-
tate Checking of Aliased Objects. In Proceedings of the 22Nd
Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems and Applications (OOPSLA ’07). ACM,
New York, NY, USA, 301–320. https://doi.org/10.1145/
1297027.1297050

[9] Susanne Bødker and Ole Sejer Iversen. 2002. Staging a Pro-
fessional Participatory Design Practice: Moving PD Beyond
the Initial Fascination of User Involvement. In Proceedings
of the Second Nordic Conference on Human-computer Inter-
action (NordiCHI ’02). ACM, New York, NY, USA, 11–18.
https://doi.org/10.1145/572020.572023

[10] John Boyland, James Noble, and William Retert. 2001. Ca-
pabilities for Aliasing: A Generalisation of Uniqueness and
Read-Only. In European Conference on Object-Oriented Pro-
gramming, Jørgen Lindskov Knudsen (Ed.).

[11] Bill Buxton. 2007. Sketching user experiences: getting the
design right and the right design. Morgan Kaufmann.

[12] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röth-
lisberger. 2011. How Developers Use the Dynamic Features
of Programming Languages: The Case of Smalltalk. In Pro-
ceedings of the 8th Working Conference on Mining Software
Repositories (MSR ’11). ACM, New York, NY, USA, 23–32.
https://doi.org/10.1145/1985441.1985448

[13] Don Chamberlin. 2012. Early History of SQL. IEEE Ann.
Hist. Comput. 34, 4 (Oct. 2012), 78–82. https://doi.org/10.
1109/MAHC.2012.61

[14] Sarah Chasins. 2012. An Efficient Implementation of the
Plaid Language. Honors thesis. Swarthmore College Honors
Thesis.

[15] Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad
Myers, and Joshua Sunshine. 2017. Glacier: Transitive Class
Immutability for Java. In Proceedings of the 39th Inter-
national Conference on Software Engineering - ICSE ’17.
https://doi.org/10.1109/ICSE.2017.52

[16] Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad
Myers, Sam Weber, and Forrest Shull. 2016. Exploring Lan-
guage Support for Immutability. In International Conference
on Software Engineering. https://doi.org/10.1145/2884781.
2884798

[17] Wikipedia contributors. 2018. List of educational program-
ming languages. https://en.wikipedia.org/wiki/List_of_
educational_programming_languages

[18] William R. Cook. 2007. AppleScript. In Proceedings of the
Third ACM SIGPLAN Conference on History of Program-
ming Languages (HOPL III). ACM, New York, NY, USA,
1–1–1–21. https://doi.org/10.1145/1238844.1238845

[19] David M. Eddy. 2005. Evidence-Based Medicine: A Unified
Approach. Health Affairs 24 (2005). Issue 1.

[20] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and
Andreas Stefik. 2014. How Do API Documentation and Static
Typing Affect API Usability?. In International Conference on
Software Engineering. ACM, New York, NY, USA, 632–642.
https://doi.org/10.1145/2568225.2568299

[21] FDA. 2018. The Drug Development Process > Step 3: Clinical
Research. https://www.fda.gov/ForPatients/Approvals/Drugs/
ucm405622.htm

[22] Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan
Aldrich. 2014. Foundations of Typestate-Oriented Program-
ming. ACM Trans. Program. Lang. Syst. 36, 4, Article 12
(Oct. 2014), 44 pages. https://doi.org/10.1145/2629609

[23] Thomas R. G. Green and Marian Petre. 1996. Usability anal-
ysis of visual programming environments: a ‘cognitive dimen-
sions’ framework. Journal of Visual Languages & Computing
7, 2 (1996), 131–174. https://doi.org/10.1006/jvlc.1996.0009

[24] Christian Haack and Erik Poll. 2009. Type-based Object
Immutability with Flexible Initialization. In European Con-
ference on Object-Oriented Programming. https://doi.org/
10.1007/978-3-642-03013-0

[25] C. Haack, E. Poll, J. Schäfer, and A. Schubert. 2007. Im-
mutable objects for a java-like language. In European Sympo-
sium on Programming.

[26] Tony Hoare. 2009. Null references: The billion dollar mistake.
Presentation at QCon London 298 (2009).

[27] Paul Hudak and Mark P Jones. 1994. Haskell vs. Ada vs.
C++ vs. awk vs.... an experiment in software prototyping
productivity. Contract 14, 92-C (1994), 0153.

[28] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes. 2007. The Evolution of Lua. In Proceed-
ings of the Third ACM SIGPLAN Conference on History of
Programming Languages (HOPL III). ACM, New York, NY,
USA, 2–1–2–26. https://doi.org/10.1145/1238844.1238846

[29] Caitlin Kelleher and Randy Pausch. 2005. Lowering the
Barriers to Programming: A Taxonomy of Programming En-
vironments and Languages for Novice Programmers. ACM
Comput. Surv. 37, 2 (June 2005), 83–137. https://doi.org/
10.1145/1089733.1089734

[30] Mary Beth Kery, Claire Le Goues, and Brad A Myers. 2016.
Examining programmer practices for locally handling ex-
ceptions. In Mining Software Repositories (MSR), 2016
IEEE/ACM 13th Working Conference on. IEEE, 484–487.

https://doi.org/10.1145/581339.581365
http://www.sigplan.org/Resources/EmpiricalEvaluation/
http://www.sigplan.org/Resources/EmpiricalEvaluation/
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/572020.572023
https://doi.org/10.1145/1985441.1985448
https://doi.org/10.1109/MAHC.2012.61
https://doi.org/10.1109/MAHC.2012.61
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1145/2884781.2884798
https://doi.org/10.1145/2884781.2884798
https://en.wikipedia.org/wiki/List_of_educational_programming_languages
https://en.wikipedia.org/wiki/List_of_educational_programming_languages
https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1145/2568225.2568299
https://www.fda.gov/ForPatients/Approvals/Drugs/ucm405622.htm
https://www.fda.gov/ForPatients/Approvals/Drugs/ucm405622.htm
https://doi.org/10.1145/2629609
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1007/978-3-642-03013-0
https://doi.org/10.1007/978-3-642-03013-0
https://doi.org/10.1145/1238844.1238846
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734

Onward! ’18, November 8, 2018, Boston, MA, USA M. Coblenz, J. Aldrich, B. A. Myers, J. Sunshine

https://doi.org/10.1145/2901739.2903497
[31] Mary Beth Kery and Brad A Myers. 2017. Exploring ex-

ploratory programming. In Visual Languages and Human-
Centric Computing (VL/HCC), 2017 IEEE Symposium on.
IEEE, 25–29. https://doi.org/10.1109/VLHCC.2017.8103446

[32] Gunter Kniesel and Dirk Theisen. 2001. JAC—Access right
based encapsulation for Java. Journal of Software Practice
& Experience - Special issue on aliasing in object-oriented
systems 31, 6 (2001), 555–576. http://dl.acm.org/citation.
cfm?id=377334

[33] Andrew J Ko, Brad A Myers, Michael J Coblenz, and
Htet Htet Aung. 2006. An exploratory study of how developers
seek, relate, and collect relevant information during software
maintenance tasks. IEEE Transactions on software engineer-
ing 32, 12 (2006). https://doi.org/10.1109/TSE.2006.116

[34] Thomas D LaToza and Brad A Myers. 2010. On the im-
portance of understanding the strategies that developers use.
In Proceedings of the 2010 ICSE Workshop on Cooperative
and Human Aspects of Software Engineering. ACM, 72–75.
https://doi.org/10.1145/1833310.1833322

[35] K. Rustan M. Leino. 2010. Dafny: An Automatic Program
Verifier for Functional Correctness. In Proceedings of the 16th
International Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning (LPAR’10). Springer-Verlag,
Berlin, Heidelberg, 348–370. http://dl.acm.org/citation.cfm?
id=1939141.1939161

[36] Bass Len, Clements Paul, and Kazman Rick. 2003. Software
architecture in practice. Boston, Massachusetts Addison
(2003).

[37] Donna Malayeri and Jonathan Aldrich. 2009. Is Structural
Subtyping Useful? An Empirical Study. In Proceedings of the
18th European Symposium on Programming Languages and
Systems: Held As Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009 (ESOP ’09).
Springer-Verlag, Berlin, Heidelberg, 95–111. https://doi.org/
10.1007/978-3-642-00590-9_8

[38] John McCarthy. 1981. History of Programming Languages
I. ACM, New York, NY, USA, Chapter History of LISP,
173–185. https://doi.org/10.1145/800025.1198360

[39] André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas
Zimmermann. 2014. Software Developers’ Perceptions of
Productivity. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software En-
gineering (FSE 2014). ACM, New York, NY, USA, 19–29.
https://doi.org/10.1145/2635868.2635892

[40] Leo A. Meyerovich and Ariel S. Rabkin. 2012. Socio-PLT:
Principles for Programming Language Adoption. In Proceed-
ings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Soft-
ware (Onward! 2012). ACM, New York, NY, USA, 39–54.
https://doi.org/10.1145/2384592.2384597

[41] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and
Martin C. Rinard. 2014. Chisel: Reliability- and Accuracy-
aware Optimization of Approximate Computational Kernels.
In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applica-
tions (OOPSLA ’14). ACM, New York, NY, USA, 309–328.
https://doi.org/10.1145/2660193.2660231

[42] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon. 2016.
Programmers Are Users Too: Human-Centered Methods for
Improving Programming Tools. Computer 49, 7 (July 2016),
44–52. https://doi.org/10.1109/MC.2016.200

[43] Brad A. Myers, John F. Pane, and Andy Ko. 2004. Natural
Programming Languages and Environments. Commun. ACM

47 (2004), 47–52. Issue 9. https://doi.org/10.1145/1015864.
1015888

[44] Brad A. Myers and Jeffrey Stylos. 2016. Improving API
Usability. Commun. ACM 59, 6 (May 2016), 62–69. https:
//doi.org/10.1145/2896587

[45] Jakob Nielsen and Rolf Molich. 1990. Heuristic evaluation
of user interfaces. In Proceedings of the SIGCHI conference
on Human factors in computing systems. ACM, 249–256.
https://doi.org/10.1145/97243.97281

[46] Fatih Kursat Ozenc, Miso Kim, John Zimmerman, Stephen
Oney, and Brad Myers. 2010. How to Support Designers
in Getting Hold of the Immaterial Material of Software. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY, USA,
2513–2522. https://doi.org/10.1145/1753326.1753707

[47] J. F. Pane, B. A. Myers, and L. B. Miller. 2002. Us-
ing HCI techniques to design a more usable programming
system. In Proceedings IEEE 2002 Symposia on Human
Centric Computing Languages and Environments. 198–206.
https://doi.org/10.1109/HCC.2002.1046372

[48] Victor Pankratius, Felix Schmidt, and Gilda Garretón. 2012.
Combining Functional and Imperative Programming for Mul-
ticore Software: An Empirical Study Evaluating Scala and
Java. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). IEEE Press, Piscat-
away, NJ, USA, 123–133. http://dl.acm.org/citation.cfm?id=
2337223.2337238

[49] Seymour Papert. 1980. Mindstorms: Children, Computers,
and Powerful Ideas. Basic Books, Inc., New York, NY, USA.

[50] D. L. Parnas. 1972. On the Criteria to Be Used in Decom-
posing Systems into Modules. Commun. ACM 15, 12 (Dec.
1972), 1053–1058. https://doi.org/10.1145/361598.361623

[51] Benjamin C. Pierce. 2002. Types and Programming Languages.
MIT Press.

[52] Terrence W. Pratt and Marvin V. Zelkowitz. 1996. Program-
ming Languages: Design and Implementation.

[53] L. Prechelt and W.F. Tichy. 1998. A controlled experiment
to assess the benefits of procedure argument type checking.
IEEE Transactions on Software Engineering 24, 4 (apr 1998),
302–312. https://doi.org/10.1109/32.677186

[54] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and
Vladimir Filkov. 2017. A Large-scale Study of Programming
Languages and Code Quality in GitHub. Commun. ACM 60,
10 (Sept. 2017), 91–100. https://doi.org/10.1145/3126905

[55] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández,
Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Mill-
ner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin
Kafai. 2009. Scratch: Programming for All. Commun. ACM
52, 11 (Nov. 2009), 60–67. https://doi.org/10.1145/1592761.
1592779

[56] Dennis M. Ritchie. 1993. The Development of the C Language.
In The Second ACM SIGPLAN Conference on History of
Programming Languages (HOPL-II). ACM, New York, NY,
USA, 201–208. https://doi.org/10.1145/154766.155580

[57] Dennis M. Ritchie. 1996. History of Programming languages—
II. ACM, New York, NY, USA, Chapter The Development of
the C Programming Language, 671–698. https://doi.org/10.
1145/234286.1057834

[58] David L Sackett, William MC Rosenberg, JA Muir Gray,
R Brian Haynes, and W Scott Richardson. 1996. Evidence
based medicine: what it is and what it isn’t.

[59] D. W. Sandberg. 1988. Smalltalk and Exploratory Program-
ming. SIGPLAN Not. 23, 10 (Oct. 1988), 85–92. https:
//doi.org/10.1145/51607.51614

https://doi.org/10.1145/2901739.2903497
https://doi.org/10.1109/VLHCC.2017.8103446
http://dl.acm.org/citation.cfm?id=377334
http://dl.acm.org/citation.cfm?id=377334
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/1833310.1833322
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=1939141.1939161
https://doi.org/10.1007/978-3-642-00590-9_8
https://doi.org/10.1007/978-3-642-00590-9_8
https://doi.org/10.1145/800025.1198360
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1145/2384592.2384597
https://doi.org/10.1145/2660193.2660231
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/2896587
https://doi.org/10.1145/2896587
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/1753326.1753707
https://doi.org/10.1109/HCC.2002.1046372
http://dl.acm.org/citation.cfm?id=2337223.2337238
http://dl.acm.org/citation.cfm?id=2337223.2337238
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/32.677186
https://doi.org/10.1145/3126905
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/154766.155580
https://doi.org/10.1145/234286.1057834
https://doi.org/10.1145/234286.1057834
https://doi.org/10.1145/51607.51614
https://doi.org/10.1145/51607.51614

Interdisciplinary PL Design Onward! ’18, November 8, 2018, Boston, MA, USA

[60] Robert C Seacord. 2013. Secure Coding in C and C++.
Addison-Wesley.

[61] Robert W. Sebesta. 2006. Concepts of Programming Lan-
guages, Seventh Edition.

[62] Mary Shaw and David Garlan. 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

[63] B. Spring. 2007. Evidence-based practice in clinical psy-
chology: what it is, why it matters; what you need to
know. Journal of Clinical Psychology 63 (2007). Issue 7.
https://doi.org/10.1002/jclp.20373

[64] Andreas Stefik and Stefan Hanenberg. 2014. The Pro-
gramming Language Wars: Questions and Responsibilities
for the Programming Language Community. In Proceedings
of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Soft-
ware (Onward! 2014). ACM, New York, NY, USA, 283–299.
https://doi.org/10.1145/2661136.2661156

[65] Andreas Stefik, Stefan Hanenberg, Mark McKenney, Anneliese
Andrews, Srinivas Kalyan Yellanki, and Susanna Siebert.
2014. What is the Foundation of Evidence of Human Fac-
tors Decisions in Language Design? An Empirical Study
on Programming Language Workshops. In Proceedings of
the 22Nd International Conference on Program Comprehen-
sion (ICPC 2014). ACM, New York, NY, USA, 223–231.
https://doi.org/10.1145/2597008.2597154

[66] Andreas Stefik, Melissa Stefik, and Evan Pierzina. 2018. The
Quorum Programming Language. https://quorumlanguage.
com

[67] Robert E Strom and Shaula Yemini. 1986. Typestate: A
Programming Language Concept for Enhancing Software Re-
liability. IEEE Transactions on Software Engineering 12, 1
(1986), 157–171. https://doi.org/10.1109/TSE.1986.6312929

[68] Bjarne Stroustrup. 2007. Evolving a Language in and for
the Real World: C++ 1991-2006. In Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Lan-
guages (HOPL III). ACM, New York, NY, USA, 4–1–4–59.
https://doi.org/10.1145/1238844.1238848

[69] Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich.
2014. Structuring Documentation to Support State Search:
A Laboratory Experiment about Protocol Programming.
In European Conference on Object-Oriented Programming
(ECOOP). https://doi.org/10.1007/978-3-662-44202-9_7

[70] Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich.
2015. Searching the State Space: A Qualitative Study of
API Protocol Usability. In Proceedings of the 2015 IEEE
23rd International Conference on Program Comprehension
(ICPC ’15). IEEE Press, Piscataway, NJ, USA, 82–93. http:
//dl.acm.org/citation.cfm?id=2820282.2820295

[71] Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich,
and Éric Tanter. 2011. First-class state change in Plaid. In
ACM SIGPLAN Notices, Vol. 46. ACM, 713–732.

[72] Matthew S. Tschantz and Michael D. Ernst. 2005. Javari:
Adding Reference Immutability to Java. In Object-oriented
programming, systems, languages, and applications. https:
//doi.org/10.1145/1094811.1094828

[73] Preston Tunnell Wilson, Justin Pombrio, and Shriram Krish-
namurthi. 2017. Can We Crowdsource Language Design?. In
Proceedings of the 2017 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward! 2017). ACM, New York,
NY, USA, 1–17. https://doi.org/10.1145/3133850.3133863

[74] Phillip Merlin Uesbeck, Andreas Stefik, Stefan Hanenberg, Jan
Pedersen, and Patrick Daleiden. 2016. An Empirical Study on

the Impact of C++ Lambdas and Programmer Experience. In
Proceedings of the 38th International Conference on Software
Engineering (ICSE ’16). ACM, New York, NY, USA, 760–771.
https://doi.org/10.1145/2884781.2884849

[75] Christopher Unkel and Monica S. Lam. 2008. Automatic
inference of stationary fields. ACM SIGPLAN Notices 43, 1
(jan 2008), 183. https://doi.org/10.1145/1328897.1328463

[76] Philip Wadler. 2015. Propositions As Types. Commun. ACM
58, 12 (Nov. 2015), 75–84. https://doi.org/10.1145/2699407

[77] Michelle Yeh, Young Jin Jo, Colleen Donovan, and Scott
Gabree. 2013. Human Factors Considerations in the De-
sign and Evaluation of Flight Deck Displays and Controls.
Technical Report. Federal Aviation Administration.

[78] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam
Kielun, and Michael D. Ernst. 2007. Object and reference
immutability using Java generics. In Foundations of Software
Engineering. ACM, 75–84. https://doi.org/10.1145/1287624.
1287637

https://doi.org/10.1002/jclp.20373
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1145/2597008.2597154
https://quorumlanguage.com
https://quorumlanguage.com
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/1238844.1238848
https://doi.org/10.1007/978-3-662-44202-9_7
http://dl.acm.org/citation.cfm?id=2820282.2820295
http://dl.acm.org/citation.cfm?id=2820282.2820295
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/3133850.3133863
https://doi.org/10.1145/2884781.2884849
https://doi.org/10.1145/1328897.1328463
https://doi.org/10.1145/2699407
https://doi.org/10.1145/1287624.1287637
https://doi.org/10.1145/1287624.1287637

	Abstract
	1 Introduction
	2 Context of Language Design
	3 Integrating design perspectives
	3.1 Stereotypes
	3.2 Interdisciplinary design: calls to action
	3.3 Use of multiple methods

	4 Methods
	4.1 Methods for requirements and creation
	4.2 Methods for evaluation

	5 Examples
	5.1 Exemplars
	5.2 Cautionary Tales and Missed Opportunities

	6 Conclusions
	Acknowledgments
	References

