
Typestate-Oriented Programming

Jonathan Aldrich

Joshua SunshineJoshua Sunshine

Darpan Saini

Zachary Sparks

Object-Oriented Modeling

• History: Simula 67 was created to facilitate modeling

• Object-orientation still works today because of its modeling power
• Objects - model real-world or conceptual entities

• Fields - model object properties and changes to those properties over time

• Methods - model actions that can be performed on objects

• Subtyping - models commonality and variation between objects

• Models of state change are very limited. What about:
• New properties that did not exist before?

• New actions that can be performed?

• Conceptual variations in an object’s interface over time?

Onward! '09 - October 29, 2009 2Typestate-Oriented Programming

State Change Is Ubiquitous

In the world

• Egg, caterpillar or butterfly?

• Working, sleeping, eating, or

playing?

• Hungry or full?
• The OOPSLA Ice Cream Social is

In software systems

• Streams: open, EOF, or closed?

• Iterators: has next or not?

• Collections: empty or not?

• Exceptions: cause set or not?
• The OOPSLA Ice Cream Social is

not far off!

Design: UML Statecharts

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 3

If state is ubiquitous,

perhaps languages should support it!

We build on Typestate, a type-based approach for tracking states

Typestate-Oriented Programming

state File {

String filename;

}

state ClosedFile extends File {

void open() [ClosedFile>>OpenFile];

}

open closed

close()

read()

open()

State transition

}

state OpenFile extends File {

private CFile fileResource;

int read();

void close() [OpenFile>>ClosedFile];

}

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 4

open()

Different

representation

New methods

Typestate-Oriented Programming

• Definition: A programming paradigm in which:

programs are made up of dynamically created objects,
• Compare: embedded system CASE tools

each object has a typestate that is changeable
• Compare: plain OO classes

• Compare: dynamically typed state proposals (actors, roles, modes, …) or the

State design pattern

and statically trackable,

and each typestate has an interface, representation, and behavior.
• Compare: typestate analysis on top of OO

• In our model interface, representation, and behavior change

with an object’s typestate, but object identity does not
• Related: class change proposals (e.g. Fickle)

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 5

Why Put Typestate in the Language?

• Language influences thought [Boroditsky ’09]

• Language support encourages engineers to think about states
• Better designs, better documentation, more effective reuse

• Improved library specification and verification
• Typestates define when you can call read()

• Make constraints that are only implicit today, explicit

• Expressive modeling
• If a field is not needed, it does not exist

• Methods can be overridden for each state

• Simpler reasoning
• Without state: fileResource non-null if File is open, null if closed

• With state: fileResource always non-null
• But only exists in the FileOpen state

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 6

Checking Typestate

void openHelper(ClosedFile>>OpenFile aFile) {

aFile.open();

}

int readFromFile(ClosedFile f) {

openHelper(f);

This method

transitions the

argument from

ClosedFile to

OpenFile

Must leave in

the ClosedFile

state

Use the type
openHelper(f);

int x = computeBase() + f.read();

f.close();

return x;

}

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 7

Use the type

of openHelper

f is open so

read is OK

Correct

postcondition;

f is in

ClosedFile

Question: How do we

know computeBase

doesn’t affect the file

(thorugh an alias)?

Typestate Permissions

• unique OpenFile
• File is open; no aliases exist

• immutable OpenFile
• Cannot change the File
• Cannot close it

• Cannot write to it, or change the position

• Aliases may exist but do not matter

File

ClosedFile OpenFile

NotEOF EOF
• Aliases may exist but do not matter

• shared OpenFile@NotEOF
• File is aliased

• File is currently not at EOF
• Any function call could change that, due to aliasing

• It is forbidden to close the File
• OpenFile is a guaranteed state that must be respected by all operations through all aliases

• none – no permission

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 8

Implementing Typestate Changes

void open() [ClosedFile>>OpenFile] {

this <- OpenFile {

filePtr = fopen(filename);

}

}

Typestate

change

primitive

Values must be

specified for

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 9

:

specified for

each new field

Parametric Polymorphism

state Collection {

type TElem;

void add(TElem>>none e);

Type parameter must now

include state and permission

Adding an element to the collection

removes the client’s permission to it

(e.g. to ensure unique objects

TElem removeAny();

}

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 10

(e.g. to ensure unique objects

are unaliased)

If we want to get an element, we

must remove it from the

collection (to avoid aliasing).

Example: Interactors

state Idle {

void start() [Idle >> Running];

}

state MoveIdle extends Idle {

GraphicalObject go;

void start() [Idle >> Running] {

this <- Running {

void run(InputEvent e) {

go.move(e.x,e.y);

}

RunningIdle

start()

stop()

run()

}

state Running {

void stop() [Running >> Idle];

void run(InputEvent e);

}

}

void stop() [Running >> Idle] {

this <- MoveIdle{}

}

}

}

}

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 11

Current Work: Typestate-Oriented Programming

PLAID is a new typestate-oriented programming language

Features:

• Java-like syntax, as presented in this talk

• Permissions describe aliasing on all objects• Permissions describe aliasing on all objects

• Concurrency-by-default execution model
• See “Concurrency By Default” Onward! ’09 companion paper

• Gradual types

• Advanced modularity constructs (e.g. abstract types)

• Composition mechanism similar to traits (replaces inheritance)

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 12

Typestate-Oriented Programming

• Objects change their state
• But until now, there’s been no language support for state change

• Typestate-oriented programming makes states explicit
• helps document, check and implement state changes

• Potential benefits
• Communication, clarity, correctness, reuse• Communication, clarity, correctness, reuse

• PLAID

• New typestate-oriented programming language

http://www.plaid-lang.org/

Onward! '09 - October 29, 2009 Typestate-Oriented Programming 13

