
Concurrency by Default
Using Permissions to Express Dataflow in Stateful Programs

Sven Stork†∗ Paulo Marques∗ Jonathan Aldrich†

†Institute for Software Research
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

{svens, jonathan.aldrich}@cs.cmu.edu

∗CISUC, Dep. Eng. Informática, Polo II
University of Coimbra

3030-290 Coimbra, Portugal
{stork, pmarques}@dei.uc.pt

Abstract
The rise of the multicore era is catapulting concurrency into
mainstream programming. Current programming paradigms
build in sequentiality, and as a result, concurrency support in
those languages forces programmers into low-level reason-
ing about execution order.

In this paper, we introduce a new programming paradigm
in which concurrency is the default. Our ÆMINIUM lan-
guage uses access permissions to express logical dependen-
cies in the code at a higher level of abstraction than sequen-
tial order. Therefore compiler/runtime-system can leverage
that dependency information to allow concurrent execution.

Because in ÆMINIUM programmers specify dependen-
cies rather than control flow, there is no need to engage in
difficult, error-prone, and low-level reasoning about execu-
tion order or thread interleavings. Developers can instead fo-
cus on the design of the program, and benefit as the runtime
automatically extracts the concurrency inherent in their de-
sign.

Categories and Subject Descriptors D.3.3 [Programming
Languages]; D.1.3 [Concurrent Programming]

General Terms Design, Languages

Keywords concurrency, programming language, access
permissions, dataflow

1. Introduction
“The free lunch is over” [Sutter 2005] characterizes like
no other statement one of the most fundamental technol-
ogy shifts in the last few decades. Because it is no longer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-768-4/09/10. . . $10.00

feasible to improve single CPU performance, hardware ven-
dors started to integrate multiple cores into single chip. This
means that programmers need to develop concurrent appli-
cations if they want to achieve performance improvements
on new hardware. Writing concurrent applications is notori-
ously complicated and error prone, because concurrent tasks
must be coordinated to avoid problems like race conditions
or deadlocks.

Pure functional programming is by nature an excellent
fit for concurrent programming. In functional programming
there are no side-effects, so programs can execute concur-
rently to the extent permitted by data dependencies. Al-
though functional programming can solve most problems,
having explicit state, as provided by imperative languages,
allows the developer to express certain problems in a more
intuitive and efficient way. In an ideal world we would like
to have the benefits of functional programming with regard
to concurrent execution with the expressiveness of an imper-
ative object-oriented language.

Sharing state between concurrent tasks immediately raises
questions like: ‘In which order should those accesses oc-
cur?’ and ‘How to coordinate those accesses to maintain a
program invariants?’ The reason why those questions are
hard to answer is because there are implicit dependencies
between code and state. Methods can arbitrarily change any
accessible state without revealing this information to the
caller. This means that two methods could be dependent on
the same state, without the caller knowing about it. Because
of this lack of information, current programming languages
use the order in which code is written as proxy to express
those implicit dependencies. Therefore the compiler has to
follow the given order and cannot exploit potential concur-
rency automatically. When the developer adds concurrency
manually, it is easy for her to miss important dependencies,
introducing race conditions and other defects.

To overcome this situation, we propose to transform im-
plicit dependencies into explicit dependencies and then in-

fer the ordering constraints automatically. In our proposed
system, by default, everything is concurrent, unless explicit
dependencies imply a specific ordering.

We propose to use access permissions [Bierhoff and
Aldrich 2007] to specify explicit dependencies between
stateful operations. Access permissions are abstract capa-
bilities that grant or prohibit certain kinds of accesses to
specific state. In our approach each method need to specify
permissions to all of the state it potentially accesses. Looked
at from a slightly different perspective, our system ensures
that every method only accesses state for which it has ex-
plicit permissions. The way we use access permissions to
specify state dependencies resembles the way Haskell [Jones
2003] uses its I/O monad1 to specify access to global state.
But unlike the I/O monad, which provides just one permis-
sion to all the state in the system, access permissions allow
greater flexibility by supporting fine-grained specifications,
describing the exact state and permitted operations on it.

Following our new programming paradigm, concurrency-
by-default, we are currently working on the semantics and
implementation of ÆMINIUM. In this paper we use a Java-
like syntax2 to explain the concepts behind ÆMINIUM and
its features.

The rest of this paper is organized as follows. Section 2
discusses the core language features of ÆMINIUM. Section
3 presents some currently open challenges. In section 4 we
discuss related work. Section 5 concludes the paper.

2. Concurrency by Default
In ÆMINIUM every method must explicitly mention all of
its possible side effects. This allows the system to com-
pute the data dependencies within the code, and within those
constraints, execute the program with the maximum possi-
ble concurrency. By following this approach our system re-
sembles a dataflow architecture [Rumbaugh 1975]. But in-
stead of producing and consuming data, our system supports
shared objects and in-place updates.

To achieve scalability for upcoming massive concurrent
systems, we need to use a fine-grained approach for specify-
ing side effects. To avoid overly conservative dependencies,
which would limit concurrency, we need a way to deal with
object aliasing. In access permissions [Bierhoff and Aldrich
2007] we found a uniform solution for both problems, the
specification of data accesses and the specification of alias-
ing. The next sections describe the approach in more detail.

2.1 Access Permissions for Concurrency
2.1.1 Unique and Immutable Permissions
Consider the application in Figure 1 which computes over
a collection of data. Starting with line 20 the main func-

1 Think of it as one global permission, which grants the right to access or
change all state in the system.
2 As everything is concurrent by default, we omit the sequentializing semi-
colon to emphasize this fact.

1 class Collection { ... }
2 class Dependencies { ... }
3 class Statistics { ... }
4

5 Collection createRandomData()
6 : unit Z⇒ unique(result)
7

8 void removeDuplicates(Collection c)
9 : unique(c) Z⇒ unique(c)

10

11 void printCollection(Collection c)
12 : immutable(c) Z⇒ immutable(c)
13

14 Dependencies compDeps(Connection c)
15 : immutable(c) Z⇒ immutable(c),unique(result)
16

17 Statistics compStats(Connection c)
18 : immutable(c) Z⇒ immutable(c),unique(result)
19

20 void main() {
21 Collection c = createRandomData()
22 printCollection(c)
23 Statistics s = compStats(c)
24 Dependencies d = compDeps(c)
25 removeDuplicates(c)
26 printCollection(c)
27 ...
28 }

Figure 1. Example: Unique and Immutable Permissions

tion creates a collection containing some randomly gener-
ated data. At line 22 we print the collection on the screen,
then pass the collection into method calls to compute statis-
tics and dependencies over the passed collection, and return
corresponding objects describing the statistics and depen-
dencies. We will assume these objects are used later on in
the method body, in line 27 and beyond. After that, we re-
move existing duplicates from the collection and then print
the updated collection to the screen (line 26).

Obviously, for concurrency purposes functions like re-
moveDuplicates require a permission to modify the collec-
tion. On the other hand, functions like printCollection,
which only examines the collection, only require a read-only
permission. Access permissions allow us to specify exactly
these requirements.

Access permissions are abstract capabilities that grant or
prohibit certain kinds of accesses to specific state. Access
permissions are associated with object references and spec-
ify in which way the owner of the permission is allowed to
access/modify the referenced object. In our system we use
the following kinds of access permissions:
Unique A unique permission to a reference guarantees that

this reference is the only reference to the object at this
moment in time. Therefore the owner has exclusive ac-
cess to the object.

Immutable An immutable permission to a reference pro-
vides non-modifying access to the referenced object. Ad-
ditionally a immutable permission guarantees that all
other existing references to the referenced object are also
immutable permissions.

Shared A shared permission to a reference provides mod-
ifying access to the corresponding object. Additionally
a shared permission indicates that there are potentially
other shared permissions (aliases) to the referenced ob-
ject through which the referenced object can be modified.

For brevity we write ‘unique reference‘ when we mean ‘a
unique permission to a reference‘, as well as for immutable
and shared permissions. When specifying permissions in
code we write ‘unique(X)’ when we mean that we have
a unique permission to reference X. We use the pseudo-
reference ‘result’ to specify a permission to the return
value.

We use linear logic [Girard 1987] to manage the access
permissions in our system. Linear logic is a sub-structural
logic for reasoning about resources. Once resources have
been consumed they are no longer available. We use the
symbol Z⇒ to separate the pre-conditions (the permissions
a method requires and consumes) from the post conditions
(the permissions a method returns). Consider the follow-
ing method signature : ‘unique(this) Z⇒ unique(this)’.
In this case the method requires that the caller must have a
unique permission to the receiver object to call this method.
Because we use linear logic, the input permission is con-
sumed, and therefore the method has to produce a new
unique permission to the receiver object upon its return. If
the method did not return a permission to the receiver object,
the caller would not be able to access the object any more.

Because access permissions play such an important role
in our system, we promote them to first-class citizens and
integrate them into our type system. Consider the following
function that converts an Integer into its String representa-
tion, indicating the type (in this case I for Integer) and the
value:

String repr(Integer a){ return "I"+a; }
In a standard ML-style type signature, this function would
have the type ‘Integer → String’, stating that the method
takes an Integer as input and returns an String. In our system,
the same function would have the following access permis-
sion signature:

immutable(a) Z⇒ immutable(a), unique(result)
The access permission signature provides much more infor-
mation regarding the behavior of the function. First, the im-
mutable permission indicates that the function is not going
to change the object we passed in. Secondly, indicated by
the unique permission, we know that the reference to the re-
turned String object is not aliased, because it is the only one
in the whole system.

With this information we are now able to specify the
exact permissions of each presented method. As shown in
line 5, the createRandomData method requires no permis-
sions (we indicated the empty set of permissions with unit)
and produces a unique permission to the returned collection.
Because printCollection3 (line 11), compDeps (line 14)

3 For accessing the output device our system also requires a permission. To

split1

computeStats

 immutable(c)

printCollection

 immutable(c)

computeDeps

 immutable(c)

split2

join2

 immutable(c) printCollection

 immutable(c)

join1

removeDuplicates

 unique(c)

...

 unique(c)

......

 immutable(c)

createRandomData

 unique(c)

 immutable(c)

 unique(s)

 immutable(c) immutable(c)

 unique(d)

 unique(c)

Figure 2. Example: Unique and Immutable Permissions
Flow

and compStats (line 14) do not modify the collection, they
all just require an immutable permission to the collection,
which is returned again after their completion. Additionally,
compStats and compDeps return a unique permission to
their returned objects, which are later needed, but are not im-
portant in the code shown. The removeDuplicates method
requires, and returns after completion, a unique permission
to the collection, as it is going to modify the collection.

Given the permission signatures and using textual order,
our system is able to compute the permission flow through
the program. Figure 2 shows the permission flow graph for
the program which captures the existing data dependencies.

As specified in Figure 1, the createRandomData method
generates a unique permission to the returned collection.
The printCollection, compStats and compDeps func-
tions require only an immutable permission to the collection.
Therefore our system has to ‘convert’ the unique permis-
sion into three immutable permissions, one for each func-
tion. Like in Bierhoff’s system, our system performs those
‘conversions’ by automatically splitting and joining permis-
sions utilizing fractions [Boyland 2003]. This means after
starting out with a unique permission, the system is able
to split the unique permission into either multiple shared
permissions or multiple immutable permissions. Remember
that because of linearity, the unique permission is consumed
and no longer available. The reverse works in a similar way.
Once all shared or immutable fractional permissions have
been collected, the systems is able to form a unique permis-
sion again.

keep the example simple and because data groups (explained in section 2.2)
offer a better abstraction for dealing with this kind of problems, we omit the
I/O-related permissions in this example.

The splitting of the unique permission into three im-
mutable permissions is shown in Figure 2 as ‘split1’. Once
their input requirements are fulfilled via an immutable per-
mission to the collection, those three methods are eligible
for execution. The system can decide to execute them con-
currently or sequentially, depending on available resources
and relative execution costs.

The removeDuplicates method requires a unique per-
mission to the collection, and therefore it depends on the
completion of the printCollection, compDeps and comp-
Stats methods. Only when those methods complete will
they return the immutable permissions to the collection,
which they consumed when starting their execution. The
system needs to collect all immutable permissions to the
collection before it can join them back to a unique per-
mission to the collection (see Figure 2, ‘join1’). Remem-
ber that immutable guarantees that, at this point in time,
there are only immutable permissions referencing the ob-
ject. After the unique permission has been recovered, the
input requirements for the removeDuplicates method is
fulfilled and it can be executed. The second printCollec-
tion method (line 26) requires an immutable permission.
Therefore, this method depends on the completion of the
removeDuplicates method, before the system can split the
returned unique permission to the collection into immutable
permissions to the collection (see Figure 2, ‘split2’). After
the completion of the second printCollection method
the system will automatically recover the unique permission
to the collection4 (see Figure 2, ‘join2’).

The advantage of this approach over explicit concurrency
management is founded in the automation of dependency in-
ference and the guarantee that those dependencies are met.
If the programmer manages concurrency manually he might
overlook dependencies and create race conditions or might
overlook the absence of dependencies and miss available
concurrency. In particular when it comes to the concurrent
sharing of data, reasoning about dependencies becomes sig-
nificantly more complicated.

2.1.2 Shared Permissions
In the previous section we saw how we can use unique
and immutable permissions to extract concurrency. However
having only unique and immutable is of limited use. Be-
cause there exists only one unique permission to an object
at a time, there can be only one entity modifying the object
at a time. Shared memory and objects are in general used
as communication channels between several concurrent enti-
ties, which may modify the shared state. Therefore, we need
a mechanism to allow concurrent execution and modifying
access to a shared resource. A shared permission provides
exactly these semantics.

4 Assuming that the statement that depends next on the collection requires
unique permission.

1 class Queue {
2 void enqueue (Object o)
3 : unique(this), shared(o) Z⇒ unique(this)
4

5 Object dequeue()
6 : unique(this) Z⇒ unique(this), shared(result)
7 }
8

9 Queue createQueue() : unit Z⇒ unique(result)
10

11 void disposeQueue(Queue q) : unique(q) Z⇒ unit
12

13 void producer(Queue q) : shared(q) Z⇒ shared(q)
14 { atomic { q.enqueue(...) ... } }
15

16 void consumer(Queue q) : shared(q) Z⇒ shared(q)
17 { atomic { Object o = q.deqeueu() ... } }
18

19 void main() {
20 Queue q = createQueue()
21 producer(q)
22 consumer(q)
23 disposeQueue(q)
24 }

Figure 3. Example: Producer/Consumer with Shared Per-
missions

As explained before, a shared permission allows mod-
ifying access to the referenced object and indicates that
the there are potentially other shared references out there,
through which the referenced object could be changed. In
our system, similar to immutable permissions, statements
that depend on the same shared object can be executed con-
currently. Obviously, allowing concurrent access to the same
object opens the window for race conditions. Therefore we
require that every access through a shared reference must
occur inside an atomic context. We introduce the atomic-
block statement into our language, atomic { ... }, with
the common transactional memory [Larus and Rajwar 2007]
semantics. In particular this means that a block of statements
is completely executed, and all modifications become visible
to the rest of the system atomically. It is important to note
that all code inside an atomic context is sequentially exe-
cuted in the given lexical order. If several different atomic
blocks cause conflicting accesses, the runtime system will
detect those and resolve them (in general by aborting, rolling
back and retrying some of the atomic blocks). Therefore, an
atomic block provides the illusion of having exclusive ac-
cess to the all accessed resources. Although the placement
of atomic blocks could be inferred automatically, for granu-
larity reasons, we require the user to explicit specify atomic
regions. This approach allows the user to have fine-grain
control over the size of critical sections, while our system
can adapt the approach described in [Beckman et al. 2008]
to verify and enforce the correct usage of atomic blocks.

Figure 3 shows a simplified producer/consumer example,
where the producer and consumer communicate via a queue.
Beginning in line 19 main calls createQueue to obtain a
new queue object. This queue is then passed to the pro-

producer consumer

split

atomic

 shared(q)

atomic

 shared(q)

join

disposeQueue

 unique(q)

createQueue

 unique(q)

 shared(q) shared(q)

Figure 4. Example: Producer/Consumer with Shared Per-
mission Flow

ducer and consumer methods (lines 21 + 22). Finally the
program calls the disposeQueue method to free the queue.

This program’s permission flow is shown in Figure 4.
Both the consumer and producer methods require a shared
permission to the queue. Therefore, the unique permission
returned by createQueue (line 9) is automatically split
by the system into shared permissions (Figure 4, ‘split’).
This means that both the producer and consumer methods
have their required input permissions and can be executed
in parallel. Because the queue is shared, both methods need
to be in an atomic context when accessing the queue (lines
14 + 17). As shown in line 2 and 5, both the enqueue and
dequeue methods require a unique permission to the queue.
Because the atomic block provides an illusion of exclusive
access, we can treat the shared permission to the queue as
a unique permission, and permit the access to the queue.
Because disposeQueue requires a unique permission to the
queue, it depends on the eventual completion of producer
and consumer to return the shared permissions to the queue
and join them back to form a unique permission (Figure 4,
‘join’).

2.2 Data Groups for Higher-Level Dependencies
In some situations, application level dependencies exist that
cannot directly inferred via data dependencies. As an Ex-
ample of high-level dependencies, consider the common ob-
server pattern. It is unclear whether the observers of a sub-
ject need to be attached to the subject before the subject can
be updated. In some situations it is important for observers
not miss the first update (e.g., to initialize the observer cor-
rectly), while in other situations it does not matter if the first
update is missed (e.g., a news feed). We propose to use data
groups [Leino 1998] to allow the specification of such high-
level dependencies.

Consider the simple observer example shown in Figure
5. The program creates a new subject which is then passed
to newly created observers and to several update method

1 class Subject {
2 void add(Observer o)
3 : shared(this), shared(o) Z⇒ shared(this)
4

5 void update() : shared(this) Z⇒ shared(this)
6 }
7

8 class Observer {
9 Observer(Subject s)

10 : shared(s) Z⇒ shared(s), shared(result)
11 { s.add(this) }
12

13 void notify(Subject s)
14 : shared(this), shared(s) Z⇒ shared(this), shared(s)
15 }
16

17 void update(Subject s) : shared(s) Z⇒ shared(s)
18 { s.update() }
19

20 void main() {
21 Subject s = new Subject()
22 Observer obs1 = new Observer(s)
23 Observer obs2 = new Observer(s)
24 update(s)
25 update(s)
26 ...
27 }

Figure 5. Example: Concurrent Observer

calls. The observer constructor simply adds the current ob-
ject as subscriber to the provided subject (line 11). The up-
date call triggers the notification of the subject (line 18).
Furthermore assume we want to extract the maximum paral-
lelism possible by allowing the concurrent creating/addition
of observers and concurrent updates. A first attempt would
be to use shared permissions to the subject in the Observer
constructor call (line 9) and the update call (line 18). Us-
ing this approach leads to the dependencies shown in Fig-
ure 6. The problem is that, as shown, the construction of the
Observer objects and the update function only have de-
pendencies with the Subject but not amongst each other.
Therefore they can be executed concurrently in any order.
This could lead to the update method being called before
any Observer is attached to the subject. While this behavior
might, in some scenarios, be acceptable (e.g., a small gadget
that display the latest news), it can also be completely unac-
ceptable in other situations (e.g., when the observer depends
on the initial values of the subject). One way to ensure that
the observers have been attached before the update calls get
executed is to change the Observer constructor to require a
unique permission to the subject. But this also creates a prob-
lem since it would limit parallelism, as all Observer object
constructions would be serialized.

To allow the user to specify such additional dependencies
without sacrificing concurrency, we add data groups to our
system. Data groups are abstract collections of objects. In
particular an object can be associated with exactly one data
group at a time. Data groups provide a higher-level abstrac-
tion and provide information hiding with respect to what
state is touched by a method.

new Subject()

split

 unique(s)

new Observer(s)

 shared(s)

new Observer(s)

 shared(s)

update(s)

 shared(s)

update(s)

 shared(s)

join

 shared(s) shared(s) shared(s) shared(s)

...

 unique(s)

Figure 6. Example: Concurrent Observer Flow

In our system a data group can be seen as a container
which contains all shared permissions to an object. Since
unique permissions already provide exclusive access to the
referenced object and immutable permissions can safely be
shared, we do not associate unique and immutable permis-
sion with data groups. Therefore unique can be used to trans-
fer an object between data groups. We extend the definition
of access permissions to optionally refer to the associated
data group. We write ‘shared(REF|DG)’, where REF is the
object reference and DG specifies the data group. Similar to
access permissions for objects, we introduce access permis-
sions to data groups:
atomic An atomic permission provides exclusive access to

a data group. Working on an atomic data group automati-
cally leads to the sequentializing the corresponding code.
This is similar to a unique permission for objects. Requir-
ing an atomic permission must be explicitly specified.

concurrent A concurrent permission to a data group means
that multiple other concurrent permissions to the data
group exist. Code working on a concurrent data groups is
executed with concurrency by default. This is similar to a
shared permission for objects. Concurrent permission is
the default, so using the concurrent keyword is optional.

Unlike with access permissions to objects, the user must
manually split and join permissions to data groups. To avoid
tedious and error prone management of permissions for data
groups, we propose a split block construct. A split block
converts a unique permission to its data group into an ar-
bitrarily number of concurrent permissions that may be used
in its body block. Having concurrent permissions inside the
body block of the data group allows the body to be executed
concurrently. After the execution of its body block, the split
block will join all concurrent permissions back to a unique
permission :

split (DataGroup grp) { ... }
Additional we propose the enhancement of the atomic

block construct to refer to the data group of the objects that
are going to be modified :

atomic (DataGroup grp) { ... }
The explicit specification of data groups is optional as it

can be automatically inferred from the code in the atomic

1 class Subject<SG> {
2 void add(Observer<SG> o)
3 : shared(this|SG), shared(o|SG) Z⇒ shared(this|SG)
4

5 void update()
6 : shared(this|SG) Z⇒ shared(this|SG)
7 }
8

9 class Observer<SG> {
10 Observer(Subject<SG> s)
11 : shared(s|SG) Z⇒ shared(s|SG), shared(result|SG)
12 { s.add(this) }
13

14 void notify(Subject<SG> s)
15 : shared(this|SG), shared(s|SG)
16 Z⇒ shared(this|SG), shared(s|SG)
17 }
18

19 void update(Subject<SG> s)
20 : shared(s|SG) Z⇒ shared(s|SG)
21 { s.update() }
22

23 void main() {
24 group <SubG>
25

26 split (SubG) {
27 Subject<SubG> s = new Subject<SubG>()
28 Observer<SubG> obs1 = new Observer<SubG>(s)
29 Observer<SubG> obs2 = new Observer<SubG>(s)
30 }
31 split (SubG) {
32 update<SubG>(s)
33 update<SubG>(s)
34 }
35 ...
36 }

Figure 7. Example: Concurrent Observer with Data Groups

block’s body. Nevertheless, when present, it can be used
to verify the body against the explicit specification. Having
the explicit knowledge of which data groups are accessed
inside and atomic block could allow optimizations of the
transactional memory system or its complete replacement
via a more lightweight approach [Boehm 2009].

Figure 7 shows the observers example using the data
group approach. We use a syntax similar to type parameters
to specify and pass data groups around. A group parameter
can be used at the class level (line 1) or the function level
(line 19). The ‘group<Z>’ command creates a new group
with the name Z. The group command always returns an
atomic permission to the new group.

In the enhanced example, in line 24, a new data group
with the name ‘SubG’ is created. In line 26 the ‘split’ block
is used to split the atomic permission of the ‘SubG’ data
group into an arbitrary number of concurrent permissions.
Having a concurrent permission reestablishes a concurrent-
by-default environment. Thus, the statements in the body
block may be executed concurrently up to explicit data de-
pendencies. This is shown in Figure 8. The second ‘split’
block (line 31) requires an atomic permission to the ‘SubG’
data group and therefore depends on the completion of the

concurrent<SubG>

concurrent<SubG>

group<SubG>

new Subject<SubG>()

 atomic<SubG>

split

 unique(s|_)

new Observer<SubG>(s)

 shared(s|SubG)

new Observer<SubG>(s)

 shared(s|SubG)

split

update<SubG>(s)

 shared(s|SubG)

update<SubG>(s)

 shared(s|SubG)

join

 shared(s|SubG) shared(s|SubG)

join

 shared(s|SubG) shared(s|SubG)

 unique(s|_)

...

 unique(s|_)

 atomic<SubG>

Figure 8. Example: Concurrent Observer with Data groups
Flow

first split block. After completion of the first split block’s
body, all the concurrent permissions to the ‘SubG’ group can
be gathered and joined back into an atomic permission.

The dependencies between data groups and data depen-
dencies are visualized in Figure 8. The atomic group per-
mission, generated by the group command, will be split by
the first split block (first rectangle) into concurrent group
permissions. The statements inside the corresponding block
follow the normal data dependency mechanism. The system
will automatically split the unique permission of the sub-
ject into shared permissions, to allow the concurrent exe-
cution of the Observer creation. After the completion of
the block, the system will join the shared permissions back
into a unique permission and the split block will join the
concurrent group permissions back into an atomic permis-
sion. The second split block (second rectangle) will take the
atomic group permission generated by the first split block
and split it again into concurrent permissions for its body.
Inside the body, the normal approach of automatically split-
ting and joining object permissions is then performed.

The advantage of using data groups over explicit concur-
rency management is again based on automatic dependency
inference and the guarantee that those dependencies are met.
Data groups allow the programmer to explicitly model her
design intent in the source code. Not only does this allow
the ÆMINIUM system to infer the dependencies and correct
execution, it also improves the quality of the code itself by
explicit documenting those dependencies.

3. Challenges
So far we have only presented a high-level overview of
ÆMINIUM. Since it is at an early stage of development
there are still several open issues to solve. In particular, the
following questions deserve closer attention:
Overhead An open question is how much specification

overhead does our approach cause for the developer. Per-
missions are modular and should be automatically infer-
able most of the time. But data groups model an effect
system, and it may be a challenge to declare function
effects without creating a blowup in specification size.

Granularity Since we target commodity hardware, we have
to find a good trade-off between the very fine granularity
of parallelism our system is able to extract and the ex-
ecution/synchronization overhead. One possible way to
tackle this problem could be by adapting a cost semantic
model as developed by [Spoonhower 2009].

Runtime-System We need to find an efficient way to rep-
resent code along with its data dependencies in an inter-
mediate format that allows efficient execution. Also, tak-
ing the granularity argument into account, we most likely
need to develop a dynamic runtime system that automat-
ically adapts the program to the hardware platform.

Legacy Code When designing a new language, one cannot
ignore the vast amount of legacy code that exists. We pro-
pose to integrate legacy code, which has no permissions,
by assuming the most restrictive permission type. This ef-
fectively sequentialises the execution of those code frag-
ments but allows a semantically correct usage of legacy
code in our system.

Deadlock Our system avoids race conditions, but does not
protect against deadlocks. For instance, it is known that
using an atomic block at the wrong granularity can lead
to deadlock [Martin et al. 2006].

4. Related Work
As discussed in Section 1, ÆMINIUM was inspired by want-
ing to realize the concurrency benefits of functional pro-
gramming in an imperative setting. Therefore, all functional
programming languages can be seen as related work. In par-
ticular Haskell [Jones 2003], with is monad system, relates
closely to our system.

Greenhouse [Greenhouse and Scherlis 2002] describes an
annotation and policy system for specifying relationships be-
tween locks and state in systems with explicit concurrency.
In Greenhouse’s system state can be grouped into regions
and locks can be associated with state or regions of state.
While Greenhouse uses data groups to show the absence of
race conditions, our approach uses data groups to infer pos-
sible correct orders of execution. Our use of data groups is
also similar to ownership systems [Clarke et al. 1998].

Boyland [Boyland 2003] presented a system that uses
‘read’ and ‘write’ permissions to automatically infer depen-
dencies between operations. Its goal was to verify the cor-

rectness of already explicitly parallelized programs. Our ap-
proach reverses this scenario: we use permissions for ex-
tracting concurrency based on the inferred dependencies.
Additionally, our system supports shared permissions.

Among recently developed programming languages, Fortress
[Allen et al. 2008] is the most comparable to our concurrency-
by-default paradigm. Fortress changes the semantics of cer-
tain programming constructs, like tuple constructors or for-
loops, to be concurrent by default. Like our system, Fortress
takes advantage of the high-level atomic block primitive to
synchronize. Unlike our system, Fortress does not infer data
dependencies or enforce the correct usage of atomic blocks,
and therefore it has no built-in protection against data races.

Another related concurrent programming language is
Cilk [Blumofe et al. 1995]. Cilk extends C with three addi-
tional keywords: cilk, spawn and sync. Every method an-
notated with cilk can be asynchronously spawned-off with
the spawn keyword. The sync keyword is used to wait for a
previously started asynchronous task to complete. The Cilk
runtime implements a highly effective work stealing mecha-
nism to achieve high performance. Like Fortress, Cilk does
not provide any build-in protection against race conditions
or support for correct synchronization of shared resources
like ÆMINIUM does.

Axum (formerly known as Maestro) [Mic 2009] is an
actor-based programming language. Axum comes with sev-
eral operators to allow the explicit construction of dataflow
graphs, which can hierarchically composed. For efficiency
reasons, Axum also provides domains, containers for state,
which allows associated actors to access the enclosed state.
Actors can either be readers or writers of shared state and
scheduling will follow the one writer or multiple reader
model. Many concepts in Axum and ÆMINIUM look sim-
ilar, in particular the dataflow approach, and the use of data-
groups/domains combined with the explicit specification of
accesses. But ÆMINIUM focuses on object-oriented pro-
gramming, automatically infers the dataflow graph and sup-
ports true shared state between concurrent entities.

5. Conclusion
We presented ÆMINIUM, a novel programming language for
highly concurrent systems, that uses access permissions and
data groups to make side effects explicit. In ÆMINIUM ev-
erything is concurrent by default and concurrent execution is
solely limited by explicit and automatically-inferred depen-
dencies. ÆMINIUM requires only local reasoning about side
effects and handles dependency inference and concurrent ex-
ecution automatically. Therefore we believe that ÆMINIUM,
by following our concurrent-by-default paradigm, represents
a major step towards programming highly concurrent sys-
tems.

Future work will focus on the semantics of the system,
the implementation of an efficient runtime system and in-
vestigation of practical solutions to the granularity problem.

Acknowledgments
This work was partially supported by the Portuguese Re-
search Agency – FCT, through a scholarship (SFRH /
BD / 33522 / 2008), CISUC (R&D Unit 326/97), the
CMU—Portugal program, DARPA grant #HR0011-0710019,
NSF grants CCF-0546550 and CCF-0811592, and Army
Research Office grant number DAAD19-02-1-0389 entitled
“Perpetually Available and Secure Information Systems.”

References
E. Allen, D. Chase, J. Hallett, V. Luchangco, J.W. Maessen, S. Ryu,

G.L. Steele Jr, and S. Tobin-Hochstadt. The Fortress language
specification version 1.0. Technical report, Sun Microsystems,
Inc, 2008.

N. E. Beckman, K. Bierhoff, and J. Aldrich. Verifying correct usage
of atomic blocks and typestate. Proc. ACM SIGPLAN conference
on OOPSLA, 43(10):227–244, 2008.

K. Bierhoff and J. Aldrich. Modular typestate checking of aliased
objects. In Proc. ACM SIGPLAN conference on OOPSLA, pages
301–320, 2007.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime
system. Proc. ACM SIGPLAN symposium on PPoPP, 30(8):
207–216, 1995.

H.-J. Boehm. Transactional Memory Should Be an Implementation
Technique, Not a Programming Interface. Technical Report
HPL-2009-45, HP Laboratories, 2009.

J. Boyland. Checking interference with fractional permissions. In
SAS, pages 55–72. Springer, 2003.

D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. Proc. ACM SIGPLAN conference on
OOPSLA, 33(10):48–64, 1998.

J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.
A. Greenhouse and W. L. Scherlis. Assuring and evolving con-

current programs: annotations and policy. In Proc. ICSE, pages
453–463, New York, NY, USA, 2002. ACM.

S.L.P. Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

J. Larus and R. Rajwar. Transactional Memory. Morgan & Clay-
pool Publishers, 1 edition, 2007.

K. Rustan M. Leino. Data groups: specifying the modification of
extended state. In Proc. ACM SIGPLAN conference on OOP-
SLA, pages 144–153, New York, NY, USA, 1998.

M. Martin, C. Blundell, and E. Lewis. Subtleties of Transactional
Memory Atomicity Semantics. IEEE Computer Architecture
Letters, 5(2), 2006.

Axum Programmer’s Guide. Microsoft Corporation, 2009. http:
//msdn.microsoft.com/en-us/devlabs/dd795202.aspx.

JE Rumbaugh. A parallel asynchronous computer architecture
for data flow programs. PhD thesis, Massachusetts Institute of
Technology, 1975. MIT-LCS-TR-150.

D. J. Spoonhower. Scheduling Deterministic Parallel Programs.
PhD thesis, Carnegie Mellon University, May 2009.

H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s Journal, 30(3):16–20,
2005.

http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx

	Introduction
	Concurrency by Default
	Access Permissions for Concurrency
	Unique and Immutable Permissions
	Shared Permissions

	Data Groups for Higher-Level Dependencies

	Challenges
	Related Work
	Conclusion

