
The Power of Interoperability:
Why Objects Are Inevitable

Jonathan Aldrich
Institute for Software Research

School of Computer Science

Carnegie Mellon University

Onward! Essay, 2013
http://www.cs.cmu.edu/~aldrich/papers/objects-essay.pdf
Comments on this work are welcome. Please send them to aldrich at cmu dot edu

Copyright © 2013 by Jonathan Aldrich. This
work is made available under the terms of the
Creative Commons Attribution-ShareAlike 3.0
license:
http://creativecommons.org/licenses/by-sa/3.0/

Object-Oriented Programming is Widespread

2

6-8 of top 10 PLs are OO – TIOBE

Object-Oriented Programming is Influential

• Major conferences: OOPSLA, ECOOP

• Turing awards for Dahl and Nygaard, and Kay

• Other measures of popularity
• Langpop.com: 6-8 of most popular languages

• SourceForge: Java, C++ most popular

• GitHub: JavaScript, Ruby most popular

• Significant use of OO design even in procedural languages
• Examples: GTK+, Linux kernel, etc.

• Why this success?

3

OOP Has Been Criticized

“I find OOP technically unsound… philosophically

unsound… [and] methodologically wrong.”

- Alexander Stepanov, developer of the C++ STL

4

Why has OOP been successful?

5

Why has OOP been successful?

“…it was hyped [and] it created a new

software industry.”

- Joe Armstrong, designer of Erlang

Marketing/adoption played a role in the ascent of OOP.

But were there also genuine advantages of OOP?

6

Why has OOP been successful?

“the object-oriented paradigm...is

consistent with the natural way of

human thinking”

- [Schwill, 1994]

OOP may have psychological benefits.

But is there a technical characteristic of

OOP that is critical for modern software?

7

What kind of technical characteristic?

Talk Outline

1. A technical characteristic unique to objects
• Addressed in Cook’s 2009 Onward! Essay

2. That has a big impact
• Our focus: why that characteristic matters

• I.e. how it affects in-the-large software development

8

What Makes OOP Unique?

Candidates: key features of OOP

• Encapsulation?
• Abstract data types (ADTs) also provide

encapsulation

• Inheritance?
• Neither universal nor unique in OOPLs

• Worth studying, but not our focus

• Polymorphism/Dynamic dispatch?
• Every OOPL has dynamic dispatch

• Distinguishes objects from ADTs

animal.speak()

“meow” “woof”

Dynamic Dispatch as Central to OOP

Significant grounding in the OO literature

• Cook’s 2009 Onward! essay
• Object: “value exporting a procedural interface to data or behavior”

• Objects are self-knowing (autognostic), carrying their own behavior

• Equivalent to Reynolds’ [1975] procedural data structures

• Historical language designs
• “the big idea [of Smalltalk] is messaging” [Kay, 1998 email]

• Design guidance
• “favor object composition over class inheritance” [Gamma et al. ’94]

• “black-box relationships [based on dispatch, not inheritance] are an ideal

towards which a system should evolve” [Johnson & Foote, 1988]

10

Objects vs. ADTs

Two Object-Oriented Sets

interface IntSet {

bool contains(int element)

bool isSubsetOf(IntSet otherSet)

}

class IntSet1 implements IntSet {…}

class IntSet2 implements IntSet {…}

// in main()

IntSet s1 = new IntSet1(...);

IntSet s2 = new IntSet2(...);

bool x = s1.isSubsetOf(s2);

11

Set Objects
Different implementations

interoperate freely

{1} {1,2}⊆⊆⊆⊆ = true

{1} {1,2}⊆⊆⊆⊆ = true

{1} ⊆⊆⊆⊆ {1,2} = true

Interface is a set of messages

All communication is message-
based; isSubsetOf() implemented by
calling contains() on otherSet

Objects vs. ADTs

Two Set ADTs

final class IntSetA {

bool contains(int element) { ... }

bool isSubsetOf(IntSetA other) { ... }

}

final class IntSetB {

bool contains(int element) { ... }

bool isSubsetOf(IntSetB other) { ... }

}

// in main()

IntSet sA = new IntSetA(...);

IntSet sB = new IntSetB(...);

bool x = sA.isSubsetOf(sB); // ERROR!

12

Set ADTs
Different ADT implementations

cannot interoperate

{1} {1,2}⊆⊆⊆⊆ = true

{1} {1,2}⊆⊆⊆⊆ = true

Interface is a set of operations over
a fixed but hidden type (IntSetA)

isSubsetOf() is a binary method that
only works with other instances of
IntSetA. Good for performance.

{1} ⊆⊆⊆⊆ {1,2}X

Does Interoperability Matter?

• For data structures such as Set, maybe not
• Maybe optimization benefits of ADTs dominate interoperability

“Although a program development support system must store

many implementations of a type..., allowing multiple

implementations within a single program seems less important.”

- A History of CLU [Liskov, 1993]

• But are data structures what OOP is really about?

13

Are Objects “Procedural Data Structures?”

An object is “...a value exporting a procedural interface to data or
behavior.” [Cook, 2009]

“a program execution is regarded as a physical model, simulating the
behavior of either a real or imaginary part of the world”

[Madsen, Møller-Pedersen, Nygaard (and implicitly Dahl), 1993]

“The last thing you wanted any programmer to do is mess with
internal state even if presented figuratively. Instead, the objects

should be presented as sites of higher level behaviors more

appropriate for use as dynamic components.” [Kay, 1993]

14

Service Abstraction

• Objects can implement data structures
• Useful, but not their primary purpose

• Not a unique benefit of objects

• Kay [1993] writes of the “objects as server metaphor” in

which every “object would be a server offering services”

that are accessed via messages to the object.

• A better term is service abstraction
• Definition: a value exporting a procedural interface to behavior

• Identical to procedural data abstraction, but focused on behavior

• Captures the characteristic of objects in which we are interested

15

Service Abstraction provides Interoperability

• Let’s assume service abstraction is the core of OO

• What are the benefits of service abstraction?
• Reynolds/Cook: procedural data abstraction provides

interoperability
• But so do functions, type classes, generic programming, etc.

• What makes service abstraction unique?

16

Interoperability of Widgets

• Consider a Widget-based GUI
• Concept notably developed in Smalltalk

interface Widget {

Dimension getSize();

Dimension getPreferredSize();

void setSize(Dimension size);

void paint(Display display);

… /* more here */ } // based on ConstrainedVisual from Apache Pivot UI framework

• Nontrivial abstraction – not just paint()
• A single first-class function is not enough

17

Source: http://www.for-a.com/products/hvs300hs/hvs300hs.html

Interoperability of Composite Widgets

• Consider a Composite GUI
• Concept notably developed in Smalltalk

class CompositeWidget implements Widget {

Dimension getSize();

Dimension getPreferredSize();

void setSize(Dimension size);

void paint(Display display);

void add(Widget widget)

… /* more here */ } // based on Container from Apache Pivot UI framework

• Nontrivial abstraction – not just paint()
• A single first-class function is not enough

• Composite needs to store diverse subcomponents in a list
• Can’t do this with type classes, generic programming

• Composite needs to invoke paint() uniformly on all subcomponents
• Also breaks type classes, generic programming

18

Source: http://www.for-a.com/products/hvs300hs/hvs300hs.html

Design Leverage of Service Abstractions

The ability to define nontrivial abstractions that are modularly
extensible, where instances of those extensions can interoperate in a
first-class way.

• Nontrivial abstractions
• An interface that provides at least two essential services

• Modular extensibility
• New implementations not anticipated when the abstraction was

designed can be provided without changing the original abstraction

• First-class Interoperability
• Interoperability of binary methods

• Such as adding a subcomponent to a composite

• First-class manipulation of different implementations
• Such as putting subcomponents in a list

• Uniform treatment of different implementations
• Such as invoking paint() on all subcomponents

19

Talk Outline

1. A technical characteristic unique to objects
• Objects, for our purposes, are service abstractions that

provide dispatch

• Service abstractions uniquely provide first-class

interoperability

2. That has a big impact
• Well, first-class interoperability is nice for GUIs

• Does this affect in-the-large software development more

broadly?

20

Large-Scale Development Impact

• How might service abstractions impact in-the-large

software development?

• Some hints
• We are likely looking for an approach to design

• We already know service abstractions are useful for GUIs

• Anecdotally, one can argue that GUIs drove OO
• Smalltalk, MacApp, Microsoft Foundation Classes, Java Applets, …

• What are these GUI designs an instance of?

• A likely candidate: software frameworks [Johnson, 1997]

21

Software Frameworks

• A framework is “the skeleton of an application that can be

customized by an application developer” [Johnson, 1997]

• Frameworks uniquely provide architectural reuse
• Reuse of “the edifice that ties components together”

[Johnson and Foote, 1988]

• Johnson [1997] argues can reduce development effort by 10x

• As a result, frameworks are ubiquitous
• GUIs: Swing, SWT, .NET, GTK+

• Web: Rails, Django, .NET, Servlets, EJB

• Mobile: Android, Cocoa

• Big data: MapReduce, Hadoop

22

Frameworks need Service Abstraction

• Frameworks define abstractions that extensions implement
• The developer “supplies [the framework] with a set of components that

provide the application specific behavior” [Johnson and Foote, 1988]
• Sometimes the application-specific behavior is just a function
• More often, as we will see, these abstractions are nontrivial

• Frameworks require modular extensibility
• Applications extend the framework without modifying its code

• Frameworks are typically distributed as binaries or bytecode
• cf. Meyer’s [1988] open-closed principle

• Framework developers cannot anticipate the details of extensions
• Though they do plan for certain kinds of extensions

• Frameworks require first-class interoperability
• Plugins often must interoperate with each other
• Frameworks must dynamically and uniformly manage diverse plugins
• We have already seen this for GUI widgets – let’s look at other examples

23

Web Frameworks: Java Servlets

• Nontrivial abstraction
• Lifecycle methods for resource management
• Configuration controls

• Modular extensibility
• Intent is to add new Servlets

• First-class interoperability required
• Web server has a list of diverse Servlet implementations
• Dispatch is required to allow different Servlets to provide their own

behavior

24

interface Servlet {
void service(Request req, Response res);
void init(ServletConfig config);
void destroy();
String getServletInfo();
ServletConfig getServletConfig();

}

Operating Systems: Linux

• Linux is an OO framework!
• In terms of design—not implemented

in an OO language

• File systems as service abstractions
• Interface is a struct of function

pointers

• Allows file systems to interoperate
• E.g. symbolic links between file systems

• Not just file systems
• Many core OS abstractions are extensible

• ~100 Service abstractions in the kernel

25

ext2

ntfs

fat

Operating Systems: Linux

• Linux is an OO framework!
• In terms of design—not implemented

in an OO language

• File systems as service abstractions
• Interface is a struct of function

pointers

• Allows file systems to interoperate
• E.g. symbolic links between file systems

• Not just file systems
• Many core OS abstractions are extensible

• ~100 Service abstractions in the kernel

26

ext2

ntfs

fat

People often miss this, or even deny it, but there are many
examples of object-oriented programming in the kernel.
Although the kernel devel-opers may shun C++ and other
explicitly object-oriented languages, thinking in terms of
objects is often useful. The VFS [Virtual File System] is a
good example of how to do clean and efficient OOP in C,
which is a language that lacks any OOP constructs.

- Robert Love, Linux Kernel Development (2nd Edition)

Objection: If I want objects, I can build them!

• Works nicely in a dynamically-typed setting with macros
• Exhibit A: PLT Scheme / Racket

• Works poorly in a statically typed language
• Certainly possible [Kiselyov and Lämmel, 2005]

• Painful in C, Standard ML, Haskell, etc.
• No built-in type gives you exactly what you want
• Annoying object packing/unpacking is necessary
• Feels like an encoding, rather than a natural expression of ideas

• Typed Racket works because of special OO types

• Programmers do it when really necessary
• cf. GTK+ GUI framework, Microsoft COM, Linux drivers, etc.

• My take: people only do this if OO languages are excluded a priori

27

Software Ecosystems

• A software ecosystem is a “set of software solutions that
enable, support, and automate the activities...[of] actors in the
associated social or business ecosystem” [Bosch, 2009]
• Examples: iOS, Android, Windows, Microsoft Office, Eclipse,

Amazon Marketplace, …

• Ecosystems have enormous economic impact
• Driven by network effects [Katz and Shapiro, 1985]
• Top 5 tech firms control or dominate an ecosystem

• Apple, Microsft, IBM, Samsung, Google

• Ecosystems require first-class interoperability
• Critical to achieving benefit from network effects
• “the architecture provides a formalization of the rules of

interoperability and hence teams can, to a large extent, operate
independently” [Bosch, 2009]

28

Mobile Devices: Android

• Network effects (apps) give Android value

• Apps build on each other
• Example: contact managers

• Smartr Contacts is a drop-in replacement for the default contact
manager

• Phone, email apps can use Smartr Contacts without preplanning

• Enabled by service abstraction interfaces
• Android keeps a list of heterogeneous ContentProvider

implementations

29

class ContentProvider {
abstract Cursor query(Uri uri, ...);
abstract int insert(Uri uri, ContentValues vals);
abstract Uri update(Uri uri, ContentValues vals, ...);
abstract int delete(Uri uri, ...);
... // other methods not shown

}

Conclusions

• The essence of objects is dispatch, or service

abstraction

• Dispatch uniquely provides first-class interoperability

• First-class interoperability is critical to frameworks and

ecosystems

• Frameworks and ecosystems are economically critical to

the software industry

30

Hypotheses

• Adding first-class modules to languages without objects

will promote framework-like designs

• Fully parametric module systems will be more practical

with OO types than with ADT types

31

Future Work

• Empirical validation for the benefits of interoperability

• Exploration of other possible benefits of OO
• Psychology

• Inheritance

32

Conclusions

• The essence of objects is dispatch, or service

abstraction

• Dispatch uniquely provides first-class interoperability

• First-class interoperability is critical to frameworks and

ecosystems

• Frameworks and ecosystems are economically critical to

the software industry

33

