
The Power of Interoperability:

Why Objects Are Inevitable

Jonathan Aldrich

Carnegie Mellon University
Pittsburgh, PA, USA

aldrich@cs.cmu.edu

Abstract

Three years ago in this venue, Cook argued that in
their essence, objects are what Reynolds called proce-
dural data structures. His observation raises a natural
question: if procedural data structures are the essence
of objects, has this contributed to the empirical success
of objects, and if so, how?

This essay attempts to answer that question. After
reviewing Cook’s definition, I propose the term ser-
vice abstractions to capture the essential nature of ob-
jects. This terminology emphasizes, following Kay, that
objects are not primarily about representing and ma-
nipulating data, but are more about providing ser-
vices in support of higher-level goals. Using examples
taken from object-oriented frameworks, I illustrate the
unique design leverage that service abstractions pro-
vide: the ability to define abstractions that can be ex-
tended, and whose extensions are interoperable in a
first-class way. The essay argues that the form of inter-
operable extension supported by service abstractions
is essential to modern software: many modern frame-
works and ecosystems could not have been built with-
out service abstractions. In this sense, the success of
objects was not a coincidence: it was an inevitable con-
sequence of their service abstraction nature.

Categories and Subject Descriptors D.1.5 [Program-
ming Techniques]: Object-Oriented Programming

Keywords Object-oriented programming; frame-
works; interoperability; service abstractions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Onward! 2013, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2472-4/13/10/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509578.2514738

1. Introduction

Object-oriented programming has been highly suc-
cessful in practice, and has arguably become the dom-
inant programming paradigm for writing applications
software in industry. This success can be documented
in many ways. For example, of the top ten program-
ming languages at the LangPop.com index, six are pri-
marily object-oriented, and an additional two (PHP
and Perl) have object-oriented features.1 The equiva-
lent numbers for the top ten languages in the TIOBE in-
dex are six and three.2 SourceForge’smost popular lan-
guages are Java and C++;3 GitHub’s are JavaScript and
Ruby.4 Furthermore, objects’ influence is not limited
to object-oriented languages; Cook [8] argues that Mi-
crosoft’s Component Object Model (COM), which has
a C language interface, is “one of the most pure object-
oriented programming models yet defined.” Academ-
ically, object-oriented programming is a primary focus
of major conferences such as ECOOP and OOPSLA,
and its pioneers Dahl, Nygaard, and Kaywere honored
with two Turing Awards.

This success raises a natural question:

Why has object-oriented programming been success-
ful in practice?

To many, the reason for objects’ success is not obvi-
ous. Indeed, objects have been strongly criticized; for
example, in an interview Stepanov explains that his
STLC++ library is not object-oriented, because he finds
OO to be technically and philosophically unsound,
andmethodologically wrong [29]. In addition, popular
object-oriented languages are often criticized for their
flaws; for example, Hoare states that the null references
most OO languages provide were his “billion dollar

1 http://www.langpop.com/

2 http://www.tiobe.com/index.php/content/paperinfo/

tpci/index.html

3 http://sourceforge.net/directory/, click Advanced and
mouse over Programming Language, accessed 4/7/2013
4 https://github.com/languages, accessed 4/7/2013

mistake”[13]. These and other criticisms have led some
to argue that object-orientation became popular essen-
tially for marketing reasons: because “it was hyped
[and] it created a new software industry.”5

While there has unquestionably been some hype
about objects over the years, I have too much respect
for the many brilliant developers I have met in indus-
try to believe they have been hoodwinked, for decades
now, by a fad. The question therefore arises: might
there be genuine advantages of object-oriented pro-
gramming that could explain its success?

Some of the advantages of object-oriented program-
ming may be psychological in nature. For example,
Schwill argues that “the object-oriented paradigm...is
consistent with the natural way of human think-
ing” [28]. Such explanations may be important, but
they are out of scope in this inquiry; I am instead in-
terested in whether there might be significant technical
advantages of object-oriented programming.

The most natural place to look for such technical
advantages is the essential characteristics that define
the object-oriented paradigm. On this question there is
some controversy, but I follow Cook’s definition: “an
object is a value exporting a procedural interface to
data or behavior” [8]. In other words, objects are in
their essence procedural data structures in the sense of
Reynolds [27]. Cook’s definition essentially identifies
dynamic dispatch as the most important characteris-
tic of objects. Each object is self-knowing (autognostic
in Cook’s terms), carrying its own behavior with it,
but assuming nothing about other objects beyond their
own procedural interfaces. This autognosis property,
in turn, enables different implementations of an object-
oriented interface to interoperate in ways that are diffi-
cult when using alternative constructs such as abstract
data types.

Could data structure interoperability really be so
important? It is an excellent question, but too narrow.
As we will see, to understand the value of objects we
must consider service abstractions that go beyond data
structures, because it is for abstractions of components
and services that interoperability becomes critical. This
leads to the following thesis:

Object-oriented programming is successful in part
because its key technical characteristic—dynamic
dispatch—is essential to supporting independent, in-
teroperating extensions; and because interoperable ex-
tension is in turn essential to the reuse of architectural
code (as in frameworks), and more broadly to the de-
sign of modern software ecosystems.

5 Joe Armstrong, quoted at http://harmful.cat-v.org/

software/OO_programming/why_oo_sucks

To support this thesis, we need a careful defini-
tion of interoperable extension and an analysis of how
objects provide it—by contrast, we’ll see that obvi-
ous alternatives such as abstract data types don’t (Sec-
tion 3). Alternative mechanisms can provide inter-
operable extension only by using service abstraction
themselves—and thus are equivalent to what we con-
sider the essence of objects.6 Interoperable extension is
essential to manymodern software systems and frame-
works, in that the core architectural requirements of
these systems cannot be fulfilled without it (Section 4).
The rise of objects, therefore, is not a coincidence: it
is an inevitable response to the needs of modern soft-
ware.

Pieces of the story told here are known, more or less
formally, within the object-oriented and programming
language communities, but the larger story has not
been well told. With that story in place we can begin
to explain the success of objects on a purely technical
basis.

Along the way, we’ll connect Cook’s definition of
objects with Kay’s focus on messaging as a key to
object-orientation; investigate a mystery in the design
of object-oriented vs. functional module systems; and
use the theory sketched here to make predictions both
about the technical feasibility of statically typed, fully-
parametric modules in object-oriented systems, and
about the effect of adding first-class modules to lan-
guages that do not support objects.

I hope that the arguments in this essay will inspire
researchers to gather data and build systems that can
properly validate the propositions described here.

2. The Nature of Objects

A clear understanding of the nature of objects is essen-
tial to my argument. Cook’s definition was intended
to distinguish objects from ADTs, with which objects
are often confused. However, his definition extends be-
yond data abstraction, following Alan Kay’s emphasis
on objects providing services that support high-level
behavioral goals. As we will see, it is in its ability to ab-
stract behavior that object-oriented programming pro-
vides its greatest benefits.

2.1 Objects and ADTs

Once again, Cook’s definition states that “an object
is a value exporting a procedural interface to data or
behavior” [8]. His essay uses a simple set example to
illustrate the distinction between objects and abstract

6Aswewill see, “simulated objects” do appear in practice in systems
that require interoperable extension, but are not written in object-
oriented languages. These examples supports my thesis, which is
about object-oriented programming in the most general sense. Of
course, when programming with objects in practice, programming
language support is convenient.

data types (ADTs). For example, an object-oriented set
type may be abstractly defined as follows:

type IntSet = {

bool contains(int element);

bool isSubsetOf(IntSet otherSet);

}

Note that different IntSet implementations can in-
teroperate. For example, as shown in the code below,
we can have instances of two different implementa-
tions of type IntSet and test if one contains all el-
ements of the other. An object-oriented set type can
be described using an interface in Java; an example
is java.util.Set, or simply the interface above re-
placing the keyword typewith interface. Different
classes can then implement that interface. Each set ob-
ject carries its hidden implementation type with it. In
type theory, we say that objects have existential types;
the existential is opened on every access to each object.

class IntSet1 implements IntSet { ... }

class IntSet2 implements IntSet { ... }

// in main()
IntSet s1 = new IntSet1(...);

IntSet s2 = new IntSet2(...);

boolean x = s1.isSubsetOf(s2);

In contrast a set ADT might be abstractly defined as
follows:

module SetModule1 {

// implementation...
} with signature {

type IntSet;

bool contains(IntSet set, int element);

bool isSubsetOf(IntSet s1, IntSet s2);

}

Set ADTs matching this identical signature can be
implemented by multiple modules (SetModule1,
SetModule2, etc.), but each module SetModuleN

defines a separate type SetModuleN.IntSet.
The ADT type SetModule1.IntSet denotes the
fixed but hidden representation defined in module
SetModule1. All instances of SetModule1.IntSet
have the same representation, and both Cook and
Reynolds point out that this has some advantages: the
isSubsetOf operation can be defined in terms of the
hidden representation, which can be asymptotically
more efficient than implementing isSubsetOf in
terms of contains, as must be done in a pure object-
oriented implementation of the IntSet interface. This
efficiency difference can be critical in practice.7

7 In practical object-oriented settings, the efficiency of binary opera-
tions can often be regained, aside from any cost associated with dis-
patching itself. This is done most elegantly through the use ofmulti-

ADTs can also be defined in Java using classes as
follows:

final class IntSetA {

bool contains(int element) { ... }

bool isSubsetOf(IntSetA other) { ... }

}

As with the abstract SetModule1.IntSet de-
scribed earlier, all instances of IntSetA are instances
of the same class and have the same internal represen-
tation.8

The disadvantage of ADTs, relative to objects, is the
lack of interoperability. Consider what happens if we
define a second Java class, called IntSetB, analogous
to the first one above:

// different code but the same interface
final class IntSetB {

bool contains(int element) { ... }

bool isSubsetOf(IntSetB other) { ... }

}

// in main()
IntSetA sA = new IntSetA(...);

IntSetB sB = new IntSetB(...);

boolean x = sA.isSubsetOf(sB); // ERROR!

Now if we create an instance of IntSetA and
an instance of IntSetB, we cannot invoke the
isSubsetOf operation to compare their contents. The
reason is that IntSetA and IntSetB are different ab-
stract types; neither is a subtype of the other. This is,
in fact, an inevitable consequence of the fact that bi-
nary operations on abstract data types can depend on
the internal representation of the second object passed
in. This dependence has performance advantages, but
makes interoperation impossible, since IntSetB may

ple dispatch, in which the implementation of an operation is chosen
dynamically according to the class of all arguments to a generic func-
tion [3]. Other solutions include using double-dispatching idioms or
more ad-hoc instanceof-style class tests. A full discussion of these
solutions, including the significant modularity issues involved, is
out of scope here.
8Note that the Java implementation of IntSetA uses a final class
in order to sidestep the use of inheritance. Cook argues that inheri-
tance, while valuable, is a secondary and optional feature of objects.
The design of the Self language illustrates this point, providing code
reuse via delegation instead of inheritance [32]. Others agree that
inheritance is secondary to dynamic dispatch. For example, when
Kay discusses the six main ideas of Smalltalk, inheritance is not men-
tioned, but dynamic dispatch is (in the form ofmessaging) [18]. Like-
wise, Gamma et al. argue that a central principle of object-oriented
design is to “favor object composition over class inheritance,”[11]—
and note that composition typically leverages dynamic dispatch in
the setting of patterns. When discussing framework design, John-
son and Foote distinguish white-box frameworks based on inheri-
tance from black-box frameworks based only on dynamic dispatch,
and argue that “black-box relationships are an ideal towards which
a system should evolve” [16]. While acknowledging that inheritance
is a feature of many OO languages and may have significant value
in many designs, I will not consider it further, so as to focus on the
most important, and most unique, feature of objects.

verywell have an internal representation that is incom-
patible with that of IntSetA.

Because eachmodule hides the representation of the
ADT it defines, ADTs are also existential types. How-
ever, these existential types are opened once, when the
defining module is imported into the program, rather
than on every invocation of an operation. Thus the dis-
tinction between objects and ADTs can be thought of in
type theory as the difference between closed and open
existentials.

Discussion. Cook’s essay focuses on the technical and
theoretical differences between objects and ADTs. He
highlights the tradeoff between the interoperability
provided by objects and the shared representation pro-
vided by ADTs. But due to the focus of his essay, the
larger consequences of the interoperability provided
by objects are only briefly discussed. At this point a
reader may be forgiven for asking, what is the big deal
about interoperation? After all, Cook quotes Liskov
making the following cogent argument:

Although a program development support
system must store many implementations of
a type..., allowing multiple implementations
within a single program seems less impor-
tant. [22]

Perhaps Liskov is right. Does it really matter
whether we have two different implementations of Set
in a program? Why don’t we just pick one that is effi-
cient and has the features needed for the program?

As far as data abstraction goes, this defense of ADTs
may be correct. To investigate why having multiple
implementations of an abstraction might be important
indeed, we must broaden our view and look beyond
data abstraction.

2.2 Beyond Data Abstraction: Behavior, Messages,
and Services

Cook’s essay focuses primarily on data abstraction, be-
cause he is comparing objects to ADTs and data ab-
straction is what abstract data types are intended to
do. However, his definition of objects is more gen-
eral: “...a value exporting a procedural interface to data
or behavior.” This reflects a broader view of object-
orientation, one that can be seen even more clearly in
OO’s origins in Simula and Smalltalk. Dahl and Ny-
gaard, for example, related object-oriented program-
ming to simulation, saying that “a program execution
is regarded as a physical model, simulating the behav-
ior of either a real or imaginary part of the world” [21].
While this quote focuses more on the purpose of OO
rather than its mechanisms, a simulation nevertheless
focuses on behavior more than data. Alan Kay under-
scores this point:

What I got from Simula was that you could now
replace bindings and assignment with goals. The
last thing you wanted any programmer to do is
mess with internal state even if presented figu-
ratively. Instead, the objects should be presented
as sites of higher level behaviors more appropriate for
use as dynamic components. [18]

Thus, while comparing objects to ADTs may be use-
ful for making intellectual distinctions, Kay suggests
that the power of objects is not in representing data
structures, but in representing higher-level goals. The
idea of goals suggests an analogy to planning in ar-
tificial intelligence: rather than express an algorithm
with even high-level state and assignment, it is bet-
ter to express declarative goals and declarative rules
for achieving them, and rely on a search engine to
apply the rules in a way that accomplishes the goal.
Object-oriented programming is not fully declarative,
but Kay’s point is that the abstraction provided by a
method-based interface enables a lot of client code to
approach the declarative ideal.

When discussing his view of objects in Smalltalk,
Kay writes of the “objects as server metaphor” in
which every “object would be a server offering ser-
vices” that are accessed viamessages9 to the object [18].
In fact, Kay considers objects the “lesser idea” and
states that “the big idea is messaging.”10 On a techni-
cal level, in Smalltalk messages are “a procedural in-
terface to data or behavior,” which is consistent with
Cook’s definition, but again Kay de-emphasizes data
abstraction in favor of behavior and high-level goals.

This focus on goals also suggests that whereas ADTs
are focused on lower-level data representation andma-
nipulation concerns, objects are focused more on ab-
stractions that are useful in high-level program orga-
nization. Thus, in looking for the advantages of ob-
jects, perhaps we ought not to focus on data abstrac-
tions for our examples. Instead of Reynolds’s proce-
dural data structures, in the remainder of this essay I
will generally use the term service abstractions, reflect-
ing Kay’s view of objects as servers that provide ser-
vices to their clients. A service abstraction is, on a tech-
nical level, the same form of abstraction as a procedu-
ral data structure, but it may be used to abstract any
set of services, not just data structure manipulations.
We could also simply use the term object, following
Cook’s definition, but the term service abstraction will

9Note thatmessages in Smalltalk are synchronousmethod calls; they
are not asynchronous or distributed in the sense of network mes-
sages, although Kay derives substantial inspiration from network-
based metaphors.
10Alan Kay, email sent October 10, 1998, to squeak@cs.uiuc.edu

remind us that we are focused specifically on the dy-
namic dispatch feature of objects.11

Taking Smalltalk’s pioneering work in GUI libraries
as an inspiration, we will explore the generalization to
service abstractions through the example of a widget:

interface Widget {

Dimension getSize();

Dimension getPreferredSize();

void setSize(Dimension size);

void paint(Display display);

}

While a widget certainly has data—its size, and
perhaps widget-specific data related to what the wid-
get is displaying—abstracting that data is not the pri-
mary purpose of a widget. Rather, a widget’s pur-
pose is to abstract the behavior of a user interface el-
ement. In the simple interface above, inspired by the
ConstrainedVisual interface from Apache’s Pivot
UI framework,12 the service abstraction captures the
negotiation between a UI element and its container
concerning how large the UI element should be, as well
as the goal of painting itself on a display device.

More importantly, the interoperability advantages
of object-oriented service abstractions over ADTs
suddenly become more obvious with this example.
While a framework such as Apache Pivot provides
many widgets, the space of possible widgets is much
larger, and so programmers using the framework will
likely want to define their own, or even use wid-
gets developed by strangers.13 GUI frameworks pro-
vide facilities to recursively and dynamically com-
pose atomic widgets into composite widgets, and ul-
timately into a complete user interface. For example, a
CompositeWidgetmight be defined as:

interface CompositeWidget extends Widget {

void addWidget(Widget chld, Position p);

}

Here addWidget is a binary operation: Compos-
iteWidget is a kind of Widget, and it must interoperate
with other kinds of widgets that are added to it. It is
essential, in particular, that custom widgets written by
programmers can take their place in a user interface to-
gether with widgets from the base framework, as well
as widgets written by strangers.

3. The Design Leverage of Objects

Based on Cook’s insight that different object-oriented
implementations of a set can interoperate, and the

11 e.g. as stated before, I am not considering inheritance—surely the
question of whether inheritance contributes to the success of objects
is interesting, but it is out of scope for our current purposes.
12 http://pivot.apache.org/
13we will see an example of this later when looking at the Microsoft
Office plugin ecosystem.

intuition from the widget example that this might
take on increased importance in service abstractions,
I now propose a candidate for the leverage provided
by object-oriented service abstractions in design:

The key design leverage provided by objects is the abil-
ity to define nontrivial abstractions that are modu-
larly extensible, where instances of those extensions
can interoperate in a first-class way.

Let me define the these terms with more care:

• Nontrivial abstraction. An interface that provides
at least two essential services.

• Modular Extensibility. New implementations not
anticipated when the abstraction was designed can
be provided without changing the original abstrac-
tion.

• First-class Interoperability.Clients can instantiate a
number of different implementations of an abstrac-
tion and manipulate those instances together in a
first-class way. First-class interoperability has three
facets:

Direct interoperation. If the abstraction defines
a binary operation, the arguments to that oper-
ation need not be instances of the same imple-
mentation. This form of interoperation is analo-
gous to gears that mesh; mathematically, it corre-
sponds to a fold operation.

Uniform treatment. Clients can uniformly in-
voke operations on instances of different im-
plementations, without distinguishing the par-
ticular implementations involved (e.g. by using
a static type or an explicit typecase operation).
This form of interoperation is analogous to balls
within a ball bearing, which may not touch each
other directly but nevertheless must match each
other closely; mathematically, it corresponds to a
map operation.

First-class manipulation. Instances of different
implementations can be manipulated together as
first-class values. For example, it should be pos-
sible to store a collection of instances of differ-
ent implementations in a single data structure in-
stance, then dynamically select element(s) from
the collection and invoke operations on them.

Discussion. The reason to consider only nontrivial ab-
stractions is that if an abstraction has only one service,
one can use a function to abstract it. Functions are com-
pletely ideal in such cases—but some abstractions that
at first appear to be simple turn out to be richer than ex-
pected in practice. Consider the Widget example: the
most important function in the interface is probably

paint, and a trivial academic example might include
only that, leading to the mistaken impression that just
passing a first-class function around suffices to encap-
sulate the widget abstraction. In reality, widgets must
manage other concerns, such as their size, which re-
quires communication with both their container and
their children. I have in fact already oversimplified: the
true interface on which the Widget example is based
has nine methods, and adds the additional concern of
revealing the widget’s baseline.14

The definition of modular extension captures
Meyer’s open-closed principle [24], which states that ab-
stractions “should be open for extension, but closed
for modification.” It is particularly important when an
abstraction is designed by one organization, but ex-
tended in an unanticipated15 way by another; in this
case, the second organization may not be able to mod-
ify the original abstraction.16

Reynolds originally suggested interoperability as a
benefit of procedural data structures [27], and Cook
points out that as a consequence, when using a pure
object model, binary operations should work on differ-
ent implementations. This direct interoperability prop-
erty is critical in the Widget example, where the
CompositeWidgetmust be able to integrate widgets
defined by strangers.

It turns out that simple forms of interoperability
can be supported through mechanisms other than ob-
jects, however. A notable example is generic program-
ming [25] as represented in the C++ StandardTemplate
Library (STL). For example, iterators in the STL can be
used to copy elements from one collection to another.
The copy operation is binary, accepting a source and
a destination iterator. Although iterators are C++ ob-
jects, dynamic dispatch is not used to enable interop-
eration of different iterator implementations. Instead,
they are defined using C++ templates, which essen-
tially generate a fresh version of the copy operation for
every pair of source and destination iterator types.

A key limitation of the interoperability provided by
generic programming mechanisms is that it is second-
class, precluding the manipulation of iterators as truly
first-class values. For instance, in the iterator example

14 see http://pivot.apache.org/2.0.3/docs/api/org/

apache/pivot/wtk/ConstrainedVisual.html

15By unanticipated extension I mean an extension for which neither
the extension’s code, nor the particular feature(s) being added by the
extension, were explicitly anticipated by the designer of the abstrac-
tion being extended. Of course, in order to design an extension point
at all, the designer must have some idea of the class of features the
extension point is intended to support, but it is typically impractical
to enumerate all features that fall into that class.
16 Such modifications may be literally impossible if the abstraction
is distributed in binary form; or they may merely be infeasible in
practice because the second organization wishes to avoid modifying
(and then maintaining) a component it did not develop

above, the C++ compiler must know the precise im-
plementation class of each iterator so that it can sup-
port template code generation. This is a reasonable as-
sumption in the typical modes of use of generic pro-
gramming, but it is nevertheless a serious limitation
in many other cases. For example, if we store differ-
ent kinds of iterators in a list, typical type systems lose
track of the particular implementation class of each it-
erator, and so we cannot use pure generic program-
ming to invoke copy operations on them; we must fall
back on dynamic dispatch to make copies.

Objects, on the other hand, are first-class values; we
can see this in Cook’s definition, which starts “objects
are values....” We therefore characterize object-oriented
service abstractions as providing a first-class notion of
interoperability. With service abstractions, one can use
multiple implementations of an abstraction together,
even when instances of the abstractions are handled in
a first-class way.

To illustrate first-class interoperation, consider a
scenario in which we build a composite widget that
allows the user to select one of several visualizations,
which are swapped when the user clicks a button.
Here the choice of a visualization widget to go in-
side the CompositeWidget is made dynamically, yet
the composite widget interoperates with the visualiza-
tion widget in the sense that the latter is passed to the
addChildmethod of the former.

I use the term first-class interoperation broadly, to
include not just invoking binary methods, but also the
general ability to operate uniformly on instances of
multiple different implementations. For example, the
CompositeWidget must store its child widgets to-
gether in some kind of data structure.When the paint
method of CompositeWidget is invoked, it must iter-
ate over the child widgets and invoke paint in turn
on each one of them. Note that the implementation
of CompositeWidget.paint()must not rely on an
explicit typecase to determine the implementation of
each child widget before invoking paint on the child;
a typecase would enable the container to work with a
fixed set of widget implementations, but in that case
the unmodified container code could not work with
new widget implementations.

Alternatives to objects. Are there technical ap-
proaches, besides the service abstraction technique
used in objects, that can provide the design benefits de-
scribed above?

I have already established that abstract data types
do not provide the required interoperability for bi-
nary methods. In fact, even in the absence of binary
methods, they fail the first-class interoperability test:
a data structure may be a list of IntSet1 or a list of
IntSet2, but we cannot define a list that mixes in-

stances of the two types.17 ADTs are therefore not a
solution.18

A module is a similar kind of abstraction to an ob-
ject: both typically present a procedural interface to
the outside world, both encapsulate state, and both are
typically given types (or module signatures) that per-
mit subtyping. To attain the expressiveness of objects,
however, modules must be made first class, a property
rarely found inwidely-used languages, but which is an
ongoing topic of research [5]. I would consider a first-
class module system, such as that provided in recent
versions of OCaml, to provide service abstractions.19

Haskell’s type classes [34] cannot directly express
service abstractions, but rather are similar to generic
programming in their support for interoperation. The
natural signature of a binary operation in a Haskell
type class requires both arguments to have the same
type; thus, binary operations typed in this way can-
not operate on two different implementations of a type
class. More fundamentally, different implementations
of a type class cannot be manipulated together in a
first-class way, for example by putting them in the
same list. Achieving direct interoperability with type
classes is possible, but requires more complexity in the
definition of the type class, so that binary operations
take two type arguments as well as two value argu-
ments. In order to regain first-class manipulation—for
example to put different instances of different imple-
mentations of a type class into the same list—each in-
stance must be wrapped in a datatype, creating an ex-
istential that stores the type class of each instance. The
use of such an encoding is inconvenient, but I would
consider it a use of service abstractions.

Object encodings. Various techniques have been pro-
posed for encoding objects using functions [7, 19].
Not just topics of theoretical study, these techniques
have been used to construct frameworks in an object-
oriented style within non-OO languages. For example,
the GTK+ framework is an object-oriented toolkit for
creating graphical user interfaces that is implemented
in C. I consider a use of these techniques to be uses of
service abstractions.

17A language with union types could support heterogeneous lists,
but then we cannot use the sets when we get them out of the list
without using a typecase operation
18 Please note that I am not arguing against ADTs. There are good
reasons to support ADTs well in programming languages—for ex-
ample, the increased efficiency that ADTs provide when implement-
ing binary methods. I am only arguing that ADTs do not solve the
particular interoperability problem that service abstractions solve.
We will see, from a discussion of frameworks and ecosystems, that
this problem is important in practice.
19 Some module import constructs could even be viewed as a simple
kind of inheritance—but as usual a detailed examination of this is
out of scope.

As an example of such a technique, consider the fol-
lowing Standard ML implementation of a Set service
abstraction:20

datatype IntSet = IntSet of {

contains : int -> bool,

isSubsetOf : IntSet -> bool

}

fun makeSingletonSet(x:int) = IntSet {

contains = fn(y:int) => (y = x),

isSubsetOf =

fn(s:IntSet) =>

let

val (IntSet srec) = s

val scontains = #contains(srec)

in

scontains(x)

end

}

Here the IntSet object interface is defined as an
ML datatype consisting of a record with two fields.
Each field stores a function that implements a method:
the contains field, for example, holds a function
that takes an int parameter and returns a bool re-
sult. The makeSingletonSet function creates a sin-
gleton set holding the single value x, passed as an ar-
gument to this “constructor.” The constructor returns
an instance of the IntSet datatype, with the “meth-
ods” implemented appropriately to match the behav-
ior of a singleton set. contains simply holds a func-
tion (introduced with the fn keyword) that compares
the method argument y to the single set element x.
isSubsetOf is slightly more complex. We must un-
pack the IntSet datatype s to get at the record srec
inside. Then we can select the contains method us-
ing ML’s record selection operator, #. Finally, we can
implement isSubsetOf by checking if the other set
contains the singleton element x.

The code above is more verbose than necessary in
order to make it more accessible to those not famil-
iar with Standard ML. Using the pattern matching,
type inference, and currying facilities of Standard ML,
one can define makeSingletonSet much more suc-
cinctly as follows:

fun makeSingletonSet x = IntSet {

contains = fn y => y = x,

isSubsetOf = fn IntSet S =>

#contains S x

}

Is this solution—or similar encodings [19] in
other languages—an adequate replacement for ob-
jects? Clearly it is a service abstraction, and therefore
realizes all the benefits that objects obtain from their

20Thanks to Adam Chlipala for suggesting this encoding style.

service abstraction nature. On the other hand, ML does
not provide direct language support for service ab-
stractions, e.g. via class and method constructs; this
is instead an encoding, and that involves tradeoffs. In
the example above, the drawbacks include some ver-
bosity and awkwardness, caused by the need to wrap
and unwrap the IntSet datatype to get at the record
inside, and the encoding of methods by binding first-
class functions to fields. There are potential advantages
too—for example, we can avoid some type annotations
due to the type inference provided by Standard ML.

For programs that have only incidental need of ser-
vice abstractions, such encodings may be adequate or
even desirable. On the other hand, it is my anecdo-
tal observation that few object-oriented programmers
find such encodings acceptable. While the GObject en-
coding used by GTK does have a significant user base,
it is painfully verbose—to the extent that the Vala21

language and the GObject Builder preprocessor22 were
developed to allow GTK/GObject developers to write
higher-level object-oriented code, which is then trans-
lated into C code compatible with GObject. This sug-
gests that direct language support for service abstrac-
tions is almost a requirement for programs that are ex-
pected to benefit significantly from their use. Let us
now therefore look at what kind of software requires
a significant use of service abstractions, and whether
that class of software is important.

4. The Importance of Interoperability

So far I have argued that objects provide a form of
extension in which extensions are interoperable, and
that this form of extension can be achieved in other
technologies only with service abstractions that closely
simulate the essence of objects. Does this matter?

To answer this question, let us return to the idea that
objects are focused on abstractions for high-level pro-
gram organization. This suggests that we study how
extensibility and interoperability are used in high-level
software design. We will first review the theory ex-
plaining how modular extensibility can facilitate soft-
ware change. Second, we will look at how interopera-
ble extensions are leveraged by software frameworks
in order to provide a higher-level form of reuse com-
pared to libraries. Third, we will look at how frame-
works facilitate software ecosystems, which constitute
some of the most high-value software we see today.

Let us first consider the theory of how modular ex-
tension facilitates software evolution. The need for a
software system to support new, unanticipated imple-
mentations of an abstraction was discussed in Parnas’s

21 https://wiki.gnome.org/Vala

22 http://www.jirka.org/gob.html – developed because
“writing a fully featured GObject is a hassle”

seminal paper on the criteria to be used in decompos-
ing systems into modules [26]. Parnas’s argument has
become a pillar of software design: nearly all software
must change over time, so a software system should be
decomposed in a way that hides (i.e. isolates) decisions
that are likely to change. The implication is that when
change comes, it can be accommodated by providing
a new implementation of the abstraction captured by
the module’s interface.

So extension is important for facilitating software
evolution. However, is the interoperability of exten-
sions necessary in practice, beyond examples such as
widgets?

4.1 Software Frameworks

To consider whether interoperation between extensions
is commonly needed, let us turn our attention next to
software frameworks. A software framework is “the
skeleton of an application that can be customized by
an application developer” [15]. This customization oc-
curs when the developer “supplies it [the framework]
with a set of components that provide the application
specific behavior” [16]. These components are imple-
mentations of “abstract designs” defined by the frame-
work; thus frameworks inherently require extensible
abstractions.

How do frameworks differ from more well-known
approaches to reuse, such as libraries? While libraries
typically provide reusable primatives such as func-
tions and data structures, frameworks provide archi-
tectural reuse [10, 14, 15]: reuse of the overall design
of an application, along with code that realizes that de-
sign. This reused code may include architecturally im-
portant abstractions (typically interfaces), default im-
plementations of those abstractions, and glue code that
ties the abstractions together and allows them to com-
municate. The architectural reuse provided by frame-
works is inherently higher-order in nature, because the
framework code invokes extensions provided by the
application.23

The importance of frameworks.Why are frameworks
interesting to study? First, because the architectural
reuse they provide is unique and important, both in
theory and in practice, and second, because as we will
see, many frameworks would not be possible without
the technical benefits provided by service abstractions.

Consider first the theoretical benefits of frameworks
in design. Frameworks support reuse at an architec-
tural granularity, which is larger than classes:

[Frameworks] provide a way of reusing code
that is resistant to more conventional reuse at-

23This is sometimes called the Hollywood principle: “don’t call us,
we’ll call you” [33].

tempts. Application independent components
can be reused rather easily, but reusing the edi-
fice that ties the components together is usually
possible only by copying and editing it. [16]

Johnson and Foote are arguing that the reuse pro-
vided by frameworks is different in scale from the
reuse provided by libraries. The higher-order nature of
frameworks allows the reuse not just of a data struc-
ture or a set of routines, but of infrastructure that ties
together many large-scale plugin components. Devel-
opers use frameworks because the larger-scale reuse
they provide can reduce development times dramat-
ically; Johnson suggests frameworks may reduce de-
velopment effort by an order of magnitude [15].

Because of the economic benefits of larger-scale, ar-
chitectural reuse, frameworks have become a critical
part of the modern application landscape. Web-based
software is almost invariablywritten on top of aweb or
application framework such as Rails, Django, Spring,
.NET, Servlets, or EJB. The popularity of the Ruby lan-
guage, in fact, appears to derive mostly from the pop-
ularity of Rails. In the mobile space, every Android ap-
plication must build on the Android framework. The
dominant platform for Java tools is the Eclipse frame-
work. Virtually all graphical user interfaces are de-
veloped using GUI frameworks such as AWT, SWT,
Swing, Qt, and GTK+. Frameworks such as Google’s
MapReduce and Apache Hadoop are ubiquitous in big
data applications.

Do frameworks need objects? Let us now consider
whether frameworks can be defined without the ser-
vice abstractions (e.g. as provided by objects). I first
examine the definition of unique design leverage pro-
vided by service abstractions described earlier: the
ability to define nontrivial abstractions that are mod-
ularly extensible, where instances of those extensions
can interoperate in a first-class way. I evaluate whether
frameworks require each part of this definition, both
in the abstract and with respect to the example widget
framework.

Abstraction. As described by Johnson and Foote,
frameworks unquestionably define abstractions [16]:
it is these abstractions that are extended by applica-
tions in order to provide application-specific behav-
ior. While some of the abstractions defined by frame-
works may be simple observers that could be imple-
mented with a first-class function, many frameworks
define nontrivial abstractions. In Apache’s Pivot UI
framework, the equivalent of the widget interface has
nine methods dealing with three separate concerns; it
is not trivial. Even the Mapper and Reducer interfaces
in Hadoop have three methods each—in addition to

the functions the respective interfaces are named af-
ter, they provide methods for configuration and tear-
down.24 Every major framework of which I am aware
similarly defines abstractions that are similarly rich, if
not much richer.

Extensibility. The abstractions a framework defines
are designed to be extended in order to customize
the framework. Meyer’s open-closed principle [24] is
a cardinal rule of framework extension: the applica-
tion should extend the framework without modify-
ing its code. For example, when Apache’s Pivot UI
framework is used, a binary JAR library stores the
framework code. Although the code is available in this
open-source project, application developers would be
ill-advised to modify it; if they did, they would find
it more difficult to incorporate framework enhance-
ments and bug fixes into their applications in the fu-
ture. Thus, extension of framework abstractions must
be modular and should not change the framework
source code.

Furthermore, frameworks typically must support
unanticipated extension as well. For example, when
one organization defines a framework, it is unrealis-
tic to assume that organization can anticipate all the
extensions that strangers will make, because it does
not know the particular problems that the extensions
are intended to solve. The designers know the frame-
work will be extended somehow, and the abstractions
the framework provides define the kinds of extensions
that are possible, but the designers cannot anticipate
the details of specific extension implementations.

Interoperability and uniform treatment. It is possi-
ble to design a framework, achieving all the important
reuse benefits that frameworks typically bring, with-
out requiring interoperability or uniform treatment of
different implementations of the framework abstrac-
tions. Such a framework might be instantiated with
exactly one implementation for each customizable ab-
straction it defines. In this case, the framework could
be implemented using modules or abstract data types.

The FoxNet system [2], an implementation of a net-
work protocol stack in Standard ML, is a concrete ex-
ample of this scenario. FoxNet defines a family of ab-
stractions using an ML signature called PROTOCOL,
with subsignatures for transport protocols such as TCP
and UDP as well as protocols from other layers of the
network stack, including IP, DNS, ETHERNET, etc. Dif-
ferent modules implement these abstractions, and an
application can be formed by composing the abstrac-
tions together. In the FoxNet design, implementations

24 see http://developer.yahoo.com/hadoop/tutorial/

module5.html for an example of how this may be useful

of TCP and UDP can be substituted for one another at
compile time, but it is not possible to instantiate one of
each and choose between them at run time: the abstract
data types they define are different. Thus the uniform
treatment criterion is not met by this framework—and
indeed, FoxNet did not require anything like objects
for its implementation.

Most frameworks, however, do rely critically on
uniform treatment and/or interoperability.We have al-
ready seen that this is important for a UI framework
such as Apache’s Pivot: the user must be able to hierar-
chically compose widget instances at run time, which
requires a composite widget to store different kinds of
child widgets in a data structure, treating them uni-
formly. Furthermore, the operation to add a child to a
composite widget is a binary method, requiring direct
interoperability.

Typically, frameworks are not like FoxNet: rather
than being limited to a single implementation for
each abstraction, they accommodate many implemen-
tation plugins for each extension point. As the frame-
work typically owns the application’s thread of con-
trol, it must invoke operations of plugins at appropri-
ate times. To do this, the frameworkmust keep the var-
ious plugins in some kind of data structure and, when
some event happens, determine which of the plugins
to invoke. Any framework that does this is relying on
uniform treatment of implementations, and must be
implemented using service abstractions.

Similarly, many frameworks exist specifically in or-
der to enable plugins to interact and build on one
another. This is true of UI frameworks, in which
programmer-defined widgets can be dynamically se-
lected to be composed (using the Composite pattern)
or wrapped (using the Decorator pattern [11]) by
framework-defined widgets. This dynamic selection
of a programmer-defined plugin to interoperate with
framework-defined implementations also requires in-
teroperability of implementations, and must be imple-
mented using service abstractions.

4.2 Interoperability in Particular Frameworks

Let us now consider additional examples of frame-
works, illustrating the degree to which they require the
unique interoperability of extensions provided by ser-
vice abstractions.

Servlets. The Java Servlets framework supports the
implementation of dynamic web pages. A simplified
Servlet interface is shown in the next column. The
interface encapsulates several concerns. The most im-
portant concern is responding to web requests, in the
service method. Other concerns include lifecycle
methods init and destroy which provide mecha-
nisms for the servlet to initialize itself and clean up re-

sources, respectively; and getServletInfo, which is
useful for administration of the web server on which
the servlets are installed. Although the heart of the ab-
straction is the service method, the other concerns
are quite important in practice; the abstraction is not
trivially reducible to a single function.25

interface Servlet {

void service(Request req, Response res);

void init(ServletConfig config);

void destroy();

String getServletInfo();

ServletConfig getServletConfig();

}

The point of Servlet is to support unanticipated
extensions of a web server without changing the web
server’s code. Furthermore, the web server may have
several servlets installed, which respond to requests
at different URLs. These servlets must necessarily be
stored in a data structure mapping each URL to the
appropriate servlet, thus requiring uniform treatment
of servlet extensions. Therefore, we observe that the
full functionality of the servlet framework cannot be
realized in a systemwithout using service abstractions.

LLVM. The Low-Level Virtual Machine (LLVM) is “a
compiler framework designed to support transparent,
lifelong program analysis and transformation for arbi-
trary programs” [20]. As a framework, it is designed
to be extended with new analysis and transformation
passes, and we are interested in whether this extensi-
bility support requires service abstractions. LLVM in-
cludes a FunctionPass abstraction, defined using a
C++ class whose simplified interface is shown below.
Clearly, FunctionPass is a rich abstraction, support-
ing methods not just for running an analysis or trans-
formation pass (runOnFunction), but also a pair of
methods for initialization and cleanup, a method for
printing analysis results in a human readable form,
and a way of specifying usage constraints such as
which other analyses this analysis depends on.

class FunctionPass {

virtual bool runOnFunction(Function &F);

virtual bool doInitialization(Module &M);

virtual bool doFinalization(Module &M);

virtual void print(raw_ostream &O...);

virtual void getAnalysisUsage(Usage &I);

}

25 Interestingly, this is done with a single function in the Rails frame-
work. However, Rails is well-known for its “convention over config-
uration” philosophy, which makes it very easy to use if your appli-
cation can fit into Rails’s design—and almost impossibly awkward
if your application is a poor fit. This suggests that Rails is optimizing
for the most common case, while the servlet framework is trying to
achieve broad coverage across many kinds of applications.

While the LLVM provides many analyses, it is in-
tended to be extended with analyses for language-
specific virtual machines built on the LLVM frame-
work. These extensions should not require modifica-
tion of the underlying LLVM, and must interoperate
with other custom and built-in extensions. For exam-
ple, a PassManager class stores a list of passes and
schedules them to run in an efficient order. Because it
stores passes in a list, PassManager can only be im-
plemented if FunctionPass is a service abstraction.

Linux and other C frameworks. GTK+ has already
been mentioned as an example of an GUI framework
that needs service abstractions for extensibility—but
it turns out the Linux operating system can also be
viewed as a framework that uses service abstractions.
Robert Love states:

People often miss this, or even deny it, but there
are many examples of object-oriented program-
ming in the kernel. Although the kernel devel-
opers may shun C++ and other explicitly object-
oriented languages, thinking in terms of objects
is often useful. The VFS [Virtual File System] is a
good example of how to do clean and efficient
OOP in C, which is a language that lacks any
OOP constructs. [23]

Linux uses service abstractions in order to support
multiple file systems. There are vtable-like structures
such as file operations that are used to dispatch
operations such as read to the code that implements
file reading in a particular driver. Files in Linux are
a rich abstraction, supporting 13 different operations
in Linux version 2.4.2, and Linux is intended to sup-
port extension with new file systems. These exten-
sions must interoperate: directories from one file sys-
temmay have symbolic links to files in another file sys-
tem, for example. Linux file systems also define service
abstractions—with dispatch tables—for the mounted
file system itself (a superblock), as well as inodes and
directory entries.

The use of objects in Linux is not limited to files—
there are on the order of 100 different object struc-
tures similar to file operations [6]. More broadly,
service abstractions are used not just in Linux and
GTK, but also in several other C-based framework set-
tings. For example, the GStreamer multimedia frame-
work uses the same object system as GTK+ to sup-
port plugins for different container formats, streaming
protocols, and codecs, among others. GStreamer sup-
ports plugins written by strangers, and plugins can be
loaded and selected dynamically based on the media
type being played.

Discussion. These frameworks and framework-like
systems are not anomalies. Every framework of which
I are aware, with the exception of FoxNet, relies on
abstractions like these. It is fair to say that without a
service abstraction mechanism, software frameworks
as we know them, with all of their economic impact,
would not exist.

4.3 Interoperability in Software Ecosystems

Interoperability is important, not only because of the
reuse provided by frameworks, but also because it sup-
ports the development of software ecosystems. A soft-
ware ecosystem is a “set of software solutions that en-
able, support, and automate the activities...[of] actors
in the associated social or business ecosystem...” [4].
Examples of software ecosystems include mobile plat-
forms such as iOS and Android, operating systems
such as Windows or Linux, application suites such as
Microsoft Office, tool platforms such as Eclipse, and re-
tail marketplaces such as Amazon’s.

Software ecosystems have enormous economic im-
portance because of network effects [17]: a platform
such as the iPhone becomes more valuable the more
people use it, and (critically for our purposes) the more
apps that are available on the platform. To consider the
value of networks, consider that in 2012, the largest
company in the world by market capitalization was
Apple, whose success is largely attributable to its con-
trol of the iOS ecosystem; and the four next technol-
ogy companies were Microsoft, IBM, Samsung, and
Google, each of which is notable for its central involve-
ment in one or more software ecosystems.26

Ecosystems may or may not be based on frame-
works in the sense that Johnson defines them, but they
have similar requirements for extensibility and inter-
operability. Bosch argues that extensibility is a criti-
cal success factor of both operating system-centric and
application-centric software ecosystems [4]. However,
it is also critical that independently developed exten-
sions interoperate. Interoperation of independent ex-
tensions is enabled in software ecosystems because
“the architecture provides a formalization of the rules
of interoperability and hence teams can, to a large ex-
tent, operate independently” [4].

Android. The Android platform illustrates the critical
need for interoperability in software ecosystems. One
of the benefits of Android is that user-defined apps can
substitute for system apps. For example, the Smartr
Contacts app27 provides the same functionality as An-
droid’s built in Contacts application, but adds features

26 Source: Financial Times Global 500 2012, available at
http://www.ft.com/intl/companies/ft500

27 https://www.xobni.com/download/android

such as contact synchronization, integration with Twit-
ter and Facebook, and an integrated history of inter-
actions. When another app, such as the phone dialer,
needs contact information, the user is asked which
contact manager to use, and the Smartr Contacts app
can be dynamically chosen. The ability to replace de-
fault apps with customized ones is notably used to de-
velop skins such as the recently announced Facebook
Home,28 which overrides many default elements of the
Android platform with Facebook-enhanced function-
ality.

Android is an interesting case because on the An-
droid platform different apps execute in different vir-
tual machine processes, so they are not directly using
object-oriented method calls to communicate. How-
ever, the processes nevertheless have an service-based
interface, in the sense that they communicate only via
messaging, and in the sense that different implemen-
tations of functionality (e.g. different app that can be
used to select a contact) are dynamically substitutable.

In addition to the abstract use of service abstrac-
tions in the inter-app Android framework, there is An-
droid framework code within each app that critically
depends on the service abstraction capabilities of ob-
jects. For example, the Android contacts application
makes its data available using a ContentProvider
object, a portion of whose interface is shown below.29

The ContentProvider abstraction is rich, consist-
ing of query, insert, update, and delete operations
(among others). Different kinds of data need different
ContentProviders in order to support queries and
other operations in a way that is appropriate to that
kind of data. An app that manages several kinds of
data can therefore define severalContentProviders,
and the Android framework must manage them all in
a data structure in order to determine which to use
when a request for content comes in. Thus, evenwithin
the application, content providers (and many other ab-
stractions) require the features provided by service ab-
stractions.

class ContentProvider {

abstract Cursor query(Uri uri, ...);

abstract int insert(Uri uri,

ContentValues vals);

abstract Uri update(Uri uri,

ContentValues vals,

...);

abstract int delete(Uri uri, ...);

... // other methods not shown
}

28 https://www.facebook.com/home

29 ContentProvider is actually a class that provides some reusable
method implementations (not shown) to subclasses, but the abstract
methods shown here form a subinterface that all content providers
must implement.

This is neither an isolated nor an unimportant ex-
ample. The content provider functionality is the most
important means by which applications in Android
share data; it is critical to the economic network effect
where the availability of one app on Android makes
another app more valuable. Nor is the use of service
abstractions incidental. I am not merely observing that
Android uses objects for this abstraction; I am argu-
ing that any Android-like framework that provides support
for content providers must do so via service abstractions.
That is because the framework must accept multiple
implementations of the content provider from the ap-
plication, and it must store these implementations uni-
formly in a data structure; this is possible only if con-
tent providers are service abstractions.

Now, a non-OO app platform might force each app
to provide a single content provider implementation
that serves all the different kinds of content from that
app, but this solution sacrifices the (substantial) reused
code in the framework that dispatches incoming re-
quests to different content providers according to the
type of content requested. So without the use of ser-
vice abstractions, each app would have to reimple-
ment this code—ultimately making app interoperabil-
ity more difficult, and thereby lowering the value of
the entire ecosystem. This illustrates concretely how
objects facilitate reuse: the service abstraction provided
by objects is what enables the content provider frame-
work code to be reused.

Microsoft COM applications and Office plugins.Mi-
crosoft COM is an interface standard that enables ap-
plications such as Microsoft Word to communicate
with each other and with plugins written by strangers.
An ecosystem has grown up in particular around Mi-
crosoft’s Office suite, with many third-party develop-
ers writing Office plugins, often using Visual Basic to
conveniently provide a GUI for the plugin. These plu-
gins can be dynamically added to Office, where they
coexist with the native Win32 Office widgets. Many
Pffice plugins either build on other plugins, or incor-
porate GUI widgets provided by third parties. The
result is one of the most robust component market-
places in the software industry. Cross-plugin, cross-
widget, and cross-language interoperation could not
be achieved without the service abstractions provided
by Microsoft’s Component Object Model (COM).

Coppit and Sullivan also studied the reuse achiev-
able based on the COMmodel and its extensions, OLE
and Active Document [9]. Observing that component-
based software development has largely been elusive,
they explore a model in which the components are
not simply libraries, but are full-fledged applications

themselves, developed by different companies.30 The
model was successful, partly due to business factors
(as with other ecosystems), but also due to technical
factors such as the interoperability and shared archi-
tecture provided by COM and related standards.

4.4 The Architectural Flexibility of Objects

Recently, Bracha et al. proposed the Newspeak module
system, in which every module is parametric in its de-
pendencies [5]. This design is intended to reduce cou-
pling betweenmodules, and at the same time subsume
ideas like dependency injection.

The Newspeak design stands in contrast to the dis-
cussion of fully functorized (i.e. fully parameterized)
modules in Harper and Pierce’s chapter on mod-
ule systems [12]. Harper and Pierce state that “Ex-
perience has shown this to be a bad idea: all this
parameterization—most of it unnecessary—gives rise
to spurious coherence issues, which must be dealt with
by explicitly (and tediously) decorating module code
with numerous sharing declarations, resulting in a net
decrease in clarity and readability for most programs.”
Why is this not a problem for Newspeak?

The obvious answer is that Newspeak is not stati-
cally typed, and sharing declarations are about mak-
ing sure static types that have to match up, do. But
a more subtle examination shows that the problem of
proliferating sharing declarations exists only because
of abstract types. The problem occurs when we have a
module M that defines an abstract type t, and two dif-
ferent libraries L1 and L2 depend on module M. The
abstract type t may then show up in the signature of
L1 and L2. Now imagine that we have a program P
that is intended to import L1 and L2, but we wish to
make it parametric in the actual implementation of L1
and L2.We need the type t that appears in L1 and L2 to
be the same, so that we can pass values of the abstract
type back and forth between L1, L2, and P; in ML, this
constraint is enforced by a sharing declaration. These
declarations proliferate, because if we have n abstract
types, each of which is shared between m imported
modules, we will have O(n×m) sharing declarations.

What if all abstractions used object types, rather
than abstract data types? If we take Cook’s definition
of objects to be definitive, then an object type does
not denote a particular, but hidden, representation; in-
stead, an object type primarily characterizes the set of
methods to which an object responds (i.e. a service ab-
straction). This notion of object type is also reflected in
typed object calculi, many of which use sets of meth-

30The case study was done with Microsoft Word and Shapeware’s
Visio. Ironically, Microsoft purchased Visio shortly after the case
study was completed.

ods as types [1].31 The definition of the type in the sig-
nature of each module says what the methods are, so
there is never any question about whether types from
two imported modules match. Thus sharing declara-
tions are unnecessary. Hence, the use of abstract data
types rather than object types increases coupling be-
tween modules and impedes the flexibility of code.

The problem described above is roughly analogous
to “DLL Hell,” in which a program needs to use two
libraries, but those libraries depend on different ver-
sions of a third library [30]. Object designs can still
suffer from these problems in cases where incompat-
ible changes are made to an object’s interface between
versions. But where the core interface is compatible,
objects sidestep the problem entirely, because differ-
ent implementations of the same (pure) object inter-
face will always be interoperable at the type level. To
the extent that Java programs suffer from an analogous
“JAR Hell,” it may be attributable in part to the fact
that Java’s object model is not pure, but rather, as dis-
cussed by Cook, it contains some support for abstract
data types as well.

5. Conclusion

In summary, I have argued that objects provide a
unique form of service abstraction that supports in-
teroperable extensions. This interoperability cannot be
duplicated in other programming paradigms without
likewise creating service abstractions, thus simulating
the essence of objects. Furthermore, service abstrac-
tions are not just of academic interest—they are the
foundation of software frameworks and ecosystems,
which arguably constitute the richest form of soft-
ware reuse currently known, and the most significant
source of value in the software industry, respectively.
Assuming that the market’s adoption of programming
language technology is even somewhat rational over
the long term, these forces ought to be sufficient to
make direct language support for service abstractions
inevitable. This, in turn, explains the rise of object-
oriented programming languages: they represent the
only class of programming languages to date that pro-
vides good support for service abstractions.

Implications. An implication for future language de-
signers is that if a language is to be a suitable founda-
tion for a software ecosystem, or indeed to support ar-
chitectural reuse in any application domain, it should
have good support for interoperable extensions—and
therefore for service abstractions. Left open, for now,

31While my argument about modularity here focuses on static types,
note that the run-time type of an object in a dynamic language can
also often be thought of as a set of methods: you get a method-not-
understood error if you call a method not in the set.

is what form that support should take: row polymor-
phism with subtyping as in OCaml, Go’s interfaces,
and delegation as in Self appear to support interopera-
ble extension just as well as the inheritance constructs
common to today’s popular industrial languages. Fur-
thermore, an argument for object-orientation need not
be an argument against other paradigms. Good sup-
port for service abstractions is compatible with good
support for ADTs, for functional programming, and
for many other desirable language features.

Predictions. A scientific hypothesis should not only
explain, but also make testable predictions. In that
spirit, I offer two predictions suggested by the hypoth-
esis described above concerning the reasons behind the
success of objects. The following hypotheses can be
tested either by experiment, or in the natural course of
the future evolution of software, languages, and tools:

• Lightweight, first-class modules are service abstrac-
tions in that they provide unanticipated extension
of rich abstractions, and interoperability of the ex-
tensions via module signature subtyping. If such a
module system is added to a language, such as Stan-
dard ML, that does not currently have good sup-
port for objects, framework-like designs will begin
to show up in the enhanced language.

• A practical, statically typed object-oriented lan-
guage can be designed to support Newspeak-style
modules that are parametric in their dependen-
cies, provided that all types are given in an object-
oriented, rather than an ADT, style.

Future work. There is much more to be done in explor-
ing the potential benefits (or lack thereof) of objects. I
have focused on technical benefits, but non-technical
benefits (e.g. of a psychological nature) may be impor-
tant too. Furthermore, I have focused on service ab-
stractions as representing the core of objects, but in
doing so I have neglected other interesting features of
typical object-oriented programming languages. Tem-
pero et al. have shown that a broad range of object-
oriented programs use inheritance frequently and in
non-trivial ways [31]; more research is needed to bet-
ter understand the benefits (and possible drawbacks)
of inheritance, and to explain why it is so widely used.

It is my hope that the argument, hypotheses, and
predictions above will be further tested and refined in
future research, ultimately contributing to a broader
and deeper understanding of the role service abstrac-
tions play in modern software systems.

Acknowledgments

I thank William Cook for inspiring this essay with his
earlier one, and the many people with whom I have
informally discussed the arguments in this essay. I also
thank Marwan Abi-Antoun, Luı́s Caires, Adam Chli-
pala, Karl Crary, Ray Dillinger, Richard Gabriel, David
Garlan, Alec Heller, Stefan Holdermans, Ralph John-
son, James Koppel, Darya Kurilova, Du Li, Michael
Maass, Gregory Malecha, Sean McDirmid, Jeff Meis-
ter, Matthew Might, Scott McMurray, Brad Myers,
Robb Nebbe, Cyrus Omar, Simon Peyton-Jones, Alex
Potanin, Anton van Straaten, Éric Tanter, Philip
Wadler, Todd Wilson, John Zabroski, and the anony-
mous reviewers for comments and suggestions on ear-
lier drafts of this essay.

The writing of this essay was supported by the
U.S. National Science Foundation under grant #CCF-
1116907, “Foundations of Permission-Based Object-
Oriented Languages,” the U.S. Department of Defense,
and the Air Force Research Laboratory.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-
Verlag, 1996.

[2] E. Biagioni, R. Harper, and P. Lee. A network protocol
stack in Standard ML. Higher Order Symbolic Comput., 14
(4):309–356, Dec. 2001.

[3] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Ste-
fik, and F. Zdybel. CommonLoops: Merging Lisp and
object-oriented programming. In Object-Oriented Pro-
gramming Systems, Languages, and Applications, 1986.

[4] J. Bosch. From software product lines to software
ecosystems. In Software Product Line Conference, 2009.

[5] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai, W. Mad-
dox, and E. Miranda. Modules as objects in Newspeak.
In European Conference on Object-Oriented Programming,
2010.

[6] N. Brown. Object-oriented design patterns in the kernel,
part 1. Linux Weekly News, 2011. URL http://lwn.

net/Articles/444910/.

[7] K. Bruce, L. Cardelli, and B. Pierce. Comparing object
encodings. In Theoretical Aspects of Computer Software.
1997.

[8] W. R. Cook. On understanding data abstraction, revis-
ited. In Onward! Essays, 2009.

[9] D. Coppit and K. J. Sullivan. Multiple mass-market
applications as components. In International Conference
on Software Engineering, 2000.

[10] M. Fayad and D. C. Schmidt. Object-oriented appli-
cation frameworks. Commun. ACM, 40(10):32–38, Oct.
1997.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

[12] R. Harper and B. C. Pierce. Design considerations for
ML-style module systems. In B. C. Pierce, editor, Ad-
vanced Topics in Types and Programming Languages. MIT
Press, 2004.

[13] T. Hoare. Null references: The billion dollar mistake. In
QCon London, 2009.

[14] C. N. C. Jaspan. Proper plugin protocols. Carnegie Mel-
lon University Ph.D. Dissertation, available as technical
report CMU-ISR-11-116, 2011.

[15] R. E. Johnson. Frameworks = (components + patterns).
Commun. ACM, 40(10):39–42, Oct. 1997.

[16] R. E. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2):22–35, 1988.

[17] M. L. Katz and C. Shapiro. Network externalities, com-
petition, and compatibility. The American Economic Re-
view, 75(3):424–440, 1985.

[18] A. C. Kay. The early history of Smalltalk. In History of
programming languages—II, 1993.

[19] O. Kiselyov and R. Lämmel. Haskell’s overlooked object
system. Manuscript available at http://arxiv.org/
abs/cs/0509027, 2005.

[20] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In
Code Generation and Optimization, 2004.

[21] O. Lehrmann Madsen, B. Møller-Pedersen, and K. Ny-
gaard. Object-oriented programming in the BETA program-
ming language. ACM Press/Addison-Wesley, 1993.

[22] B. Liskov. A history of CLU. In History of programming
languages—II, 1993.

[23] R. Love. Linux Kernel Development (2nd Edition). Novell,
2nd edition edition, 2005.

[24] B.Meyer.Object-Oriented Software Construction. Prentice-
Hall, 1988.

[25] D. R. Musser and A. A. Stepanov. Generic program-
ming. In International Symposium on Symbolic and Alge-
braic Computation, 1988.

[26] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM, 15
(12):1053–1058, 1972.

[27] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data ab-
straction. In New Advances in Algorithmic Languages,
1975.

[28] A. Schwill. Cognitive aspects of object-oriented pro-
gramming. In IFIP WG 3.1 Working Conference “Integrat-
ing Information Technology into Education”, 1994.

[29] A. Stepanov. STLport: An interview with A.
Stepanov. Available at http://www.stlport.org/
resources/StepanovUSA.html.

[30] C. Szyperski. Greetings fromDLLhell. Dr. Dobbs Journal,
Oct. 1999.

[31] E. Tempero, H. Yang, and J. Noble. What programmers
do with inheritance in Java. In European Conference on
Object-Oriented Programming, 2013.

[32] D. Ungar and R. B. Smith. Self: The power of simplicity.
In Object-oriented programming systems, languages, and ap-
plications, 1987.

[33] J. Vlissides. Protection, part 1: The Hollywood principle.
C++ Report, Feb. 1996.

[34] P. Wadler and S. Blott. How to make ad-hoc polymor-
phism less ad hoc. In Principles of Programming Lan-
guages, 1989.

A. Supporting Data

As of 4/7/2013, LangPop.com’s top languageswere, in
order: C, Java, C++, PHP, JavaScript, Python, C#, Perl,
SQL, and Ruby. All of these languages except C and
SQL have object-oriented features. TheWikipedia page
on Object-Oriented Programming32 describes Java,
C++, JavaScript, Python, C#, and Ruby as being pri-
marily object-oriented languages; PHP and Perl have
object-oriented features but were designed (and are
still probably used) primarily for procedural program-
ming.

At the same date, the corresponding top languages
at the TIOBE index were, in order: C, Java, C++,
Objective-C, C#, PHP, (Visual) Basic, Python, and Perl.
All but C have object-oriented features, and I consider
all but C, PHP, Perl, and (Visual) Basic to be primarily
object-oriented.

32 http://en.wikipedia.org/wiki/Object-oriented_

programming

