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ABSTRACT

The Android platform is designed to support mutually un-
trusted third-party apps, which run as isolated processes
but may interact via platform-controlled mechanisms, called
Intents. Interactions among third-party apps are intended
and can contribute to a rich user experience, for example,
the ability to share pictures from one app with another. The
Android platform presents an interesting point in a design
space of module systems that is biased toward isolation,
extensibility, and untrusted contributions. The Intent mech-
anism essentially provides message channels among modules,
in which the set of message types is extensible. However,
the module system has design limitations including the lack
of consistent mechanisms to document message types, very
limited checking that a message conforms to its specifica-
tions, the inability to explicitly declare dependencies on other
modules, and the lack of checks for backward compatibility
as message types evolve over time. In order to understand
the degree to which these design limitations result in real
issues, we studied a broad corpus of apps and cross-validated
our results against app documentation and Android support
forums. Our findings suggest that design limitations do in-
deed cause development problems. Based on our results,
we outline further research questions and propose possible
mitigation strategies.

1. INTRODUCTION

The Android platform is designed for mutually untrusted
third-party contributions (‘apps’) based on the idea of mostly
isolating them from each other while allowing only restricted
forms of platform-controlled inter-process communication.
At the same time, interactions among third-party contribu-
tions are intended and contribute to a rich user experience,
for example, the ability to invoke a map with a specific con-
tribution from an app, or to share pictures from one app
with another. In contrast to platforms like WordPress or
Eclipse, third-party contributions have significantly fewer op-
portunities to interact with each other, which prevents many
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malicious interactions, but also significantly restricts tight in-
tegration and intended interactions, thus potentially limiting
developers and throttling innovation. The Android platform
presents an interesting design in a larger design space of mod-
ule systems that is biased toward isolation, extensibility, and
untrusted contributions. In this paper, we investigate how
developers interact with Android’s module system and its
inter-process-communication mechanisms, studying their lim-
itations to better understand the implications of the design
and opportunities for improvement regarding app interaction,
reuse, and evolution.

Android apps are modules that are executed in isolation
from each other in separate processes. The Android platform
provides a mechanism to exchange messages among modules
through an inter-process communication API with messages
coined Intents. The intent mechanism essentially provides
message channels among modules, in which the set of message
types is extensible. The current design of the Android module
system has the following potentially problematic decisions:

P1 To interact, multiple modules (potentially unknown to
each other and mutually distrusting) need to agree
on message types. While some message types are
documented by the platform, there is no consistent
mechanism of documenting, publishing, or negotiating
message types.

P2 Conformance to message type specifications is not
checked by the platform but left to individual appli-
cations; message parameters are sent by untyped key-
value maps. If an application sends a message without
the expected or with incorrect parameters, the receiving
module needs to resolve the problem. Combined with a
lack of consistent documentation, it can be difficult to
identify the expected message parameters for a sender.

P3 Modules cannot declare dependencies to other mod-
ules. Modules need to prepare for the possibility that
the messages they send are not received. In different
installations, different modules may receive a given
message (and may have different expectations toward
that message type).

P4 Modules and thus their expected message types may
evolve independently from each other. Combined with
the lack of versioning and conformance checking, inter-
actions may stop working with the update of a module
in a system.

In support forums such as Stackoverflow.com, we observe
many questions that relate to these design decisions. For ex-
ample, developers seek information about which parameters
to pass, or why certain messages stopped working after an



update. However, before suggesting concrete interventions or
alternatives to Android’s module system, our goal is to better
understand how developers use the module system and to
which degree the design decisions mentioned above surface
in issues. We statically analyze a corpus of 52535 Android
apps regarding how they use inter-process communication
and which message types they use and cross-validate our
results with other sources, such as documentation and posts
in support forums. We additionally studied the evolution of
6171 apps for which we have at least three revisions in our
corpus. Specifically, we ask the following five research ques-
tions regarding inter-app interactions, community processes
to agree on message types, and app evolution:

e Inter-app interactions
RQ1: How are message types specified in practice?
RQ2: How do developers use undocumented message
types?

e Community processes to agree on message types
RQ3: Are there message types that are received by
different apps?

RQ4: How do popular received message types emerge?

e App evolution
RQ5: Do apps frequently adopt new message types or
drop previously supported message types?

Our results indicate that developers want their apps to in-
teract with other apps but struggle with finding information
about third-party-contributed messages types. We find that
many third party developers do not document message types
and those who document, do in ad-hoc ways. Developers
fall back to various reverse-engineering approaches to extract
information about undocumented message types. Moreover,
we have also discovered that even though platform-defined
message types are commonly used, there are also a signifi-
cant number of third-party-contributed message types that
are adopted by multiple apps; such message types typically
involve dominant, popular apps and documentation. Fur-
thermore, adoption and removal of both received and sent
message types is a common phenomenon as apps evolve over
time. Combined with the lack of versioning and conformance
checking, removals of received message types pose serious
challenges for inter-app interactions and additions may re-
main underused or misused. Our results indicate several
implications of Android’s design decisions, and we suggest
paths toward mitigating them with future research.

While our study is about the specifics of the Android plat-
form, it can be considered as a case study in the larger context
of module systems for software ecosystems. Composing and
building upon more or less trusted third-party contributions
is a common theme across many software ecosystems, in-
cluding Eclipse, WordPress, node.js, R/CRAN, and many
others. Lessons learned from Android’s design will be useful
for making deliberate design decisions for module systems of
other software ecosystems.

In summary, we make the following contributions:

e We identify problems regarding inter-app interactions,
grounded in Android’s design decisions and evidence
from developer forums.

e We answer 5 research questions regarding inter-app
interactions, community processes to agree on message
types, and app evolution with data extracted from a
corpus of 52535 Android apps and from documentation
and support forums.

e We propose mitigation strategies to address identified

challenges without invasive changes to the Android’s
module system.

e We release a database (https://archive.org/details/
interapp) with all extracted facts from our corpus, al-
lowing others to study further aspects of inter-app
communication and app evolution.

2. APP COMMUNICATION CHALLENGES

Composing and building upon more or less trusted third-
party contributions is a common theme across many software
ecosystems, including Eclipse, WordPress, node.js, R/CRAN,
and many others. A software ecosystem is the interaction of
a set of actors on top of a common technological platform
that results in a number of software solutions or services [24]

At the heart of software ecosystems are technological
platforms that enable a variety of players including businesses,
developers, and users to interact with each other and develop
innovative solutions. A key component of these platforms is
a module system that allows software modules developed by
diverse developers to interact with each other. For instance,
in Android, modules interact with core framework of the
module system but also with each other through an inter-
app communication mechanism.

Android is designed to encourage inter-app interactions
in an extensible and reusable way. The documentation de-
scribes the design rationale as follows: Put together, the set
of actions, data types, categories, and extra data defines a
language for the system allowing for the expression of phrases
such as ‘call john smith’s cell’. As applications are added
to the system, they can extend this language by adding new
actions, types, and categories, or they can modify the behav-
ior of existing phrases by supplying their own activities that
handle them.

The goals of our study are to understand challenges that
developers face when working with inter-app communication,
to identify causes of those challenges, and to propose mitiga-
tion strategies. We derived the research questions in several
iterative cycles in which we searched developer forums for
issues that are frequently discussed and relate them to design
decisions in the Android platform (particularly the design
decisions that differ from other module systems; P1—/ listed
in the introduction). This way, we identified pain points and
relevant research questions that we explore systematically in
this paper. In Figure 1, we summarize how design decisions,
developer challenges, and research questions relate.

2.1 App Communication Mechanisms

To provide a context for developer problems, we give a brief
overview of the technical infrastructure that the Android
platform provides for inter-process communication, using
messages called Intents. Android distinguishes between ez-
plicit intents that are addressed toward specific components
and implicit intents that are dispatched by the platform
depending on the message’s name and attributes; multiple
apps might be able to receive the same message. Explicit
intents are generally used for communications within an
app, whereas implicit intents are generally used for inter-app
communication; hence, we focus on the latter.

Implicit intent messages have a name (action id) and
can have additional attributes (e.g., data types, URIs, and

"http://developer.android.com/reference/android/content /
Intent.html
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Figure 1: Design Decisions, Developer Challenges, and Research Questions: An Overview of our Study. Each
of the http links represents just one case for the related developer challenge.

extras, the latter is a set of key-value pairs). For example, a
message with the name android.intent.action.EDIT may
additionally describe its data type as an image and provide
an URI to access the image to be edited as well as the
name of the app sending it. The set of message types is
unlimited and messages are not formally specified. The
Android documentation lists a number of common message
names, and many of those are used frequently in built-in
applications, but developers can send and receive messages
with different names as well, and even send and receive
messages with the same name but different attributes. In
this paper, we distinguish between platform-defined message
types for message types documented in the official Android
developer documentation and third-party-contributed message
types for all others.

Mechanisms for sending and receiving messages are defined
by the platform, thus enabling inter-operability, reusability,
and evolution of apps. Apps send messages with a platform
API, including methods such as startActivity, startService,
and sendBroadcast [20]. Apps declare as part of their imple-
mentation which messages they are able to receive (called
intent filters). This is typically defined in the app’s manifest
file which specifies the messages the app accepts based on
the message types and message attributes. For each message,
the platform identifies all apps able to receive it; if multiple
apps can receive the message, the platform picks a receiver,
typically by asking the user.

2.2 Observed Challenges

In our exploratory search for developer challenges regarding
inter-app communication in developer support forums, we
have discovered a number of common challenges that seem
to be caused by platform design decisions and that motivate
our research questions. In the following, we highlight a few
representative cases and list the remaining ones with pointers
to research questions and Android’s design decisions in the
middle column of Figure 1.

Developers frequently search for information about mes-
sage types to communicate with other apps. A lack of docu-
mentation appears to be a common source of frustration, as
expressed in this support request: “Samsung’s TW Launcher
allows apps to create badge counts on app icons. This is
completely undocumented ANYWHERE and only a handful
of apps are using this (Facebook, eBay to name a couple).
How do you use this functionality to add a count to your
application icon?”? Similarly, many developers experience
runtime exceptions when providing incorrect or insufficient
message attributes, because there is no platform mechanism
to check correctness of messages. The differences between
expected and actual attributes can be subtle. For exam-
ple, “EXTRA_MAIL should correspond to a String[], not just
a String as shown here.” These developer challenges are
related to Android’s design decisions PI, P2, and P3 (see

*http:/ /stackoverflow.com/questions /20136483
3http:/ /stackoverflow.com/questions /8701634



Figure 1). We want to investigate these challenges further
and raise the following two research questions: RQ1: How are
message types specified in practice? RQ2: How do developers
use undocumented message types?

The ability of multiple apps to share message types is
an important feature of Android’s design that allows an
app to substitute for the behavior of another app. Again,
app developers struggle with identifying the message types
received by existing apps to mirror them. At the same time,
they seek ways to standardize and publish message types that
their own apps might create, as shown in this post: “Is there
an Intent-database where one can search for applications
that publish common services? For example I could have
an idea about a filter that could be applied to photos in a
photo-application, but under what intent should I publish
my filter so that other applications can find it and use it?7*
This phenomenon is related to Android’s design decision
P1 (see Figure 1). In order to investigate more closely the
current practices and mechanisms to document, publish, and
negotiate message types, we raise the following two research
questions: RQ3: Are there message types that are received
by different apps? RQ4: How do popular received message
types emerge?

Finally, apps and their expectations toward message types
may evolve independently from each other. Combined with
the lack of versioning and conformance checking, interactions
may stop working with the update of an app in the system.
We found developers struggling to cope with changes in app
message types on support forums: “Till few days ago, in order
to show to my users another user profile I used the following
solution: [...] The last facebook app update [...] made this
solution obsolete.”® This phenomenon is related to Android’s
design decisions P2, P3, P4 (see Figure 1). To investigate
the severity of these issues, we assess evolution characteristics
of sent and received message types across time and ask a
final research question: RQ5: Do apps frequently adopt new
message types or drop previously supported message types
over time?

3. METHODOLOGY

To study inter-app communication, we statically analyzed
which apps can receive and send which kind of message types
on a large corpus of apps. We complement the data with
qualitative analysis of documentation and support forums.

3.1 Corpus

To answer our research questions, we need a corpus of
apps that (a) is large enough to have a chance of identifying
common communication patterns and that (b) contains mul-
tiple revisions of apps to study their evolution. To that end,
we have collected a large corpus of apps and have combined
several strategies to collect historical revisions for a subset
of these apps. We collected apps from the following sources:

e We seeded our corpus with 75,000 app revisions col-
lected from the Play store by collaborators for prior
studies [3,34].

e We iteratively downloaded free apps from the Play
store with an automated script. The script checks
the availability of new revisions of apps in our corpus
and downloads them. Subsequently, the script would

*http:/ /stackoverflow.com/questions /5290443
®http://stackoverflow.com/questions/13107857

randomly navigate the top apps in each category and
download up to 30 apps that are not in our corpus. We
executed the script daily from Jun. 2015 to Jan. 2016.

e We downloaded all apps from the open-source app store
F-Droid.® In contrast to the Play store, old revisions
are also available on F-Droid, which we collected as
well. In total, we downloaded 8935 revisions of the
1740 apps in F-Droid.

e We extracted apps from seven factory images that
Google provides for its own phones, ranging from im-
ages for Android 2.3.7 to 5.0.2. Extracting apps from
older images provided access to historic revisions of
standard apps on the Android platform, including open-
source apps such as Contacts and Calendar and closed-
source apps such as Chrome and YouTube.

In total, our corpus includes 52535 unique apps. For 6171
of those apps, we were able to collect 3 or more revisions; for
659 apps, we collected more than 7 revisions.

3.2 Analyzing Inter-App Communication

To analyze which apps can receive and send which kinds
of messages, we used an existing static analysis tool IC3 [30],
which was designed initially to detect security-relevant in-
formation flow across apps. IC3, similar to its predecessor
Epicc [31], statically analyzes the app’s byte code and man-
ifest files to identify which intent filters are declared (i.e.,
which message types an app can receive) and which intents
(both explicit and implicit) are sent (i.e., which message
types an app can send). IC3’s analysis is inter-procedural,
flow- and context-sensitive; it can identify sent messages
including data types and extras for most cases. For received
messages, it identifies only message types as declared in the
app’s manifest file, which does not necessarily include details
about all attributes. We investigated this tool and found it
effective for our purposes.

We analyzed 88353 app revisions of our corpus with IC%
and stored the results in a database for further analysis. The
analysis timed out (we terminated after 30 minutes) for 173
app revisions, leaving us with 52535 unique apps and a total
of 88180 revisions for our study.

3.3 Other Sources

To supplement and cross-validate our results, we comple-
mented data gathered from statically analyzing apps with a
(mostly manual) analysis of support forums and online docu-
mentation. For instance, we searched for documentation of
a sample of commonly used message types and investigated
support forums for hints about how developers gather infor-
mation about undocumented message types. We will describe
the corresponding analysis and sampling steps below.

4. INTER-APP INTERACTIONS

As discussed above, module developers want to implement
inter-app interactions, but repeatedly struggle with imple-
menting inter-process communication correctly. Multiple
apps need to agree on shared message types, both when call-
ing and receiving messages, which includes not only a name
(‘action identifier)’, but also various untyped and sometimes
optional parameters (‘data type’, ‘extras’, etc.). As message
types are not specified or checked by the platform and an
app’s expectations toward a message type may change over

Shttps://f-droid.org



time, developers often report difficulties in developing rich
interactions with other apps. In this section, we explore two
questions regarding community practice in documenting and
discovering message-type details.

RQI: How are message types specified in practice?

Android does not provide any formal mechanism or tooling
for documenting message types, including their parameters,
expected by an app or even multiple apps. In contrast
to many other ecosystems, a structured or tool-supported
mechanism for specifying message interfaces (e.g., comparable
to JavaDoc for documenting Java interfaces, to Eclipse’s
extension point schema, or to WSDL for specifying web
services) does not exist in Android. Instead, we investigate
the documentation of a large number of commonly used
message types.

We analyzed the use of messages in our corpus of Android
apps to identify the names of message types (‘action iden-
tifier’) that are used by most apps in our corpus. We first
collected the 300 message-type names that the most apps
in our corpus can receive (each receivable by at least 10 or
more apps in our corpus) and the 300 message-type names
that the most apps in our corpus send (each sent by more
than 6 apps in our corpus), resulting in a total of 522 distinct
message-type names.

In an automated process, with a simple text search, we
identified all message types that are documented as part
of the official Android documentation (at http://developer.
android.com and https://developers.google.com/android/):
203 out of the 522 considered message types are platform-
defined, whereas we classify all others as contributed message
types. From the contributed message types, we randomly
sampled 100 message types for manual analysis. For each
message type, we searched the message type’s name using
standard web search engines. We used a wide definition of
documentation, including more formal documentation as well
as blog posts and publicly available example programs.

All message types automatically classified as platform-
defined are described in the platform documentation. Among
these, 41 commonly used platform-defined message types
are centrally documented in particular detail, specifying all
parameters including message-type name, data types, and
extras, whereas all others are documented as part of the corre-
sponding API; for example, Bluetooth-related message types
are documented with the Bluetooth API documentation.”

In our sample of popular contributed message types, we
found documentation for 45 of 100 message types. For 30 mes-
sage types, the app’s developer published documentation on
their personal website; for 5 message types, a third party
documented the message type, for example on a blog; and
for 10 message types, the source code of an app that imple-
ments the message type was available as a reference. We
observed that developers used a variety of ways to publish
message-type documentation. In 13 of the 45 instances, doc-
umentation followed a pattern similar to JavaDoc, describing
message names and corresponding parameters; in 14 cases,
message names and parameters were described in a tutorial
with sample code; in 8 cases, sample code about how to send
or receive a message was published; whereas in the remaining
10 cases, the source code of apps using the message was the

"http://developer.android.com/reference/android/
bluetooth/BluetoothAdapter.html

Type of documentation Number of cases in our sample

Message type and extras

with types and descriptions 13
Message type and sample code 8
Tutorial and sample code 14
App source code only 10
Undocumented 55

Table 1: Documentation of third-party-contributed
message types

only source of documentation.

Looking for a relationship between documentation and
popularity of contributed message types in our sample, we
found that documented messages types were received by more
apps (36 apps on average receiving the sampled documented
contributed message types versus 19 apps for undocumented
contributed message types; statistically significant with p <
0.01 according to a t-test), but not necessarily called by
more apps (51 vs 77 apps on average, but without clear
trends, p > 0.5). We found both documented message types
implemented by only 10 apps and undocumented message
types implemented by over 100 apps. We conjecture that
documentation contributes to the popularity of message types
but is likely not the driving factor.

RQ2: How do developers use undocumented message
types?

Given that a large number of contributed message types
were not visibly documented despite some popularity with
developers, we further searched for clues about how devel-
opers cope with such a lack of specification. In addition
to the discussions uncovered when framing the problem in
Section 2.2, we further searched in support forums for the
55 undocumented message types and identified six corre-
sponding discussions on Stackoverflow and XDA.

We identified the following strategies:

e [xtracting manifest files and decompiling the source are
common strategies to extract additional information
about a message type from an app’s implementation
(which we also used to gather data about our corpus).
The manifest file will provide the names of message
types an application can receive, whereas the code can
provide more details about which message parameters
are accessed or how messages are sent within an app.
For example, the apktool for extracting manifest files
was mentioned in a question about message types sup-
ported by the Facebook app.®

o Other apps that implement the same message type can
serve as reference for identifying message-type informa-
tion, thus developers build on the reverse engineering of
the work performed by others. For example, developers
have analyzed how Sony’s email app provides badges to
Sony’s launcher, which was otherwise undocumented.’
Developer discussions on support forums should not,
however, be confused with the documentation of the
message types by third party blogs mentioned earlier.
While third party blogs provide information in a rela-
tively structured way, support forums generally provide
workarounds for problems in a specific context that may

Shttp:/ /stackoverflow.com /questions/4445944
“http:/ /stackoverflow.com/questions /20216806



work for some developers but not necessarily for others
without pointing out the underlying reasons.

e Registering a dummy broadcast receiver is a common
way to intercept broadcast messages with a known
name to dynamically observe which message parameters
(‘extras’) are passed between apps.'°

Reverse engineered information about message types is
sometimes posted as part of the discussion, but not docu-
mented systematically. In fact, developers have to repeat the
reverse engineering task if an app evolves in an incompatible
way, as for example discussed for the Facebook app.!?

Our analysis provides evidence for problems caused by the
lack of message-type specification and the desire to interact
with other apps nonetheless. Our sample is too small to
judge how common each strategy is. However, several of
these strategies are well known and applicable for many apps,
S0 it is not surprising that many undocumented message types
are nonetheless implemented by many apps, even without
public discussion.

Our results indicate that a repository with message type
specifications could reduce a pain point of Android developers
that aim for interactions. The closest available repository
for contributed message types right now is OpenIntents,!?
but it specifies only a small number of message types and
does not collect reverse engineered message types. Moreover,
it does not track changes as message types evolve over time.
For each message type, the documentation provides a brief
description and sample code for sending and receiving it, and
the names and types of the parameters. A static analysis
tool could provide an initial data set for such a repository.

S. COMMUNITY PROCESSES TO AGREE
ON MESSAGE TYPES

A powerful mechanism of Android’s module system is that
the target of a message may be determined at runtime and
multiple modules may be able to respond to the same mes-
sage (called an ‘implicit intent’ in the Android terminology).
While two modules can always agree on specific message
types to be exchanged between them, community agreement
on specific message types allows easy system extensibility,
where a module provider may react to the same message that
other modules can also receive, thus allowing a developer
to provide alternatives to existing modules. Similarly, this
scheme enables seamless integration into existing extension
points, for example through a generic sharing mechanisms
over a shared message type, instead of providing a separate
sharing button and messages for every potential module some
data could be shared with. Note, the concept that many
apps can receive the same message from an extensible set
of community-defined message types is common in event-
based systems, such as ROS [32], but not broadly used for
interactions in software ecosystems like Eclipse or WordPress.

Technically, we look at only the name of the received mes-
sage types, called ‘action identifier’, to simplify our analysis.
We analyze activities, services, and broadcast receivers, but
not content providers since they require unique identifiers.
We count each message type at most once per app even if it
implements it multiple times. In a manual post-processing
step, we filtered message types that are implemented by

YOhttp:/ /stackoverflow.com/questions/10510292
Hhttp:/ /stackoverflow.com/questions/13107857
2http: //www.openintents.org/intentsregistry

multiple apps from the same provider (as apparent from the
app’s name or app-store metadata).

To benefit from this flexibility, many developers have to
agree on receiving messages that use the same shared message
type. As there is no formal mechanism to support this
process, we explore further the message types that are shared
by different apps and how new shared message types emerge
with the next two research questions.

RQ3: Are there message types that are received by dif-
ferent apps?

To address this question, we first identified which apps
in our corpus declare to receive which message types. This
will indicate whether multiple module developers, in practice,
have agreed on common message types shared across many
modules.

The 52535 apps in our corpus declared that they could
receive a total of 41180 distinct message types. Over 2965 (7
percent) of these message types can be received by multiple
apps in our corpus. However the distribution of how many
apps can receive each message type are heavily skewed, with
the most popular message type ‘android.intent.action.
SCREEN_OFF’ receivable by 9836 apps, whereas the 30th most
popular ‘android.intent.action.MEDIA_UNMOUNTED’ is re-
ceived by only 466 apps and 98.7 percent of all message types
are not received by more than 10 apps. In Figure 2, we show
this distribution for the 300 most popular message types.

Investigating the data it is obvious and unsurprising that
the most popular message types are all messages types docu-
mented in the platform documentation and implemented by
many apps that come with a default installation of Android.
To identify whether the community would agree on message
types not defined by the platform, we again distinguish mes-
sage types into platform-defined and third-party contributed,
considering a message type as platform-defined if its name
is mentioned in the official Android documentation. We
found that although almost half of the top 300 message types
are third-party contributed, the top 59 message types, in-
cluding all message types that are implemented by over 500
apps, are all platform defined. The most frequently received
contributed message types are ‘com.google.zxing.client.
android.SCAN’ and ‘com.amazon. inapp.purchasing.NOTIFY’
with 165 and 115 apps implementing them respectively. In
Figure 2, we highlight all contributed message types among
the 300 most popular message types.

Our data indicates not only that platform-defined message
types are used across a significant percentage of Android apps,
but also that a significant number of contributed message
types have achieved some popularity in our corpus. This
indicates that contributed message types emerge for common
problems in the absence of corresponding platform-defined
message types (e.g., for barcode scanning). This leads us
to our next question about how such message types emerge
without platform support for coordination.

RQA4: How do popular received message types emerge?

Finding that none of the most received message types, but
still many message types received by 10 to 100 apps in our
corpus, are contributed by the community, we decided to
further investigate how those message types emerged and
techniques and practices that developer may use to establish
communication among many independent apps.
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Figure 2: The distribution of the message types by the number of apps that receive them.

We proceeded as follows: We randomly sampled 20 con-
tributed messages types listed in Table 2, among the 300 most
received message types (see RQ1 and RQ3). In our sample of
top 300 message types, we had third-party-contributed mes-
sage types received by a wide range of apps from 10 to 165.
In order to make our sample representative, we divided our
sample in subgroups with each subgroup covering a range of
10, e.g., 11-20, 21-30 and so on. We selected top two message
types from each subgroup. We searched for the names of
those message types online (support forums, Github, app
stores) and investigated the apps receiving them. Where
available, we studied online documentation and source code
related to each message type. We also collected the number
and kinds (activity, service, broadcast receivers) of callers
and callees for each of the message types.

We iteratively discussed our findings and grouped them
into various patterns. In our sample, we identified three
patterns for how contributed message types emerge that
explain most of the sampled message types:

e For 9 of the 20 sampled message types, the app(s)
sending the message seem to dominate the relation-
ship and are a likely cause for the popularity. These
can be considered as apps providing extension points
through messages, whereas other apps receiving those
messages act as plugins. One example in this category
is the message type org.adw.launcher.THEMES, sent
by a popular Android app ADW.Launcher (with over
10 million downloads), allowing users to customize their
devices with a variety of themes and wallpapers. While
this app provides its own themes and wallpapers, it
can access themes and wallpapers provided by other
apps receiving its own message type, documented in a
guide online.*® Many developers have implemented the
message type to provide additional themes. Eight other
message types in our sample follow the same pattern.
In each case, the popularity of receiving a message type
is driven by a single very popular app, which explicitly
documents extension points.

3http://adwthings.com /launcher /adw-theming-guide

e For 7 of the 20 sampled message types, a common li-
brary or API used by multiple apps likely triggered the
common message type. For example, in many installa-
tions, Android does not provide a default mechanism to
scan barcodes; in order to not ask users to first install
a barcode scanning app, many apps include a library
ZXing to provide their own barcode-scanning function-
ality; following the library’s documentation many apps
publish this barcode-scanning functionality to other
apps as well. Six other message types in our sample
follow the library-driven pattern.

e For 2 message types, multiple apps provide alternatives
to a common, documented, and frequently used message
type. In this case, the message type org.openintents.
action.PICK_FILE supports opening a dialog to se-
lect a file from the file system. This message type
is received by a popular app OI File Manager (over
5 million downloads) and documented publicly (on a
platform called Openlntents), but also implemented by
several alternative file-manager and other apps (e.g.,
File Commander, and Total Commander). In our sam-
ple, we found only two message types that followed
the same pattern. Therefore, we cannot make a broad
conclusion from only two cases but we conjecture that
the following four factors are important for message
types emerging this way: (a) similar functionality is not
yet provided by platform-defined message types, (b) an
app popularizes the message type, (¢) many or popular
apps call this message type, and (d) the message type
is documented explicitly or source code of a reference
implementation is available.

For 2 of the message types in our sample, we could not
judge how they have emerged. Since message types may
become popular in a variety of ways, app developers should
carefully define message type specifications because it may
be quite problematic to update them at a later stage when a
message type has become popular.

Apart from the Openlntents efforts, we did not see any
deliberate effort to coordinate the definition of message types.



Message Type Receivers Callers Pattern
com.google.zxing.client.android.SCAN 165 147  Library
com.amazon.inapp.purchasing.NOTIFY 115 0 Library
com.startapp.android.CloseAdActivity 102 2 Caller
com.appenda. INSTALL_INTENT 101 91 Caller
com. appenda.AppNotify 96 0  Unknown
com.gau.go.launcherex.theme 93 0 Caller
com.google.zxing.client.android.ENCODE 83 99 Library
org.adw.launcher.THEMES 67 0 Caller
com.adamrocker.android.simeji.ACTION_INTERCEPT 61 6 Caller
com.xtify.android.sdk.SEND_SETTINGS 58 52  Library
com.inmobi.share.id 57 35 Library
com.urbanairship.airmail.END_REGISTER 46 0 Library
com.gt.slinglabs.SlingNotify 41 0  Unknown
org.0OpenUDID.GETUDID 39 0 Library
com.sonyericsson.extras.liveware.aef.registration.ACCESSORY_CONNECTION 33 0 Caller
vpn.connectivity 29 4  Caller
com.htc.music.playbackcomplete 29 0 Caller
org.openintents.action.PICK_FILE 19 37  Callee
jp.r246.twicca.ACTION_SHOW_TWEET 16 0 Caller
org.openintents.action.PICK_DIRECTORY 10 22 Calllee

Table 2: Contributed message types, number of apps in our corpus that receive and send them, and the

patterns that helped them become popular.

Nonetheless, we could identify several patterns in how multi-
ple apps adopt receiving the same message types, typically
involving dominant, popular apps and documentation. In
this context it is not surprising that contributed message
types are much less adopted than platform-defined ones. Our
findings raise interesting challenges about how to support
the community in defining and reusing message types.

A repository for intents has interesting parallels to UDDI,
a standard for description and runtime discovery of web ser-
vices [27].While UDDI was embraced initially, it has received
little adoption outside individual companies. We think that
one reason that UDDI was not widely adopted was that it
tried to achieve standardization in highly dynamic business
environments. We argue that documentation and awareness
of change, while still allowing a community process and ex-
tensibility in the messaging mechanism is more promising
than enforcing standardization and constraining change.

6. APP EVOLUTION

Even when multiple apps agree on shared message types,
they can evolve independently from each other. In fact, the
Android platform has no mechanism to express versioned
dependencies on other apps and no mechanism to enforce any
consistency of attributes in message types. As we have seen in
Sec. 2.2, we have seen some frustration from developers that
interactions stop working with updates within the ecosystem.
With our final research question, we attempt to explore the
problem by characterizing how frequently apps change the
message types they use for interactions.

RQ5: Do apps frequently adopt new message types or
drop previously supported message types over time?

We investigate both how frequently apps evolve to receive
new message types and how often they evolve to send new
message types. For sent message types, we additionally ex-
plore how frequently attributes of those messages are changed,
i.e., developers send additional (or fewer) extra attributes
with a message in a new revisions.

We quantified change on all 6171 apps in our corpus for

which we have at least three revisions (see Sec. 3.1). For
each of these apps, we can build two tables that show which
message types are potentially received and sent in which
revision, as exemplified in Table 3 for the open-source app
Open Explorer. In this example, some message types, such
as org.openintents.action.PICK_FILE, were only adopted
in later revisions, whereas others were removed, and yet
others were supported across all versions. We distinguish
message types that were added (switching from unsupported
to supported at some point in their evolution), removed
(switching from supported to unsupported at some point),
consistent (supported in all revisions), and other (switching
between supported and unsupported multiple times).

On the receiving side, we found that 38 percent of the apps
added at least one new received message type and 18 percent
removed at least one during the evolution we observed. On
average an app adds 0.3 and removes 0.1 received message
types per revision. The removal, in particular, can be con-
cerning to apps that may have sent messages with this type
previously. We also found that about 9 percent of the apps
added a message and then removed it in a later version, or
removed a message type and then added it again later.

On the sending side, we observed a similar picture. We
found that 36 percent of the apps added at least one new sent
message type and 16 percent removed at least one during
the evolution we observed. On average an app adds 0.17 and
removes 0.08 sent message types per revision. These numbers
show that apps change frequently to adopt new communi-
cation patterns and change existing ones, emphasizing the
trend toward rich interactions. In addition, we speculate
that the similar rates of change indicate a co-evolution of
sent and received message types, but further study is needed
to validate this hypothesis.

Furthermore, we also observed significant rates of change in
attributes of sent messages (called ‘extras’ in Android). We
found that about 14 percent of message types used across all
apps were adjusted by the sending side during their evolution
to include additional attributes, and attributes were removed
from 7 percent of message types. This emphasizes again



Message-type name V.116 V.125 V.18 V.194 V.208 V.212 V. 221
Oct-11  Dec-11  Sep-12  Nov-12 Jan-13 Feb-13 Mar-13

android.bluetooth.device.action.FOUND . .

android.intent.action.MEDIA_MOUNTED . .

android.intent.action.VIEW . . . . . . .

android.hardware.usb.action.USB_DEVICE_ATTACHED ° ° ° ° ° °

android.intent.action.MEDIA_SCANNER_STARTED .

android.intent.action.SEARCH . . . . ° .

android.intent.action.EDIT . . . . .

android.intent.action.PICK . . . . )

org.openintents.action.PICK_FILE (] L] (] L] .

android.nfc.action.NDEF_DISCOVERED ) .

org.brandroid.openmanager.server_type (]

Table 3: A snapshot of the changes in received message types across different revisions of the app Open
Explorer; e indicates revisions of the app that can receive a given message type

the importance and relative frequency of changes within
a message type, about which we saw several messages in
support forums (see Sec. 2.2).

Overall, our analysis indicates that adoption and removal
of both received and sent message types is a common phe-
nomenon, as is change of attributes within a message type.
While additions in received message types are new contri-
butions that open up new opportunities for inter-app in-
teractions, their removals may limit the previously working
interactions. Combined with the lack of versioning and
conformance checking, removals pose serious challenges for
inter-app interactions. Moreover, due to the lack of con-
sistent documentation mechanisms, new contributions may
remain underused or misused.

7. DISCUSSION

Android’s module system has design limitations includ-
ing the lack of consistent mechanisms to document message
types, very limited checking that a message conforms to its
specification, the inability to explicitly declare dependen-
cies on other modules, and the lack of checks for backward
compatibility as message types evolve over time. Our re-
sults indicate that developers want their apps to interact
with other apps but struggle with finding information about
third-party-contributed messages types. We find that many
third party developers do not document message types and
those who document do in ad-hoc ways. Developers fall
back to various reverse-engineering approaches to extract
information about undocumented message types. Moreover,
we have also discovered that even though platform-defined
message types are commonly used, there are also a signifi-
cant number of third-party-contributed message types that
are adopted by multiple apps; such message types typically
involve dominant, popular apps and documentation. Fur-
thermore, adoption and removal of both received and sent
message types is a common phenomenon as apps evolve over
time. Combined with the lack of versioning and conformance
checking, removals of received message types pose serious
challenges for inter-app interactions and additions may re-
main underused or misused. Our results indicate several
implications of Android’s design decisions, and we suggest
future research directions to mitigate them.

7.1 Mitigating Challenges (Future Directions)
We conjecture that most of the discussed challenges can

be mitigated with external tools, without invasive changes
to the Android platform. We plan to build a set of three

complementary tools to support developers with Android
inter-app communication.

First, we plan to develop a standard format for document-
ing message types and a searchable online repository for
message types, where developers can publish specifications
of new message types as well as look for existing message
types. The repository will also indicate which apps receive
and send a given message type and can point out changes
over time and variants and inconsistencies in how message
attributes are used in practice. This repository can also be a
central place to share reverse engineered information about
undocumented message types.

Second, to populate the repository, we will build an extrac-
tor tool that will identify sent and received message types
including their attributes. We will build on top of the IC3
infrastructure for static analysis, but extract additional infor-
mation, including which apps parse which extras on received
messages. In addition, we will consider dynamic monitoring
to gather samples. We will seed the repository with data
extracted from our corpus and will update it with newer
revisions of apps as they become available.

Third, we will create an IDE plugin for Android Studio to
auto-complete and type-check message instantiations. The
plugin will simplify creating correct messages by creating
templates for select message types, that will include stubs
for all relevant message attributes. In addition, it will point
out when commonly used or recently introduced message
attributes are missing or of the wrong type. It can encourage
change awareness in an ecosystem that is changing in a
decentralized fashion.

We hope that such tool support will encourage more inter-
app interactions and reuse (even and especially with con-
tributed message types), improve developer productivity, and
foster community for inter-app interactions.

7.2 Threats to Validity

As in all studies, there are several potential threats to the
validity of our results. First, the findings related to two of
our research questions (RQ2 and RQ4) are derived from a
fairly small sets of apps. These apps were sampled carefully,
but they are nonetheless a tiny fraction of apps. Second, only
one of the authors studied the online documentation and
support forums in order to extract qualitative information;
however, all of the authors iteratively discussed the results
together. Third, the vast majority of apps in the dataset
are free, and the dataset is therefore not a perfect sample
of all Android apps. In addition, apps seeded from Berger’s
data set [3] are 5 years old, which was intentional to get



old revisions. Because of time constraints, apps from Berger
were only analyzed if we had a newer version in some other
part of our dataset or it happened to be early in the analysis
queue. However, we are confident that the most important
and widely used apps are included. Finally, IC3 failed to
successfully analyze a few apps (e.g., because they were ob-
fuscated). We inherit problems from IC3 and they mostly
represent the standard challenges of program analysis. The
generalizability of our results to the full body of Android apps
can only be interpreted in the context of these limitations.

The validity is also threatened by the use of intent action
names as a proxy for message types (throughout the study
aside from part of RQ5). Considering full message types
between apps is much more complicated—intents include
data and key-value pair parameters (extras), and non-intent
communication via content providers is common. Studying
the full richness of Android message types would result in
a more detailed picture of inter-app communication and
may affect some of our results. We believe that further
studying message attributes and content providers in detail
is a valuable future research direction.

8. RELATED WORK

We investigate the inter-app communication in the Android
platform as a case study in the larger context of module
systems for software ecosystems. Beyond technical aspects
software ecosystems cover interaction of actors on top of a
common technological platform and how they interact with
that platform [15,24]. In this context, the module system
can play a central role in designing variability mechanisms
and facilities for interactions for developers [3,5].

A central challenge is intended and unintended interactions
among modules. Under the label feature interactions, inter-
actions among independently designed modules have been
studied in depth [6,29]. The key issue is that unexpected
behavior may emerge when two separately tested modules are
combined. Several studies have shown that integration and
interaction testing in ecosystems is often neglected, resulting
in frequent interaction faults [2,10,11,28].

Module systems can play a powerful row in restricting and
controlling possible interactions among modules. Research
in module systems and modularity mechanisms has a long
tradition and many different points in the design space have
been explored, e.g., [1,3,4,13,19,33]. Most work on tradi-
tional module systems requires a certain amount of central
planning; in contrast, in this work, we are particularly inter-
ested in how developers define and adopt message types in
a distributed environment without central control. In this
context, module systems should help cultivating a culture
of innovation in which a variety of collaborating or compet-
ing actors build diverse modules and define inter-module
communication message types in a decentralized manner.

Specification of message types is a key element for devel-
opers to learn about the message types implemented by the
modules developed by other developers. Many formalisms
have been developed to more or less formally describe the for-
mat of messages among modules, including IPC [13], WSDL,
and OMG CORBA IDL.' Android does not adopt a for-
mal specification mechanism; instead, we investigated how
developers document and discover message types in practice.

The Android ecosystem has attracted significant attention

Mhttp://www.omg.org/gettingstarted /omg_idl.htm

for empirical studies, including topics as varied as API evo-
lution [21,22,25] and energy costs [12,36]. More specifically,
we are interested in inter-module communication, which
has received significant attention from security perspective,
because it can be used for covert communication, poten-
tially circumventing Android’s permission system. To that
end, various static and dynamic analysis tools have been
developed to extract information about inter-module com-
munication and analyze information flow properties both
statically [16, 20, 30,31, 35] and dynamically [9,23]. Such
static analysis has also been used for fuzz testing intent
implementations [23]. In this study, we reuse the existing
static analysis tool IC3 [30] to extract information about
received and sent Intents, but we analyze the extracted data
for different research questions.

The Android platform and Android apps evolve over time,
as all other software systems. Software evolution has been
studied in depth for many years [17,26]. Changes in mes-
sage types that apps receive and send are related to API
evolution, which has been shown to be a significant problem
and studied empirically [8,14,21,25]. Software evolution in
component based systems is also a challenging process [7,18].
Previous work in this area cover the module systems, in
which inter-module dependencies are explicitly defined [7].
We study the evolution of inter-module communication in
Android in which third party contributions are common and
module interactions are resolved at runtime without explicit
specifications of inter-module dependencies.

9. CONCLUSION

Android supports inter-app communication among mutu-
ally untrusted third-party apps through a platform-defined
message mechanism. Android’s design encourages to extend
the platform with new message types, but message types
are only partially checked by the platform and often are
not formally documented. To understand the implications of
Android’s design decisions for developers, we explored several
research questions regarding the use, documentation, adop-
tion, reverse-engineering, and evolution of message types on
a large corpus of Android apps. We found that interactions
are in fact common, but also that third-party-contributed
message types are often undocumented and can cause frustra-
tion for developers attempting to use them. Apps can often
receive the same message types, but adoption of contributed
message types is hindered by the lack of a central publishing
mechanism. Finally, we found strong evidence that apps fre-
quently adopt new messages types and existing message types
are sent in different ways. These results encouraged us to
propose lightweight tool-based mitigation strategies consist-
ing of a central message-type repository, integrated with an
IDE, and seeded with automatically extracted information.
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