
Capability Safe Reflection for the Wyvern Language

Esther Wang
Carnegie Mellon University
estherw@alumni.cmu.edu

Jonathan Aldrich
Carnegie Mellon University

aldrich@cs.cmu.edu

Abstract
Reflection allows a program to examine and even modify
itself, but its power can lead to violations of encapsula-
tion and even security vulnerabilities. The Wyvern language
leverages static types for encapsulation and provides secu-
rity through an object capability model. We present a design
for reflection in Wyvern which respects capability safety and
type-based encapsulation. This is accomplished through a
mirror-based design, with the addition of a mechanism to
constrain the visible type of a reflected object. In this way,
we ensure that the programmer cannot use reflection to vio-
late basic encapsulation and security guarantees.

Keywords reflection, capability safety, mirrors, Wyvern

1. Introduction
In a system with multiple components, it is often the case
that some components are less trustworthy than others. For
example, a user-facing component is more likely to be sub-
verted for a malicious cause. A desirable security guarantee
for such cases is the principle of least authority, where a
module is given only the resources it needs to perform its
task. Then, if the module is subverted, it will have limited
power to damage other areas of the system [2]. This princi-
ple is difficult to enforce in practice because many modern
languages provide maximum permissions by default and rely
on the programmer to restrict the authority of a module.

The object-capability model aims to address this diffi-
culty. In the object-capability model, access privileges are
managed through the use of capabilities, which are unforge-
able keys to controlled resources. Rather than maximum
privilege by default, a module only has the capabilities it is
explicitly granted [3]. The advantages of object capabilities
for security led to their integration in languages such as E [6]
and Joe-E [5], and also in Wyvern.

A major focus of this paper is how to design a reflec-
tion system that is compatible with capability-based reason-
ing about security properties—i.e. one that is capability safe.
We will demonstrate how unconstrained reflection would vi-
olate capability safety, and how our design provides a more

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).

Meta’16 October 30, 2016, Amsterdam, Netherlands
Copyright c© 2016 held by owner/author(s).

secure approach. We will also consider how our design inter-
acts with some of the other features of Wyvern, in particular,
type-based encapsulation. Finally, we will describe the ex-
tent to which we provide reflective functionality.

2. Wyvern
Wyvern is a statically typed and pure object oriented lan-
guage which is designed for engineering web and mobile
applications. In accordance with this aim, it is intended to be
simple and safe by default. Wyvern also explores a combina-
tion of other properties, including support for type specific
languages, capability safety, and delegation.

2.1 Type-based Encapsulation
Wyvern programs are structured as modules, with type,
class, method, and value declarations within modules. Mod-
ules provide convenient features for namespace management
(e.g. via importing other modules) but at their core are sim-
ply a way to define top-level objects. Modules include type
declarations that define a structural type. Objects can be cre-
ated with the keyword new. Information hiding is provided
by type ascription; for example, if an object or module is
ascribed a type, only the members in that type will be visible
to clients of the object. Consider the following example:

type List =

def append[T](object:T) : Unit

def get[T](index:Integer) : T

type ImmutableList =

def get[T](index:Integer) : T

def make[T]() : List =

new

/* ... Method body ... */

This simple snippet of Wyvern code demonstrates how
types are defined in Wyvern. Since Wyvern is structurally
typed, objects match any type that declares a subset of
the object’s methods and fields with appropriate signatures.
List objects can be used as ImmutableList objects. How-
ever, the data and functions in an object are only visible if
explicitly included in the corresponding type’s signature. If
a List object is ascribed to the ImmutableList type, the

http://creativecommons.org/licenses/by-nd/4.0/

Figure 1: A logging system which uses capability safety.

append method ceases to be visible. This approach of using
type ascription to hide members of an object that should not
be visible provides more flexibility than explicit keywords
such as private, protected, and public, since an object
can be progressively ascribed increasingly general types as
needed.

Now suppose the programmer had access to unrestricted
reflection. Our encapsulation guarantees would no longer
hold, because reflection allows the program to examine an
object at run time. Type-based encapsulation is enforced
during the typechecking phase, so if an access of a “private”
field is constructed and executed at run time, the violation
would not be detected.

2.2 Capability Safety
Wyvern enforces capability safety as part of the module
system. Under the hood, capabilities are unforgeable keys
to a resource.

Pure modules are declared with

module path/to/module

Modules with state or system privilege require capabilities
and are declared with

resource module path/to/module

Types can also be declared with resource type to indicate
that the object or module described by that type encapsulates
a resource, such as access to a file or network connection,
that we might want to track and protect.

Wyvern also considers any object with mutable state to
be a resource to be tracked, because mutable state can be
used to store a capability and then retrieve it later in some
other part of the program; thus reasoning about mutable
objects is important to reasoning about other capabilities [6].
Capabilites to system resources such as files are given to the
Main module from the operating system, and other modules
cannot use these capabilities unless Main passes them to the
other modules [2].

Figure 1 illustrates a Client module which is permitted to
use Logger to write to a specific set of log files. The main
module (not shown) has initialized Logger with the capabil-
ity for FileIO, allowing Logger to write to arbitrary files in

the file system. Logger and FileIO are both resource mod-
ules, since both have permission to use a system resource.
If the Client could use an unconstrained reflection library, it
could access Logger’s instance of FileIO and leverage that
reference to perform filesystem operations that it would be
unable to perform otherwise.

Capability safety is a major goal in Wyvern’s design. Our
design for reflection will preserve capability safety while
interacting well with the other language features of Wyvern.

3. Prior Work
Prior work in statically typed and capability-safe languages
includes Joe-E, a subset of Java. Joe-E excludes the reflec-
tive facilities that allow a program to bypass the access con-
trols of object internals and break encapsulation. It also en-
sures that reflection does not provide any permission which
was not already granted by the program code, and restricts
propagation of capabilities by leveraging the static type sys-
tem [5]. However, because Joe-E builds on Java core reflec-
tion, the reflective API does not satisfy the design principle
of structural correspondence. Additionally, Joe-E leverages
Java’s relatively simple private declarations to distinguish
fields that should not be accessible by clients. In contrast,
Wyvern implements the more expressive approach of using
type ascription to hide members of an object. As we will
see, this expressivity makes it more challenging to design a
reflection system for Wyvern that is compatible with capa-
bilities.

We will be describing a mirror-based reflective architec-
ture for Wyvern. Prior work with mirror-based reflective
includes reflection in AmbientTalk [7] and work done in
JavaScript to enforce language invariants with proxies [8].
Both of these approaches combined a mirror-based architec-
ture with intercession, which our current design in Wyvern
does not yet support. AmbientTalk and JavaScript are both
dynamically typed, which permits greater flexibility in re-
flection as there are fewer invariants to maintain. However,
this prior work suggests that in the future Wyvern may be
able to support intercession in the future, once the basic li-
brary has been designed.

4. Design
4.1 Reflection
Our goal with regard to reflection was to create a library to
perform computational reflection in Wyvern. Computational
reflection is the ability of a program to perform computa-
tion on its internal structures through a casual connection
between a system and its self-representation. A robotic arm,
for instance, has a casual connection to the internal represen-
tation of its position: a change in one produces an analogous
change in the other [4].

Features for computational reflection can be further cat-
egorized according to their purpose: introspection, self-
modification, and intercession. Introspection is the ability

of a program to examine itself, self-modification is the abil-
ity of program to modify itself, and intercession is the ability
of a program to modify the programming language seman-
tics [1]. When designing our API, we prioritized supporting
introspection and self-modification over intercession. Intro-
spection and self-modification will enable many common
applications of reflection, such as dynamic patching of code,
plugin support, and debuggers.

4.2 Mirrors
Bracha and Ungar made a survey of reflection, investigat-
ing specific uses of reflection and languages which support
reflection. Their resulting paper presents three design princi-
ples and their justifications. These principles are encapsula-
tion, stratification, and ontological correspondence. Encap-
sulation refers to the property that clients of a reflective API
do not rely on any particular implementation of that API.
For example, the Java Debug Interface (JDI) satisfies the en-
capsulation principle because the reflection interfaces it de-
fines can have multiple implementations, and clients cannot
distinguish which one is used. Stratification is the property
of being separable, meaning that reflection does not impose
costs when it is not being used. By this property, the meta
level and the base level should have a clear boundary, and
crossing that boundary should only be permitted through a
limited set of operations. Ontological correspondence is the
dual property of structural correspondence, a connection be-
tween meta level structures and the structure of the language
being manipulated, and temporal correspondence, the asso-
ciation of a meta level API with either compile-time or run-
time reflection [1]. In our design, we aimed to adhere to these
three principles by constructing our API as a mirror-based
architecture similar to the JDI.

4.3 Reflection in Wyvern
Reflection in Wyvern is organized as a collection of four
modules:

resource module wyvern/reflection/full

resource module wyvern/reflection/limited

module wyvern/reflection/static

module wyvern/reflection/dynamic

The full and limited modules provide methods to per-
form reification, or the initialization of values from pro-
gram structures. These two modules have the same sig-
nature, and contain the methods reflectType[T]() and
reflect[T](obj) (see Fig. 2).

reflectType[T]() reflects on a type T and produces an
object of type Type, which has methods for introspection on
the given type T. reflect[T](obj) produces an object mir-
ror of type Object, which has methods for introspection and
self-modification on the object obj. The difference between
limited and full is that full.reflect produces a mirror
which reveals an object’s full structure, including elements
of the object which are not visible in the object’s type at the

r e s o u r c e module wyvern / r e f l e c t i o n / f u l l
i m p o r t wyvern / r e f l e c t i o n / s t a t i c
i m p o r t wyvern / r e f l e c t i o n / dynamic

d e f r e f l e c t (o b j e c t : T) : O b j e c t
d e f r e f l e c t T y p e [T] () : Type

Figure 2: Signature of full

module wyvern / r e f l e c t i o n / s t a t i c

t y p e Type =
d e f e q u a l s (t y p e : Type) : Boolean
d e f f i e l d s () : L i s t [F i e l d]
d e f f ie ldByName (name : S t r i n g) : F i e l d
d e f methodByName (name : S t r i n g) : Method
d e f methods () : L i s t [Method]
d e f name () : S t r i n g

t y p e Method =
d e f a rgumen t s () : L i s t [V a r i a b l e]
d e f e q u a l s (method : Method) : Boolean
d e f name () : S t r i n g
d e f r e t u r n T y p e () : Type

t y p e V a r i a b l e =
d e f e q u a l s (v a r i a b l e : V a r i a b l e) : Boolean
d e f name () : S t r i n g
d e f typeOf () : Type

t y p e F i e l d =
d e f e q u a l s (f i e l d : F i e l d) : Boolean
d e f name () : S t r i n g
d e f typeOf () : Type

Figure 3: Signature of static

time the mirror was obtained. limited.reflect enforces
the guarantee that the object mirror returned will respect the
signature of type parameter T.

The static module contains the types Type, Method,
Variable, and Field, which represent their correspond-
ing program structures (see Fig. 3). These types are use-
ful for introspecting on structures in code, in other words,
static elements of the program. A Type mirror obtained from
reflectType is a purely functional, as are the mirrors for
methods, variables and fields; thus they need not be capabil-
ities and can be used freely in the program.

The dynamic module contains the type Object. This
type includes methods for introspecting and modifying the
state of the object (see Fig. 4). Since the underlying object
may be a capability that contains mutable state or enables ac-
cess to some system resource, the Object mirror must also
be treated as a capability. This makes sense because the mir-

module wyvern / r e f l e c t i o n / dynamic
i m p o r t wyvern / r e f l e c t i o n / s t a t i c

r e s o u r c e t y p e O b j e c t =
d e f e q u a l s (o b j e c t : O b j e c t) : Boolean
d e f g e t (f : F i e l d) : O b j e c t
d e f i n vok e (m: Method , \

a r g s : L i s t [O b j e c t]) : O b j e c t
d e f s e t (f : F i e l d , v a l u e : O b j e c t) : Un i t
d e f typeOf () : Type
d e f viewAtType (t : Type) : O b j e c t

Figure 4: Signature of dynamic

ror type Object contains the set method for mutating the
reflected object’s state and the invoke method for invoking
methods on the reflected object.

By creating distinct types for each program structure, we
satisfy structural correspondence. Temporal correspondence
is satisfied through the separation of the types into different
modules: static for for reflection on compile-time struc-
ture of the program and dynamic for reflection on run-time
objects.

Mirror architectures such as this one are commonly
adopted because they help satisfy the principle of encapsula-
tion. In our case, the types such as Object, Type, Method,
etc. defined in the reflection modules are structural types
that can be implemented by different library providers, while
hiding the specific details of the reflective implementation.
Our modules provide one implementation via the reflect

and reflectType methods, but others, such as proxies rep-
resenting objects in remote virtual machines, are possible.

Lastly, stratification is satisfied because meta-level pro-
gram elements are contained in separate but parallel objects
to the base-level elements. Base-level objects cannot directly
reference the corresponding meta-level object. Only by us-
ing the generator methods reflect and reflectType can
the metal level be reached from the base level, so the meta-
level functionality is clearly separated from the base-level.

5. Examples
Reflection produces a mirror object that ascribes to a mirror
interface and represents an object at the meta level. An
object mirror is casually connected to the object it reflects,
and can be used to indirectly affect the original object. For
example, an object’s method can be invoked by acquiring
the mirror of that object and calling the invoke method of
the object mirror. Type mirrors are similar, but provide only
functionality for observing the type that was reflected.

val listObj:Object = reflect[List](\

List.make().append(1))

val listType:Type = reflectType[List]()

listType.name() // ‘‘List’’

val getMethod:Method = listType.methodByName(\

‘‘get’’)

listObj.invoke(getMethod, \

List.make().add(0)) // 1

This code is equivalent to creating an instance of a list
containing 1, and invoking get(0) on that instance. The
type mirror is being used to view the name of the type, and
to get a method which permits access to the object mirror.
It is easy to see from the API above which features can be
examined.

reflectType produces a type mirror and permits only
introspection on the static characteristics of a type. reflect
produces an object mirror and allows some self-modification
in addition to introspection on the dynamic characteristics
of a specific object. A type mirror can be produced from
an object mirror, but that mirror might not be equivalent to
the type mirror produced from reflectType. The following
example illustrates this relationship.

val list:ImmutableList = \

List.make().append(1)

val listType:Type = \

reflectType[ImmutableList]()

val listObj:Object = \

reflect[ImmutableList](list)

val listType2:Type = listObj.typeOf()

listType2.equals(listType) // false

The last line evaluates to false because even though
myList was ascribed to the ImmutableList type, its dy-
namic type is still List, so the type mirror produced will
not be the same as the type mirror which only reflects
ImmutableList.

6. Safety
The Object type includes a method called viewAtType.
This method hides elements of the dynamic type which are
not visible in the type argument given. In the following ex-
ample, viewAtType is used to generate a mirror of an im-
mutable list from the mirror of a mutable list. In the im-
mutable list mirror, the append method which was acces-
sible in the list mirror is no longer visible or invokable.

val list:List = List.make().append(1)

val listObj:Object = reflect[List](list)

val immutableListType:Type = reflectType \

[ImmutableList]()

val immutableListObj:Object = listObj \

.viewAtType(immutableListType)

Note that the argument of object.viewAtType must be
an instance of Type representing a base level type which is
a subtype of the type of the base level object for object. In
the example given,

r e s o u r c e module wyvern / r e f l e c t i o n / l i m i t e d
r e q u i r e wyvern / r e f l e c t i o n / f u l l

d e f r e f l e c t [T] (o b j e c t : T) : O b j e c t =
v a l o b j M i r r o r = f u l l . r e f l e c t [T] (\

o b j e c t)
v a l t y p e M i r r o r = f u l l . r e f l e c t T y p e [T] ()
o b j M i r r o r . viewAtType (t y p e M i r r o r)

d e f r e f l e c t T y p e [T] () : Type =
f u l l . r e f l e c t T y p e [T] ()

Figure 5: Implementation of limited

immutableListObj.viewAtType(\

reflectType[List]())

would be invalid, since List is not a subtype of
ImmutableList. This is significant because it ensures that
once information in an object mirror is hidden, it can be
used by an untrusted module. The untrusted module cannot
discover the hidden information even if it gains access to an
instance of Type which reveals full information about the
base level object.

Since viewAtType is used to hide information, it can
be used to maintain type-based encapsulation and capability
safety in reflection. limited uses full reflection, but auto-
matically calls viewAtType using the type and object pro-
vided to reflect. Because of this, the mirrors returned will
only represent the static type provided, so a module cannot
use limited to discover type information that is not already
visible. Figure 5 shows the implementation of limited. An
untrusted module would be given the capability for limited
rather than full reflection.

6.1 Encapsulation
To verify that reflection satisfies encapsulation, a program-
mer would typically need to reason through the reflective
code and observe whether any particular command violates
this property. In our design, full reflection might still be used
to violate encapsulation. However, the limited module pro-
vides a simple option for maintaining type-based encapsula-
tion guarantees in reflective code: if the limited module
is used, encapsulation is preserved because the type system
will not allow access to any member which is not in the re-
flected object’s type at the time the mirror was created. Even
if a program were to apply limited reflection on the mirror,
no further information would be exposed than what was al-
ready in the type definition of the mirror. This prevents the
program from gaining access to the base level structure be-
ing reflected.

Full reflection provides reflective power that cannot be
given while maintaining the encapsulation guarantees we
provide in Wyvern. But because a capability is required to

access full reflection, it is straightforward to determine the
areas of code at risk for violations of encapsulation.

6.2 Capability Safety
Limited reflection is as central to preserving capability
safety as to preserving type-based encapsulation in Wyvern.
Consider the example given earlier involving the Logger
and FileIO modules (see Figure 1). If Client is only given
the ability to perform limited reflection, it will be able to
use reflection without being able to access the field in which
Logger stores its instance of FileIO.

Without the limited module, the only way for Client to
use reflective facilities would be for a mirror to be passed
in to Client from some module which does have the capa-
bility for full reflection. In this example, an Object reflect-
ing the Logger instance might be passed to Client from an-
other module. However, because the environment in which
the Object was produced would be one with higher priv-
ilege than the destination of the mirror objects produced,
there would be greater risk. When the Object for Logger is
passed to Client, it must have had the viewAtType method
called on it with the Logger signature. Otherwise, Client
would receive information that was previously hidden. But
if the more trusted module requires the full mirror of Log-
ger (one which has not had viewAtType called), it would
need to manage two versions of the Logger mirror and use
the appropriate one as needed.

With limited reflection, Client is able to use reflection di-
rectly and no longer needs a more trusted module to pass
mirrors to it. This reduces the need for passing mirrors and
potentially leaking capabilities from one module to another.
It also migrates the responsibility of managing mirrors to
the module which uses them, which is more intuitive than
having a separate, though more trusted, module be respon-
sible for the task. Limited reflection is a safe capability to
grant to Client because Object mirrors produced from using
limited reflection in the Client will only reveal informa-
tion in the Logger type signature, since viewAtType is au-
tomatically called from within limited. If the Logger type
signature exposes a capability, then Client will be able to ac-
cess that capability regardless of whether limited reflection
is granted. If the Logger type signature is safe, then we know
that limited reflection is safe to use on instances of Logger
in Client. We can see that limited reflection does not affect
whether a program is safe.

The risk introduced by passing mirrors remains, however,
and programs might still be written which follow this pat-
tern. Passing Object mirrors between modules can be dan-
gerous for capability safety, since these mirrors give direct
access to the internals of an object. For this reason, Object
is a resource type which requires a capability – not every
module should be given permission to receive and manipu-
late an Object.

Type mirrors can be passed without a capability because
they are significantly less risky; a client that has a Type

mirror can look at what methods are available, but it cannot
invoke any of them without having an object mirror in which
those methods are visible. Therefore, to verify that Client
can safely use reflection, it is sufficient for the programmer
to verify that the Logger type does not expose any dangerous
capabilities, either as base-level objects or as mirrors.

7. Reflective Ability
In this section we will discuss the functionality of our API
in terms of its ability to perform introspection and self-
modification. The third reflective ability, intercession, was
seen as less necessary for common applications of reflection,
and is not supported by our API.

7.1 Introspection
Our API for reflection is intended to have good support for
introspection. Because Wyvern is object oriented, supporting
introspection on objects provides enough functionality for
the majority of use cases. This allowed us to keep the API
simple.

Introspection is supported to the extent that structural cor-
respondence is satisfied. The API includes methods to ex-
amine all structures that are represented, but the set of repre-
sentations is not complete. Currently, only objects, methods,
and their components are supported. A Variable type is
defined to represent method arguments, but method bodies
cannot be examined because there is no representation for
individual lines of code.

Introspection is supported more completely with regard
to the compile-time state of a structure. For each of the
available structures, static features such as name and type
are readily attainable. However, the values of variables are
only defined at run time, and cannot be observed with this
design of reflection because supporting this would detract
from the performance of the language. On the other hand,
the presence of the full module in addition to the limited
module provides greater visibility of run-time state such as
hidden fields. This information is useful in applications of
reflection to debugging and logging.

7.2 Self-modification
With the current API design, a program is able to modify its
own data, but not its procedures. The program’s behavior can
be altered by setting values for object fields which produce
the desired execution.

Though simple, this degree of self-modification is com-
parable to mainstream reflective architectures. Java core re-
flection allows modification of fields, but not methods or
other procedures. The Java Debug Interface, because it is
used mainly for debugging purposes, has extensive sup-
port for introspection but similarly limited support for self-
modification.

8. Future Work
Future work is available in several areas, including verifica-
tion of safety, functionality, and evaluation. A formal ver-
ification of the safety of our design, particularly its ability
to maintain encapsulation and thus capability safety, would
provide insight into how this protection might be imple-
mented in other reflective architectures. There is also a great
deal of functionality that we can consider adding. Being able
to reflect on expressions or declarations at run time will be
necessary to implement a debugger, and the ability to convert
an object mirror into a standard object (absorption) would be
useful for constructing objects from scratch. Lastly, we must
evaluate our library’s utility in real applications. Eventually,
it will be feasible to use Wyvern for implementing very real-
istic applications, including ones which are most easily im-
plemented using reflection. For natural use cases, reflective
code should be written and the performance analyzed. This
will also permit us to observe how user-friendly this design
is.

9. Conclusion
The combination of reflection and static typing is uncom-
mon, but growing more popular as the advantages of reflec-
tion become increasingly known. However, to our knowl-
edge, no prior language has attempted a combination of re-
flection, static typing, and capability safety. Our design takes
the novel approach of providing viewAtType for customiz-
ing the visibility of type members. This allowed us to imple-
ment the limited module, which respects type-based en-
capsulation and capability safety. From this point, there is
room for reflection in Wyvern to become a powerful and less
dangerous tool than reflection has been in the past.

Acknowledgments
This work was supported by the U.S. National Security
Agency lablet contract #H98230-14-C-0140.

References
[1] G. Bracha and D. Ungar. Mirrors: Design principles for meta-

level facilities of object-oriented programming languages. In
OOPSLA, 2004.

[2] D. Kurilova, A. Potanin, and J. Aldrich. Modules in Wyvern:
Advanced control over security and privacy. In Symposium and
Bootcamp on the Science of Security (HotSoS), 2016.

[3] H. M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, 1984.

[4] P. Maes. Concepts and experiments in computational reflection.
In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1987.

[5] A. Mettler, D. Wagner, and T. Close. Joe-E: A security-oriented
subset of Java. In Network and Distributed System Security
Symposium, 2010.

[6] M. S. Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns
Hopkins University, May

[7] S. Mostinckx, T. Van Cutsem, S. Timbermont, E. Gonza-
lez Boix, E. Tanter, and W. De Meuter. Mirror-based reflec-
tion in AmbientTalk. Softw. Pract. Exper., 39(7):661–699, May
2009.

[8] T. Van Cutsem and M. S. Miller. Trustworthy proxies: Vir-
tualizing objects with invariants. In European Conference
on Object-Oriented Programming (ECOOP), pages 154–178,
2013.

	Introduction
	Wyvern
	Type-based Encapsulation
	Capability Safety

	Prior Work
	Design
	Reflection
	Mirrors
	Reflection in Wyvern

	Examples
	Safety
	Encapsulation
	Capability Safety

	Reflective Ability
	Introspection
	Self-modification

	Future Work
	Conclusion

