
Wyvern: A Simple, Typed, and Pure Object-Oriented Language

Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung,
Alex Potanin1, and Jonathan Aldrich

Carnegie Mellon University
{lnistor, darya, balzers, bwchung, aldrich}@cs.cmu.edu, alex@ecs.vuw.ac.nz1

Abstract
The simplest and purest practical object-oriented language designs
today are seen in dynamically-typed languages, such as Smalltalk
and Self. Static types, however, have potential benefits for produc-
tivity, security, and reasoning about programs. In this paper, we de-
scribe the design of Wyvern, a statically typed, pure object-oriented
language that attempts to retain much of the simplicity and expres-
siveness of these iconic designs.

Our goals lead us to combine pure object-oriented and func-
tional abstractions in a simple, typed setting. We present a foun-
dational object-based language that we believe to be as close as
one can get to simple typed lambda calculus while keeping object-
orientation. We show how this foundational language can be trans-
lated to the typed lambda calculus via standard encodings. We then
define a simple extension to this language that introduces classes
and show that classes are no more than sugar for the foundational
object-based language. Our future intention is to demonstrate that
modules and other object-oriented features can be added to our lan-
guage as not more than such syntactical extensions while keeping
the object-oriented core as pure as possible.

The design of Wyvern closely follows both historical and mod-
ern ideas about the essence of object-orientation, suggesting a new
way to think about a minimal, practical, typed core language for
objects.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and objects;
D.3.1 [Programming Languages]: Formal Definitions and Theory

General Terms Languages

Keywords Object-oriented, first-class classes, static type check-
ing

1. Introduction
The language designs of Smalltalk [11] and Self [20] are iconic
in their elegance, their simplicity, and the success with which they
capture the essence of object-oriented programming. Although they
are not among the most common languages used today, their de-
sign has been an inspiration for many modern languages. Self and
Smalltalk are notable for the following characteristics, many of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MASPEGHI’13, July 01 2013, Montpellier, France
Copyright c© 2013 ACM 978-1-4503-2046-7/13/07. . . $15.00

which are shared by more recent object-oriented languages, such
as Python, Ruby, Lua, and JavaScript:

• A high-level, pure object-oriented model, in which clients
can interact with objects only by sending them messages. This
model of interaction enforces Meyer’s uniform access principle
[16], a principle stating that an object’s services should only be
available through a uniform notation (the object’s methods in
this case).

• An interactive, value-based language model, which means that
everything significant in the language is a first-class value,
either an object or a function. This contributes to a system that
is “directly manipulable” in the sense of Smith and Ungar [20].
For example, classes in Smalltalk are not special declarations,
but live objects that respond to messages.

• A high degree of simplicity, with a few constructs sufficing to
provide great expressiveness.

• Good support for functional programming via blocks or
lambda expressions and closures.

Interestingly, both Smalltalk and Self, as well as many lan-
guages that share some of the characteristics above, are dynam-
ically typed. Statically-typed object-oriented languages exist, but
many are less pure (e.g., Java classes can expose fields), or less
interactive (e.g., classes are typically not first-class), or may be
considerably more complex (C++ and Scala, despite their many
virtues, come to mind).

Static types are a potentially interesting addition to the set of
features above for a number of reasons. In object-oriented lan-
guages, types can eliminate message-not-understood errors [12, 24]
and be used to optimize programs [10] and to create practical refac-
toring tools [22]. Preliminary evidence suggests that, in some cir-
cumstances, static types can enhance productivity as well [15].

Our interest in this question comes from Wyvern, a language we
are designing for secure mobile and web programming. To compare
with programming languages in this domain, Wyvern must be a
simple, value-based, pure object-oriented language with good sup-
port for functional programming—much like the languages men-
tioned above. However, we also want to provide strong reason-
ing about security properties. Reasoning is facilitated by a simple,
high-level language, but, in addition, we want to use type-based ap-
proaches to ensure certain security properties (e.g., using inference
rules developed for type checking to also check object ownership
and state). Thus, combining static types with a language having the
characteristics above is important to meeting this set of goals.

This paper therefore explores the design of an object-oriented
language that is pure, value-based, simple, statically type-safe, and
supports functional programming. We explore variants with and
without classes, our motivation being to show that, while classes are
convenient, they are not fundamental to the object-oriented model.

1.1 What Makes an Object-Oriented Model Pure?
Most of the criteria above are fairly clear. The exception involves
the purity of the object model. What does it mean, especially in the
context of types, for a language to be purely object-oriented?

To answer the question, we consider both history and theory.
With respect to history, Alan Kay, a pioneer of the object-oriented
programming who developed Smalltalk, describes an “objects as
server” metaphor in which each “object would be a server offer-
ing services” that clients can use by sending messages to the ob-
ject [13]. In fact, Kay writes that, in his opinion, “the big idea [of
object-oriented programming] is messaging.”1

With respect to theory, in his essay on the nature of objects,
William Cook defines objects as “a value exporting a [sic] proce-
dural interface to data or behavior” [9]. The notion of a procedural
interface reflects Kay’s focus on messaging: the only way to inter-
act with an object is to invoke its methods. This is also consistent
with Meyer’s uniform access principle.

Cook argues that a key benefit of objects, arising from their pro-
cedural interface, is that different implementations of an interface
can interoperate. For example, in a pure object-oriented model, we
can take the union of a set implemented as a list with a set imple-
mented as a hash table. Moreover, different implementations of an
interface can be treated uniformly: for example, we can store in-
stances of two different implementations of a set within the same
data structure. These benefits are used in many object-oriented sys-
tems [5], and we consider them to be critical goals of our language
design.

These ideas can also be considered in a comparison between ob-
jects and module systems, particularly, with respect to encapsulat-
ing state. Concerning the development of object-oriented program-
ming, Kay writes of his motivations, “The large scale one was to
find a better module scheme for complex systems involving hiding
of details, and the small scale one was to find a more flexible ver-
sion of assignment, and then to try to eliminate it altogether” [13].
Hiding assignment behind a method interface—via the uniform ac-
cess principle—provides a more flexible version of assignment, and
one can go further in using that method interface more abstractly to
“replace bindings and assignment with goals” [13]. The procedural
interface of objects also makes them act like first-class modules.2

From these sources, we extract three key requirements that we
wish to satisfy in coming up with a typed, pure object-oriented
model:

• Uniform access principle. Following Meyer, Cook, and Kay,
it should be possible to access objects only by invoking their
methods.

• Interoperability and uniform treatment. Different imple-
mentations of the same object-oriented interface should interop-
erate by default, and it should be easy to treat them uniformly at
run time (e.g., by storing different implementations of the same
interface within a single run-time data structure).

• State encapsulation. All mutable state should be encapsulated
within objects.3

1.2 Mechanisms for Code Reuse
No discussion of a pure object-oriented programming model would
be complete without discussion of code reuse mechanisms, such

1 Alan Kay, email sent October 10, 1998 to squeak@cs.uiuc.edu.
2 A module system for Wyvern is still under development, but a key prin-
ciple will be that modules can be treated as any other object, following
Newspeak [6].
3 This should not be taken to imply that all objects have mutable state, which
is a common misconception. See Cook’s essay for details [9].

1 type Lot =
2 meth value : int
3 meth compare(other : Lot) : int
4 meth sell : int
5

6 meth purchase(q : int, p : int) : Lot =
7 new
8 var qty : int = q
9 var price : int = p

10 meth value : int =
11 this.qty * this.price
12 meth compare(other : Lot) : int =
13 this.value - other.value
14 meth sell : int =
15 val qtySold = this.qty
16 this.qty = 0
17 qtySold
18

19 val aLot = purchase(100,100)
20 val d = aLot.compare(purchase(50,90))
21 val value = aLot.value
22 val qtySold = aLot.sell

Figure 1. A Lot Object in the Object-Oriented Core of Wyvern
(Featherweight Wyvern)

as inheritance. We have not yet investigated adding inheritance or
delegation to Wyvern. However, Wyvern does support specializa-
tion and generalization of types, along with a pure object-oriented
model that supports reuse via composition mechanisms. Questions
of interest to us as we continue the development of Wyvern are:

• How far can a pure object-oriented model without inheritance
go in supporting code reuse?

• What reuse mechanisms would fit most naturally into a system
with Wyvern’s design goals?

We are considering a reuse model for Wyvern based on delega-
tion, possibly, with slightly simpler semantics compared to delega-
tion in Self [20].

1.3 Contributions
This paper makes the following contributions:

• Section 2 presents the design of a simple, typed, value-based,
pure object-oriented language. We closely follow the lambda
calculus, a simple, foundational model of computation, while
enforcing the uniform access principle, supporting object inter-
operability, and encapsulating state.

• Section 2 also provides the semantics of this language by trans-
lation into the typed lambda calculus.

• Section 3 describes a “purely object-oriented” first-class class
construct and its definition in terms of pure objects by transla-
tion into the language described in the previous section.

The design of Wyvern is ongoing. While we believe the design
described here captures our initial goals well, the design is subject
to change and needs to be extended in many ways. In the conclu-
sion, we discuss areas for future work, including specific potential
extensions of Wyvern.

2. The Object-Oriented Core of Wyvern
In this section, we present the syntax and semantics of the object-
oriented core of Wyvern, which we call Featherweight Wyvern
(FW). We start with an example.

e ::= x
| λx:τ.e
| e(e)
| new {d}
| e.f
| e.f = e
| e.m

τ ::= t
| τ → τ

d ::= var f : τ = e
| methm : τ = e
| type t = {τd}

τd ::= methm : τ

σ ::= τ
| {σd}

σd ::= var f : τ
| type t = {τ}
| τd

Figure 2. Featherweight Wyvern Syntax

Figure 1 shows the definition of a Lot object in FW. The Lot
type, which represents the object, is defined as a collection of
methods. It’s important to note that, in Wyvern, types are structural,
and their names serve as abbreviations. Object types in Wyvern are
implicitly recursive, allowing the compare method to take a Lot
object as an argument to compare the value of this Lot to the value
of the passed in Lot.

We create lots using the purchase method, which acts as a
factory. The body of this method is a new statement which creates
an object. The object defines two mutable variables of type int.
These variables can be accessed only from methods within the
object, enforcing encapsulation of mutable state. Definitions are
provided for each method. Method invocations or field access on
the receiver object can be expressed using the this keyword. In
the sell method, each line is a different statement, and the value
of the expression on the last line of the method is returned from the
method. Code below the purchase method shows how Lot objects
can be used.

From the Lot type alone we can already see how the design of
Wyvern fulfills our criteria for a pure typed object-oriented model.
As object types in Wyvern only contain methods, the uniform
access principle is enforced. Although only one implementation of
Lot is shown, the Lot type allows multiple implementations that
can interoperate and may be treated uniformly. Finally, all state is
encapsulated within the Lot object.

2.1 Syntax
Figure 2 shows the syntax for Featherweight Wyvern. The language
is expression-based and has the lambda calculus at its core, thus
providing functional programming support. In our text examples,
we write λx:τ.e as fn x:τ => e. To this functional core, we add
a new construct for creating an object from a sequence of declara-
tions and primitives for reading fields, writing fields, and invoking
methods. Types τ may be either the name of an object type t or a
function type τ → τ .

The declarations that can appear inside a new expression include
variable declarations, method declarations, and type abbreviations.
Variable declarations are visible only within the object and are
assigned a type and an initialization expression, which is executed
when the object is created.

Method declarations are also typed and have a body expression,
but unlike with variables, the body is evaluated each time the
method is called, not when the surrouding object is created. The
careful reader will note that we do not directly support method
arguments. Each method has an implicit argument this. If more
arguments are needed, the body of the method can be a lambda

Γ, σ ` d :: σd σ = {σd} τd ⊆ σd

Γ ` new {d} : {τd}
T-new

Γ, this : σ ` e : τ

Γ, σ ` methm : τ = e :: methm : τ
DT-meth

Figure 3. Featherweight Wyvern Semantic Rules for new and meth

expression that binds the additional arguments. For example, in our
formal core language the declaration of compare would be written:

1 meth compare : Lot -> int =
2 fn other : Lot =>
3 this.value - other.value

Type abbreviations are strictly local and cannot be seen from
outside the object; we may add type members in a future extension.
An object type is defined as a set of method declaration types τd,
which are just like method declarations except that the body is
absent. Type abbreviations are recursive, so that t may appear in
τd.

The typing and subtyping rules are mostly standard and are
omitted here for space reasons; a companion technical report gives
the complete rules [21]. The only exception is the way that new
and this are typed (Figure 3) . In order to type new, we type each
declaration in it against a declaration type σd. There is a declaration
type form for each kind of declaration; thus, σd generalizes τd,
which is restricted to method declarations only. A sequence of
declaration types {σd} forms an internal object type σ.

We want to use this σ as the type for this, so that we can
access not just methods, but also variables on it. Therefore, the σ
computed in the new rule is passed as an input to the declaration
typing judgment, to the left of the turnstile. In the method typing
rule, the premise assumes that this has this internal object type σ.

Note that this mechanism not only allows methods to access
fields on the receiver, it is also the mechanism that prevents fields
from being accessed elsewhere. σ is not part of the grammar of
ordinary types (in fact, it is a superset of types, not a subset), and,
thus, a lambda may not have an argument of σ type. Hence, our
type system prevents passing a pointer to this outside the lexical
scope of a function at an internal object type. this may still be
passed to other functions, but only as an external object type, in
which all but the method declarations have been forgotten.

With the addition of integers and a few other small abbrevi-
ations, this syntax is expresive enough to write the Lot example
from Figure 1. Our core language does not have top-level declara-
tions, but we can easily wrap the Lot and purchase declarations
in an object, put the rest of the code in an eval method of that
object, and invoke eval on the top-level object. The example also
uses a val abbreviation, which is Wyvern’s version of let, can be
encoded with functions, and is used just for visual brevity. For ex-
ample, val x = e1; e2 can be written as (fn x : τ => e2)(e1),
where τ is the type of e1 in the current scope. Figure 4 shows the
code with no syntactic sugar, except for val.

2.2 Discussion and Related Calculi
We believe that the design above fulfills the criteria we set out in
the introduction. Featherweight Wyvern is a pure object-oriented
language in that it enforces the uniform access principle, interop-
erability of different implementations of the same object interface,
and state encapsulation. The language is statically typed, and all
elements of the language, except types, are first-class values. The

1 val globalObject = new
2 type Lot =
3 meth value : int
4 meth compare : Lot -> int
5 meth sell : int
6

7 meth purchase : int -> int -> Lot =
8 fn q : int => fn p : int =>
9 new

10 var qty : int = q
11 var price : int = p
12 meth value : int =
13 this.qty * this.price
14 meth compare : Lot -> int =
15 this.value - other.value
16 meth sell : int =
17 val qtySold = this.qty
18 this.qty = 0
19 qtySold
20

21 meth eval : unit =
22 val aLot = this.purchase(100,100)
23 val d = aLot.compare(this.purchase(50,90))
24 val value = aLot.value
25 val qtySold = aLot.sell
26

27 globalObject.eval

Figure 4. The Lot Object in Featherweight Wyvern Without Syn-
tactic Sugar Except for val

lambda calculus core provides good support for functional pro-
gramming.

Furthermore, since in pure object-oriented languages, an ob-
ject’s behavior is characterized by the messages it responds to
and a structural type describes this directly, for the simple core
of Wyvern, we use structural typing. Empirical studies also have
shown structural typing to be useful in practice [14]. We intend to
support nominal types as an addition when they are needed, for ex-
ample, for abstract data types.

We argue that the language is about as simple as it could pos-
sibly be while fulfilling these goals: beyond the lambda calculus,
which is necessary for functional programming, we have exactly
one construct each for object creation, field reads and writes, and
method calls. The type language is also extremely simple, support-
ing recursive object types and function types, as well as the special
internal σ type for this mentioned above.

We briefly consider whether the language could be simpler
while still achieving our goals. One obvious approach to simplify-
ing the language would involve encoding one of the lambda calcu-
lus or methods in terms of the other. In fact, in the next subsection,
we will give semantics to Featherweight Wyvern by translating ob-
jects into the lambda calculus with records. Alas, these encodings
are quite awkward for a source-level language, and we wish for
Featherweight Wyvern to provide source-level support for both ob-
jects and functions.

A second possible simplification would be to unify methods and
fields, as done in Abadi and Cardelli’s calculi [4]. However, ex-
pressing methods using fields at the source level would not enforce
the uniform access principle (since the fields could be accessed di-
rectly) and would leave Wyvern without a purely object-oriented
core. Expressing fields as methods raises questions about how to
effectively hide state and creates typing complexity, requiring that
a distinction is made between updatable methods (i.e., fields) and
non-updatable ones [4]. Therefore, this simplification is not appro-
priate for Featherweight Wyvern.

trans(methm : τ) ≡ m : unit→ τ
trans(var f : τ) ≡ f : ref τ

trans(methm : τ = e; d) ≡ m : τ = λ : unit.trans(e);
trans(d)

trans(var f : τ = e; d) ≡ f : τ := alloc trans(e);
trans(d)

trans(e.m) ≡ (unfold trans(e)).m()
trans(new {d}) ≡ letrec this : σ =

{trans(d)}
in fold this
where Γ, σ ` {d} : σ

trans(e.f = e1) ≡ trans(e).f = trans(e1)
trans(e.f) ≡ !trans(e).f

trans(type t = {τd}; d) ≡ trans([µt.trans(τd)/t]d)

Figure 6. Translation from Featherweight Wyvern to the Extended
Lambda Calculus

Featherweight Wyvern does have strong similarities to object
calculi proposed in the research literature. Our calculus is very
similar in its modeling of objects, functions, and methods to Abadi
and Cardelli’s FOb1 calculus. The main difference is that, as
discussed above, Abadi and Cardelli use a method update operation
instead of modeling state with fields. This keeps their calculus
small but also prevents it from being a practical language.

2.3 Semantics
We describe the semantics of FW by translation into the typed
lambda calculus with extensions for records, the fix operator, ref-
erences, iso-recursive types, and subtyping. The syntax of our tar-
get language is shown in Figure 5; its semantics are covered in our
technical report [21] but are in many cases directly taken from Ben-
jamin Pierce’s textbook [18].

The trans function in Figure 6 is used to translate expressions
and declarations from FW to typed lambda calculus. When translat-
ing meth m : τ , the keyword meth is removed and the method m
becomes a field of type τ . A variable var f : τ becomes a reference
f . The translation of meth m : τ = e assigns to the field m the
translation of expression e, wrapping the expression in a lambda so
that it is evaluated when the method is called rather than on object
creation. The assignment to a variable var f : τ = e is translated
by allocating a cell to hold the result of executing the translated
expression e.

The translation of e.m is more interesting since m becomes a
field (or a record member) of e and we need to unfold e in order
to be able to access m. After unfolding the translated expression,
we select the method m and call the resulting function with a unit
value to evaluate the method body.

In the translation of new {d}, we use the first of the object en-
codings discussed by Bruce et al. [8]. We create a new object as a
record, using the translation of the declarations d. The created ob-
ject must be available within its own methods as the this variable,
and so we recursively bind the record value to this using a letrec
construct. Finally, we fold the result to a recursive type.

Translation of field reads and writes is straightforward; the only
interesting issue is that we must add an explicit dereference to field
reads because of the way references are handled in our extended
lambda calculus. Finally, we translate type bindings by substituting
the equivalent recursive type for t in the declarations that follow.

When we apply our translation rules shown in Figure 6, the
code from Figure 1 is translated to the extended lambda calculus
code shown in Figure 7. In this simpler version of the language,
Lot is defined as a recursive type. The methods from Figure 1
are translated into corresponding fields value, compare, and sell.

τ ::= τ → τ
| {fi:τ i∈1..n

i }
| ref τ
| t
| µt.τ

Γ ::= {x:τ}
Σ ::= {l:τ}

v ::= λx:τ.e
| {fi = vi∈1..n

i }
| `
| fold[τ] v

S ::= {l = v}

e ::= x
| λx:τ.e
| e(e)
| {fi = ei∈1..n

i }
| e.f
| fix e
| alloc e
| !e
| e := e
| fold[τ] e
| unfold[τ] e
| l

letrec x:τ1 = e1 in e2
def
= letx:τ1 = fix(λx:τ1.e1) in e2

let x:τ1 = e1 in e2
def
= (λx:τ1.e2)(e1)

Figure 5. Lambda Calculus with Extensions [18]

1 type Lot = rec t . {
2 value : unit -> int
3 compare : unit -> t -> int
4 sell : unit -> int
5 }
6 type LotT = rec t . {
7 qty : ref int
8 price : ref int
9 value : unit -> int

10 compare : unit -> Lot -> int
11 sell : unit -> int
12 }
13 fun purchase(q : int, p : int) : Lot =
14 letrec this : LotT = {
15 qty : ref int = alloc q
16 price : ref int = alloc p
17 value : unit -> int = fn _ : unit =>
18 !this.qty * !this.price
19 compare // not shown
20 sell : unit -> int = fn _ : unit =>
21 val qtySold = !this.qty
22 this.qty = 0
23 qtySold
24 } in fold this
25

26 val aLot = purchase(100, 100)
27 val d = unfold(aLot).compare()(purchase(50,90)
28 val value = unfold(aLot).value()
29 val qtySold = unfold(aLot).sell()

Figure 7. The Lot Object Translated to the Lambda Calculus with
Extensions

We have given this type an abbreviation Lot for readability; type
abbreviations are technically not in our target language, but they
are a standard addition.

We also need to define an internal type LotT that captures
the implementation used in the purchase function; this type is
like Lot but additionally includes the mutable state. Note that
the type of compare in LotT uses type Lot rather than t for its
argument type. This allows LotT to be a subtype of Lot, and also
ensures that our interoperability design criterion is met: the LotT
implementation can interoperate with any other implementation of
Lot.

The remainder of the translation follows the translation rules in
a straightforward way.

3. Extending Wyvern with Classes
In this section, we present an extension to Featherweight Wyvern
(FW) called Featherweight Wyvern with Classes (FWC) that adds
first-class classes. In fact, this language is a subset of the current,
working implementation of Wyvern freely available online and
briefly described in the next section.

The extended syntax is shown in Figure 8. The basic forms
of expressions and types are identical to those from the object-
oriented core of Wyvern, presented in the previous section. To the
declaration syntax, we add a class declaration. Class declarations
can have declarations within them, which reflect the variables and
methods of the objects created from that class.

Wyvern also allows classes to declare class variables and class
methods, which are members of the class itself. Class methods and
variables are inspired by the corresponding constructs in Smalltalk.
They are also similar to static methods and static fields in Java but
fit more cleanly into a language where classes are first-class objects.

As with the previous core language, we use σ to denote the inter-
nal type of a class or object, and we extend the internal declaration
types σd to add the appropriate class-related declarations.

Figure 9 shows a variation on our earlier example, written in
FWC and taking advantage of classes. The Option class represents
a financial option. We introduce a class field totalQuantityIssued

to keep track of how many options were issued during the class’s
lifetime and use a class method issue to create new options, i.e.,
new objects of this class. As with the earlier Lot example, there are
two object fields, quantity and price, that store the correspond-
ing information about Option instances, and an object method
exercise that is called upon the end of the lifetime of an ob-
ject of the Option class. Lines 17-18 illustrate how the issue and
exercise methods can be used. Here, for briefness, we used a short-
hand to represent the statement sequence, which can be trivially en-
coded using a let expression. If the code snippet from Figure 9 is
wrapped in a new statement, it becomes a runnable FWC program.

We argue that we do not need to make classes explicit to have
an object-oriented language, and, therefore, Figure 10 presents a
translation function. It simplifies our representation by replacing
every occurrence of a class declaration with a corresponding type
and a variable that can be used to instantiate objects of the class.

e ::= x
| λx:τ.e
| e(e)
| new {d}
| e.f
| e.f = e
| e.m

τ ::= t
| τ → τ

τd ::= methm : τ

d ::= var f : τ = e
| methm : τ = e
| type t {τd}
| class c { cd; d }

cd ::= class var f : τ = e
| class methm : τ = e

σ ::= τ
| {σcd}

σcd ::= class var f : τ
| class methm : τ
| σd

σd ::= var f : τ
| type t {τd}
| class c { σcd, σd }
| τd

Figure 8. Syntax of Featherweight Wyvern with Classes

1 class Option
2 var quantity : int = 0
3 var price : int = 0
4 meth exercise : int =
5 this.quantity * this.price
6

7 class var totalQuantityIssued : int = 0
8 class meth issue : int -> int -> Option =
9 fn q : int =>

10 fn p : int =>
11 totalQuantityIssued =
12 totalQuantityIssued + q
13 new
14 var quantity : int = q
15 var price : int = p
16

17 var optn : Option = Option.issue(100, 50)
18 var ret : int = optn.exercise

Figure 9. An Option Class in Featherweight Wyvern with Classes

trans(class c {cd; d}) ≡ type c = τi; var c : τc = e
where

τc = {methm : τ}
where methm : τ ∈ τc

iff class methm : τ = e ∈ cd
τi = {methm : τ}

where methm : τ ∈ τi iff methm : τ = e ∈ d
dcl = {methm : τ = e} ∪ {var f : τ = e}

where methm : τ = e ∈ dcl
iff class methm : τ = e ∈ cd

and var f : τ = e ∈ dcl
iff class var f : τ = e ∈ cd

d′cl = [new {d⊕ d′} / new {d′}] dcl
d′′cl = trans(d′cl)
e = new{d′′cl}

Figure 10. Translation of a Class from FWC to FW

The translation relies on the fact that typing is structural and that
multiple names for the same type do not affect the semantics.

In Featherweight Wyvern, we represent a class as a type abbre-
viation and a set of methods originally included in the class. We
start the translation by collecting all the class methods and convert-
ing them into regular methods. The resulting type τc is an externally

1 type Option =
2 meth exercise : int
3

4 type OptionC =
5 meth issue : int -> int -> Option
6

7 var Option : OptionC =
8 new
9 var totalQuantityIssued : int = 0

10 meth issue : int -> int -> Option =
11 fn q : int =>
12 fn p : int =>
13 totalQuantityIssued =
14 totalQuantityIssued + q
15 new
16 var quantity : int = q
17 var price : int = p
18 meth exercise : int =
19 this.quantity * this.price
20

21 var optn : Option = Option.issue(100, 50)
22 var ret : int = optn.exercise

Figure 11. Option Class Translated to Featherweight Wyvern

visible type for the class object. Next, we assemble a type that will
represent the objects instantiated from the class, τi, using the object
methods declared in the class.

After establishing the types we need for our translation, we pro-
ceed by translating the class’s declaration statements. First, we col-
lect all the class methods and class fields and rewrite them without
the keyword class (dcl). Then, each new statement inside the col-
lection dcl is substituted with a new statement that carries a context
and includes an overriding union of declarations {d⊕ d′}, where
d
′

are the declaration that were in the new statement previously and
d are the declarations defined in the class. Finally, we recursively
translate the resulting set of declarations d′cl and wrap it with a new

statement. Hence, the class is translated to be a type abbreviation
and a variable containing declarations from the class.

Our translation thus reveals that a class is treated both as a
type and as a value in Wyvern. This is natural given that classes
are first-class in Wyvern and reflects existing usage of classes in
prior languages: for example, classes are types in Java and most
other typed object-oriented languages, and classes are values in
Smalltalk. This duality does not cause semantic problems because
values and types are in different namespaces in Wyvern, and the
context always makes it clear whether a value or a type is required.

Figure 11 shows the result of applying the translation function
to the Option class we saw earlier (Figure 9). The resulting code
starts with the definitions of type abbreviations that directly cor-
respond to the types created by the translation function. Specifi-
cally, type Option represents the type τi for objects of the class,
and type OptionC represents the type τc for the class itself. Then
comes the translation of the class itself, which, in FW, is a vari-
able definition. Its type is the externally visible class type OptionC,
and it is defined to be a new statement containing the class dec-
larations from the original class. In particular, it contains a vari-
able totalQuantityIssued, which is a class field in FWC, and a
method issue, which is a class method in FWC and whose return
type is Option, i.e., the type representing objects of the class. In-
side the issue method we find the regular declarations that pertain
to the FWC class: variables quantity and price and the exercise

method.
Our technical report [21] accompanying this paper provides

the subtyping rules, both static and dynamic semantics, states the
soundness theorems, and allows the reader to see how the resulting
language can be proved safe by the appropriate translation to the
simple typed lambda calculus with extensions. The next section
briefly surveys our prototype implementation.

4. Implementation
Wyvern4 is implemented in Java, with the eventual goal of self-
hosting, i.e., being written in Wyvern itself, and supports a superset
of features presented here. A selection of tests with simple Wyvern
programs is available as part of the source code.

Wyvern uses a fixed whitespace-indented lexing approach sim-
ilar to that used by languages, like Python. The current indentation
convention is based on the number of whitespace characters.

Wyvern was developed to support extensible parsing interface.
This means that, as such, there are no keywords defined in the
language: instead each keyword is mapped to a corresponding
parser that can parse the relevant block of code. For example,
core implementation includes a “class parser” that supports class
declarations that may include other declarations, such as “methods”
and “variables”, which are, in turn, parsed by the associated parsers.
As a result, Wyvern front-end effectively combines the parsing and
type checking stages that are usually separated in more traditional
compilers, such as javac or gcc.

Currently, Wyvern supports three targets: the Java interpreter
and compilation to either JavaScript or Java, all of which enable us
to test and run Wyvern programs. We are working on introducing
full interoperability with both JavaScript and Java to enable simple
Wyvern programs to join a web-oriented workflow and, hence,
allow us to perform usability and security-oriented studies of our
language.

5. Related Work
A central inspiration in the design of Wyvern and its core lan-
guage is Smalltalk [11]. Smalltalk was seminal in the development
of object-oriented languages and is still in use today, e.g., in its
Squeak [3] and GemStone/S [2] incarnations. While simple and
elegant, it is dynamically typed, as opposed to Wyvern, which is
statically typed. In both Smalltalk and FWC, classes are first-class
objects. Smalltalk is more strongly class-based however, in that ev-
ery object is an instance of a class; this is not true of FWC, and
especially not of FW.

Strongtalk [7] is a Smalltalk environment with optional static
typing support. The type system is incremental and operates inde-
pendently of the compiler. Wyvern’s type system has some sim-

4 https://github.com/wyvernlang/wyvern

ilarities to Strongtalk’s, e.g., both type systems are structural.
Strongtalk’s type system is more complex and powerful than
Wyvern’s, including features, such as parametric polymorphism
and brands. We may add some of these features to Wyvern, but un-
like Strongtalk, we deliberately do not brand class types to make
them unique. This means that, when two classes implement the
same interface, the types they define are identical, and, therefore,
the classes can interoperate. We disagree with the choice made by
Strongtalk but, also, by more recent languages, such as Java, to
make branding the default for classes because this compromises
the interoperability provided by the object-oriented paradigm. If
we add brands to Wyvern, programmers will have to request their
use explicitly.

Gradualtalk [1] is another Smalltalk dialect offering gradual
typing and is fully compatible with Smalltalk code. Although more
recent and more expressive than Strongtalk, its relationship to
Wyvern is similar.

Self [20] is a prototype-based object-oriented language, provid-
ing an object model that is even simpler than Smalltalk’s, although
the surface syntax and environments of the two languages are sim-
ilar. Wyvern shares Self’s philosophy that classes are not required
but provides them as syntactic sugar for convenience. Indeed, ex-
perience with Self suggests that many programmers create libraries
of prototype objects that act similarly to classes.

Scala [17] is an object-functional programming and scripting
language for general software applications and is statically typed.
Scala includes full support for functional and object-oriented pro-
gramming. Many of its features are akin to those of Wyvern. For
example, it is pure in the sense that every value is an object; a func-
tion or method foo() can also be called as just foo, thus enforcing
the uniform access principle. While Scala is quite successful, it has
been criticized for its complexity. Wyvern tries to provide a practi-
cal language design with some of the same goals as Scala but with
a strong emphasis on simplicity at the expense of adding features.

Emerald [19] is an “object-based” programming language de-
signed for building distributed applications. Like Wyvern, it is
purely object-oriented, supports the uniform access principle, and
does not rely on the concept of a class. However, there are signif-
icant differences. The key difference is the ultimate goals of the
languages: Emerald targets distributed application overall whereas
Wyvern focuses specifically on the web and mobile applications
and aims at ensuring applications’ security properties. In addition,
Emerald is a mature language and, thus, is more feature-rich while
Wyvern is still at an early stage of development and, therefore,
might seem as a subset of Emerald. Nevertheless, considering the
difference in the goals, as Wyvern design progresses, the diver-
gences of the features is expected to be more pronounced.

JavaScript is a scripting programming language with great op-
portunities of code re-use via mixins, but it is dynamically typed
and lacks direct support for classes and inheritance. However,
its counterpart TypeScript [16], which represents a superset of
JavaScript, is enhanced with static typing and class-based object-
oriented paradigms. Classes in TypeScript are implemented in ac-
cordance with the upcoming ECMAScript 6 [23] standard. Neither
JavaScript nor TypeScript supports the uniform access principle.
Instead, objects are modeled as records, and fields can be accessed
directly from outside an object without indirection via methods. Al-
though TypeScript supports pure object-oriented interfaces, types
generated from classes are branded, and, when these types are used,
they interfere with interoperability between different implementa-
tions of the same interface.

6. Conclusion
In this paper, we presented Wyvern, a simple, pure, value-based,
statically typed object-oriented language that supports functional

programming and is designed for building secure web and mobile
applications. We show how its foundational object-oriented core
allows the introduction of more complex program structures, such
as classes, and reuse mechanisms in a clean and organized manner.
There are a number of potential extensions of Wyvern that remain
open questions, including the following:

• A reuse mechanism, such as inheritance or delegation,
• A first-class, typed module system,
• Support for tags, instanceof, and pattern matching, and
• Support for abstract type members.

7. Acknowledgements
We are grateful to Du Li, Cyrus Omar, and the workshop reviewers
for their valuable feedback on this paper. This research was sup-
ported in part by the Swiss National Science Foundation through
grant PBEZP2 140051, by the U.S. National Science Founda-
tion under grant #CCF-1116907, Foundations of Permission-Based
Object-Oriented Languages, and by the U.S. Department of De-
fense.

References
[1] A Practical Gradual Type System For Smalltalk. http://pleiad.

cl/research/software/gradualtalk.

[2] GemStone/S. http://gemtalksystems.com.

[3] Squeak Smalltalk. http://www.squeak.org.

[4] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Springer-
Verlag, 1996.

[5] Jonathan Aldrich. The Power of Interoperability: Why Objects Are
Inevitable, 2013. Submitted for publication. Available at http://
www.cs.cmu.edu/~aldrich/papers/objects-essay.pdf.

[6] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai, W. Maddox, and
E. Miranda. Modules as objects in newspeak. In ECOOP, pages 405–
428, Berlin, Heidelberg, 2010. Springer-Verlag.

[7] Gilad Bracha. The strongtalk type system for smalltalk. In OOPSLA
Workshop on Extending the Smalltalk Language, 1996.

[8] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing Object Encod-
ings. Information and Computation, 155(1–2):108–133, 1999.

[9] William R. Cook. On understanding data abstraction, revisited. SIG-
PLAN Not., 44(10):557–572, October 2009.

[10] A. Diwan, K. S. McKinley, and J. E. B. Moss. Using types to analyze
and optimize object-oriented programs. ACM Trans. Program. Lang.
Syst., 23(1):30–72, January 2001.

[11] A. Goldberg and D. Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[12] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, 2012.

[13] Alan C. Kay. The early history of smalltalk. SIGPLAN Not., 28(3):69–
95, March 1993.

[14] Donna Malayeri and Jonathan Aldrich. Is Structural Subtyping Use-
ful? An Empirical Study. In ESOP, pages 95–111, Berlin, Heidelberg,
2009. Springer-Verlag.

[15] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik. An
empirical study of the influence of static type systems on the usability
of undocumented software. In OOPSLA, pages 683–702, New York,
NY, USA, 2012. ACM.

[16] Microsoft. TypeScript. http://www.typescriptlang.org.

[17] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala.
Artima, 2010.

[18] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[19] R. K. Raj, E. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson,
and E. Jul. Emerald: a general-purpose programming language. Softw.
Pract. Exper., 21(1):91–118, December 1990.

[20] Randall B. Smith and David Ungar. Programming as an experience:
the inspiration for Self. In ECOOP, volume 952, pages 303–330.
Springer-Verlag, 1995.

[21] The Plaid Group. The Core Wyvern Language. Technical report,
Carnegie Mellon University, April 2013. Available at http://www.
cs.cmu.edu/~aldrich/papers/temp/core-language.pdf.

[22] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, and B. D.
Sutter. Refactoring using type constraints. ACM Trans. Program.
Lang. Syst., 33(3):9:1–9:47, May 2011.

[23] Allen Wirfs-Brock. ES6 Max-min class semantics. Mozilla, Presented
at TC-39 meeting, San Francisco, CA, July 2012.

[24] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Inf. Comput., 115(1):38–94, November 1994.

