
A Theory of Linear Objects

Matthew Kehrt
University of Washington

mkehrt@cs.washington.edu

Jonathan Aldrich
Carnegie Mellon University

aldrich@cs.cmu.edu

Abstract
Recently, linearity has been proposed as a mechanism for mem-
ory management, alias control, and typestate tracking. While linear
type systems have been extensively studied in functional program-
ming, their use in object-oriented systems has been limited to useful
but ad-hoc annotation systems that track unique pointers.

In this paper, we study object-oriented linearity at level of foun-
dational object calculi. Our system tracks not only linear objects (to
which there may be only one pointer), but linear methods as well
(which may be called at most once). Tracking linear objects allows
us to ensure type safety for imperative, type-changing update to
methods and imperative, type-changing dynamic inheritance. Be-
cause some aliasing is important in practical systems, our system
supports linear and non-linear objects and methods and a novel
region system that permits borrowed aliases to linear objects. To
enforce safety, we allow type-changing modifications only on un-
borrowed linear objects, but permit such changes again when these
borrowed references are no longer accessible. Note: an earlier ver-
sion of this paper appeared in the proceedings of FOOL ’06. The
current paper includes a simpler and cleaner formalism (with only
methods, no lambdas) and significantly extends the previous system
with borrowing via regions.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Classes and ob-
jects; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages

General Terms Languages, Reliability

Keywords Object calculi, Linear types

1. Introduction
Linear type systems ensure that a resource is used at most once.
They have been proposed to verify that clients of an abstraction
call its operations in a proper protocol order [10, 11], to enforce
safety of manual memory management as in Cyclone [27], and
to implement functional languages using more efficient imperative
operations such as destructive update [30].

Linear types have been studied extensively in functional pro-
gramming languages. For example, Wadler describes an elegant
lambda calculus extension in which base types and functions may

Copyright is held by the author/owner(s).
FOOL ’08 13 January, San Francisco, California, USA.
ACM .

be either linear or non-linear [30]. Linear objects must be used ex-
actly once; this implies that every linear function is called exactly
once. In contrast, nonlinear objects can be freely shared, and so
nonlinear functions can be called as often as needed.

A number of object-oriented type systems have used a restricted
form of linearity known as uniqueness [7, 6, 2, 9, 11]. A unique
pointer is one that may not be aliased. Unique pointers can benefit
programmers by ensuring the absence of unwanted side effects [7,
2], can aid in reasoning about operations like synchronization [6],
and to enable the type system to enforce method call protocols [11].
Programmers often find uniqueness to be too restrictive, however,
so ideas like borrowing [7, 2], adoption [14] and observers [22]
were proposed to allow temporary aliases to unique pointers.

Despite all this activity, however, we know of no study of lin-
earity at the more foundational level of object calculi like those of
Abadi and Cardelli [1] or of Fisher et al. [15, 16]. While unique-
ness has been formally modeled in simple Java-like languages such
as Featherweight Java [18], we believe that studying linearity at a
foundational level could potentially lead to more flexible systems,
show how to apply linearity to new constructs like C#’s delegates,
and allow us to more easily compare existing proposals for unique-
ness.

The object-based setting is ideal for investigating linear meth-
ods in addition to linear objects. We also can explore applications
of linearity to statically typing imperative update to method types
or inheritance relationships, which languages such as Self [29],
Python and Javascript treat dynamically. Also of interest are uses of
these type changing operations to enforce protocols for object use.

1.1 Contributions
This paper studies linearity in a classless, imperative, foundational
calculus called EGO, which is derived closely from existing object
calculi. We extend an earlier version of this system [5] by simpli-
fying the calculus and adding a mechanism for relaxing linearity
when possible. The technical contributions of the paper are:

• We describe a linear type system for an object calculus. Our sys-
tem gives an account of linear methods, which are called at most
once, including the subtle interactions between linear methods
and linear objects. We support imperative addition, change, and
removal of methods in objects, as well as changes to the inheri-
tance relationship between objects, features common in dynam-
ically typed languages like Self [29].
• We demonstrate the expressiveness of our system in section

2 with a series of examples. We show how a simple example
of using uniqueness to check object protocols from the litera-
ture [10] can be expressed in EGO.1

• We formalize the system and prove it sound in section 3.

1 We believe other applications of linearity, such as memory management,
could be added to our system with few changes, but memory management
is not the focus of this paper.

• In section 4, we show how linearity can be relaxed in a gen-
eralization of borrowing by introducing regions as an exten-
sion to EGO. Our proposal extends previous work [27] to an
object-oriented setting, and allows more flexible uses of bor-
rowed pointers than in previous object-oriented research. This
extension is formalized in section 5.

2. Simplified EGO
This section introduces a simplified, core version of EGO, which
lacks a construct for relaxing linearity.

2.1 Intuition
Intuitively, programs in EGO proceed by manipulating objects. We
follow Fisher et al. [15, 16] in modeling an object as a record of
methods and possibly a delegation pointer to another object, which
allows modeling imperative updates to delegation. A program in
EGO consists of a mutable store and an expression which is recur-
sively built of the following primitives for modifying objects:

• 〈〉 creates a new object on the heap and returns a reference to it.
• e ←+m = σ adds the method σ with the name m to the object

on the heap referred to by e, or changes the method named m
to be σ if it already exists.
• e1 ← e2 changes the delegatee of the object on the heap

referred to by e2 to be that referred to by e1.
• e.m invokes the method named m in the object referred to by
e.
• !e changes the linearity of an object, as discussed below. This

only affects the type of the object; it has no dynamic effect.

We often write 〈〉 ←+m1 = σ1 · · · ←+mn = σn as 〈m1 =
σ1, · · · ,mn = σn〉.

EGO allows methods and objects to be either linear or nonlin-
ear. A linear object is one to which one reference is allowed; non-
linear objects can have multiple references. To make static typing
possible, only linear objects can change their interfaces by method
addition or delegation change. All new objects are linear. When all
needed interface changes have been made, the type of an object can
be changed irrevocably to nonlinear so it can be freely aliased. This
is similar to the “seal” operation of Fisher and Mitchell [16], where
it allows objects to become subtypable; in our calculus objects in-
stead become aliasable.

A linear method can be called only once, while nonlinear meth-
ods can be called multiple times. Calling a linear method removes
it from the object that contains it. This is an interface change and
so is only allowed on linear objects.

Methods in EGO are based on those of Abadi and Cardelli. A
method is of the form ς(x:τ).e or ¡ς(x:τ).e, which are nonlinear
and linear methods, respectively. A method is invoked on an object,
its receiver, which need not be the object containing the method.
When invoked, a method is found by searching the receiver and
its delegatees. Once a method is found, invocation substitutes a
reference to the receiver for x, the method’s bound variable, in e,
its body. All methods take only one argument, the self pointer of
their receiver.

EGO expressions all evaluate to references to objects, and are
given one of the following types.

• obj t.O ← 〈〈R〉〉 is a nonlinear object. This is recursive type,
which binds t to the type of the whole object in the rest of the
type. O is another object type, which the type of the object’s
delegatee or the distinguished type 〈〈〉〉, which indicates the object
has no delegatee. R is a row giving types to methods in this
object, of the form m1:τ1, · · · ,m2:τ2. Typechecking enforces
that these τs are method types.

• ¡obj t.O ← 〈〈R〉〉 is similar, but indicates that the object is
linear.

Methods types, which appear in rows in object types, are of one
of the two following forms.

• τ1 → τ2 is the type of a nonlinear method, where τ1 is the type
the receiver must have when the method is invoked, and τ2 is
the type of the object the method returns.
• τ1 (τ2 is the type of a linear method, which is consumed

upon invocation.

2.2 Examples
We show some simple examples to demonstrate the use of EGO.

The first example shows object creation and change. First, 〈〉
creates a new object on the heap, to which is imperatively added
a method, m, whose body is the identity method, which returns
the receiver object. This method is then replaced by another of the
same name which returns a new object when invoked.

〈〉←+m = ς(this:¡obj t.〈〈〉〉 ← 〈〈m:¡objt→ ¡objt〉〉).this
←+m =
ς(this:¡obj t.〈〈〉〉 ← 〈〈m:¡objt→ ¡obj t′.〈〈〉〉 ← 〈〈·〉〉〉〉).〈〉

The next example shows how delegation can be changed. It
creates a new object, adds the identity method to it, creates another
object and changes the delegatee of this second object to be the first
object,

〈〉 ←+m = ς(this:¡obj t.〈〈〉〉 ← 〈〈id:¡objt→ ¡objt〉〉).this← 〈〉
In the next example, we create a new object, add a linear method

to it that returns the receiver, and call the method. This removes the
method, so this code produces a reference to an empty object. Since
the invocation removes the method from the receiver, the type of the
object the method expects is empty.

(〈〉 ←+m = ¡ς(x:¡obj t.〈〈〉〉 ← 〈〈·〉〉).x).m

It is not obvious from these examples that EGO is powerful
enough to be useful as a model for a full language. The remaining
examples demonstrate EGO’s power.

We exhibit an embedding of the simply typed lambda calculus.
We define a lambda term of type τ → τ ′ as follows. This is based
on a similar embedding shown by [1]. Subterms in double angle
brackets represent recursively translated terms.

Jλx:τ.eK def
= !〈gen= ς(:Jτ → τ ′K).

〈body = ς(this:bodytype(τ, τ ′)).
[this.arg/x]JeK〉〉

where

Jτ → τ ′K def
= obj t.〈〈〉〉 ← 〈〈

gen:(objt→(¡obj t′.〈〈〉〉 ← 〈〈
body : (bodytype(τ, τ ′)→ Jτ ′K)〉〉))〉〉

This works by creating a new object with a single method, gen.
This object is made nonlinear so that it can be aliased. gen is
defined to return a new object containing a method whose body
represents that of the lambda term with the lambda bound variable
replaced by the invocation of a method called arg on the method’s
receiver.

Both the expected type of the receiver of the body method,
bodytype(τ, τ ′), and the way in which application is done, depend
on the linearity of the type the translated function expects. If the
function expects something with linear type, the arg method added

to the generated object must be linear, and so be consumed when
called. arg is therefore not in the receiver type for itself.

Jbodytype(τ, τ ′)K def
= ¡obj t′′.〈〈〉〉 ← 〈〈

arg:(¡obj t′′′.〈〈〉〉 ← 〈〈body:(¡objt′′′ → Jτ ′K)〉〉
·

(JτK),
body:(¡objt′′ → Jτ ′K)〉〉

When e1 is λx:τ.e : τ ′ as defined above, and e2:τ , then

J(e1 : τ → τ ′)e2K
def
=

((Je1K.gen)←+arg =
¡ς(:¡obj t′′.〈〈〉〉 ← 〈〈body:(bodytype(τ, τ ′)→ Jτ ′K)〉〉).Je2K)
.body

This calls gen on an object, e1, which models a function, to
create a new, linear object containing the function’s body. To this
linear object it adds a new linear method called arg which returns
the argument of the application, e2. Calling body on the new object
then simulates a β-reduction, as the function’s bound variable has
been replaced with a call to arg, which returns the argument. Since
the function’s argument is linear, arg is linear and so is consumed.

On the other hand, if the function expects something with lin-
ear type, the arg method added to the generated object must be
nonlinear. In this case, since arg is not consumed, it appears in the
receiver type for itself, as seen below.

bodytype(τ, τ ′) def
=

obj t′′.〈〈〉〉 ← 〈〈arg:(objt′′ → JτK), body:(objt′′ → Jτ ′K)〉〉

and

J(e1 : τ → τ ′)e2K
def
=

(!((Je1K).gen←+arg = ς(:bodytype(τ, τ ′)).Je2K)).body

Here, application is the same as above, but no the argument is
no longer linear, so it is not removed on application.

Since we can calculate the return type, we elide it in later
lambda expressions.

We can then use this to define a let binding, where we bind an
expression e1 of type τ .

let x = e1 in e2
def
= (λx:τ.e2)e1

and a sequence operator

e1; e2
def
= let = e1 in e2

In a similar manner to lambda abstractions, we can also define
linear lambda abstractions that are consumed when applied, as in
[30].

J¡λx:τ.eK def
= 〈body = ¡ς(this:bodytype(τ)).[this.arg/x]JeK〉

where

bodytype(τ) def
= ¡obj t.〈〈〉〉 ← 〈〈arg : ¡obj t′.〈〈〉〉 ← 〈〈·〉〉

·
(JτK〉〉

and we translate the type of a linear function by

Jτ (τ ′K def
= ¡obj t′′.〈〈〉〉 ← 〈〈body:(bodytype(τ)

·
(Jτ ′K)〉〉

Finally, we translate application as follows.

J(e1:τ (τ ′)e2K
def
=

(Je1K←+arg = ¡ς(:¡obj t′.〈〈〉〉 ← 〈〈·〉〉).Je2K).body
This example is slightly different than the one above. We simulate
function consumption by having body be a linear method that is
consumed on invocation. Since it invokes a linear method, the

typedef closedType = ¡obj t1.(¡obj t2.(〈〈〉〉 ← 〈〈·〉〉)← 〈〈·〉〉)
typedef readType =

¡obj t1.(¡obj t2.(〈〈〉〉 ← 〈〈read:¡objt1 → ¡objt1,
close:¡objt1 → closedType〉〉)

← 〈〈·〉〉)
typedef openType =

¡obj t1.(¡obj t2.(〈〈〉〉 ← 〈〈open:¡objt1 → readType〉〉)
← 〈〈·〉〉)

let ClosedSocket = 〈〉 in
let ReadSocket = 〈
read = ς(this:readType)./*read from a socket*/; this
close = ς(this:readType).

/*close a socket*/;ClosedSocket← this〉
in let OpenSocket = 〈
open = ς(this:openType).

/*open a socket*/;ReadSocket← this〉
in let Socket = OpenSocket← 〈〉
in /*More code*/

Figure 1. A series of objects for a network socket

object is linear, and so on invocation we add the argument directly
to it, rather than calling a genmethod to create a new, linear object.

This translation only allows linear arguments to linear func-
tions, as we cannot call a linear method on a nonlinear object, so
we cannot access the object carrying arg at multiple places in the
function body. Later, we will show a way to avoid this restriction
with borrowing.

A more complex and realistic example is that of a network
socket object, given in Figure 1. In this example, we use a typedef
construct to simplify presentation; however, this is not part of the
calculus.

This example creates an object called Socket to model a net-
work socket. The socket starts with a single method, open, which
opens the socket and provides the socket object with two methods,
read and close. read reads some data from the socket; close closes
the socket and removes all methods from the object.

These methods make other methods available and unavailable
by changing the delegation of Socket, which remains linear. There
are secondary objects corresponding to the three states of a socket.
Each of these is delegated to at a different point in the Socket’s
lifetime. Socket starts delegated to OpenSocket, which contains
the open method. Calling open changes the delegation of Socket
to ReadSocket, which contains read and close methods. Finally,
calling close changes delegation to ClosedSocket.

The pattern used here is of note. In this code, objects are created
that correspond to states in an object’s lifecycle and have a series
of methods that are appropriate to the state they represent. We
then create an empty object and transition from state to state by
changing its delegatee to the object corresponding to the state we
are entering. We therefore guarantee that only methods appropriate
to the current object state exist on that object at any time.

3. Formalism for Simplified EGO
In this section we discuss the formalism we use to describe this
fragment of EGO.

3.1 Syntax
A program in the fragment of EGO we present here consists of a
pair, µ, e of store and an expression.

A store is a partial map (` 7→ s)∗, where ` is an abstract
location and s is an object descriptor of the form loc ← 〈m1 =

Expressions e ::= x, y | 〈〉 | e.m | e←+m = σ
| e1 ← e2 | !e | v

Values v ::= loc | σ
Locations loc ::= null | `

Stores µ ::= · | µ, ` 7→ s
Object Descriptors s ::= loc← 〈m1 = σ1, · · · ,mn = σn〉
Methods σ ::= ς(x:τ).e | ¡ς(x:τ).e

Types τ ::= τ → τ ′ | τ (τ ′ | O
Object Types O ::= Lt | 〈〈〉〉 | Lt.O ← 〈〈R〉〉
Linearities L ::= obj | ¡obj
Rows R ::= · | R,m:τ

Figure 2. Syntax of Simplified EGO

σ1, · · · ,mn = σn〉. loc is either a reference, `, to an object’s
delegatee or null, which indicates the object has no delegatee, and
〈m1 = σ1, · · · ,mn = σn〉, a record of the methods the object has.

A method, σ, is either ς(x:τ).e or ¡ς(x:τ).e. Both of these
abstract the variable x out of the method body e. The first is a
nonlinear method and the second linear.

An expression is either a variable, x or y, a new object creation,
〈〉, a method call, e.m, a method add or update, e ←+m = σ, a
delegation change e1 ← e2 or a linearity change !e. We consider
methods as expressions to simplify the typing rules; however no
other expression evaluates to a method. Locations are also expres-
sions but they are intermediate forms which do not occur in user
code. loc and methods are the only values.

The types, τ , of expressions are based on those used in [16].
These are either the types of methods or object types, O. The types
of nonlinear and linear methods are τ → τ ′ and τ (τ ′.

Object types, O, are either type variables, Lt, or 〈〈〉〉 or the
recursive typeLt.O ← 〈〈R〉〉. 〈〈〉〉 is the type of null andLt.O ← 〈〈R〉〉
the type of `. L is either ¡obj or obj which indicate whether
the object is linear or nonlinear. Type variables are prefixed with
a linearity to allow them to be used with a different type than
the one they are bound with. This allows us to write methods on
an linear object that expect the receiver’s type to be the current
object type but nonlinear, which is useful as our linear objects
can change to nonlinear. In Lt.O ← 〈〈R〉〉, R is a row of the
form m1:τ1, · · · ,mn:τn, which specifies the method types of the
methods in the object, and O is the type of the object’s delegatee.
As a method in an object may mention its receiver’s type, it may
be necessary for the type of an object to mention itself; in the
object type t is a type variable recursively bound to the whole type.
This may be used with the form Lt, which annotates the recursive
variable with a linearity.

3.2 Dynamic Semantics
This section discusses how the expressions of EGO are evaluated.
The operational rules defining how these expressions are evaluated
are shown in Figure 3.

The simplest primitive is 〈〉. 〈〉 extends the heap with a new
mapping, from some fresh location to an object descriptor with no
methods and no delegatee. 〈〉 evaluates to the new location.
e ←+m = σ adds or updates a method on an object. Method

addition modifies the store such that the object descriptor pointed
to by the value of e has m = σ added to its record of methods.
Method update, on the other hand, replaces an existing m = σ
with m = σ′ in a similar way.
e1 ← e2 changes the delegation link on the object descriptor in

the store to which the value of e2 points to e1.

E-NEW
` 6∈ Dom(µ) µ′ = [` 7→ null← 〈〉]µ

µ, 〈〉 −→ µ′, `

C-UPD
µ, e −→ µ′, e′

µ, e←+m = σ −→ µ′, e′ ←+m = σ

E-ADD
µ(`) = loc← 〈m1 = σ1, · · ·〉

∀i.m 6= mi µ′ = [` 7→ loc← 〈m1 = σ1, · · · ,m = σ〉]µ
µ, `←+m = σ −→ µ′, `

E-UPD
µ(`) = loc← 〈· · · ,m = σ, · · ·〉

µ′ = [` 7→ loc← 〈· · · ,m = σ′, · · ·〉]µ
µ, `←+m = σ′ −→ µ′, `

C-DEL1
µ, e1 −→ µ′, e′1

µ, e1 ← e2 −→ µ′, e′1 ← e2

C-DEL2
µ, e −→ µ′, e′

µ, `← e −→ µ′, `← e′

E-DEL
µ(`) = loc← 〈· · ·〉 µ′ = [` 7→ loc′ ← 〈· · ·〉]µ

µ, loc′ ← ` −→ µ′, `

C-INV
µ, e −→ µ′, e′

µ, e.m −→ µ′, e′.m

E-NLININV
mbody(µ, `,m) = ςx:τ.e

µ, `.m −→ µ, [`/x]e

E-LININV
µ(`) = 〈· · · ,m = ¡ςx:τ.e, · · ·〉 µ′ = [` 7→ 〈· · ·〉]µ

µ, `.m −→ µ′, [`/x]e

C-CHLIN
µ, e −→ µ′, e′

µ, !e −→ µ′, !e′

E-CHLIN
µ, !v −→ µ, v

MBODY1
µ(`) = loc← 〈m1 = σ1, · · · ,m = σ, · · ·〉

mbody(µ, `,m) = σ

MBODY2
µ(`) = loc← 〈m1 = σ1, · · ·〉

m = σ 6∈ 〈m1 = σ1, · · ·〉 mbody(µ, loc,m) = σ

mbody(µ, `,m) = σ

Figure 3. Dynamic Semantics of Simplified EGO

e.m invokes a method. It looks up the object descriptor that the
value of e refers to in the heap. In the invocation of linear methods,
the method body is found in the record of methods in the object
descriptor by finding a method named m. In nonlinear methods,
method lookup is slightly more complicated: if the method is found
in the record of methods in the object descriptor referred to by
e, this method body is returned. Otherwise, the method body is
searched for recursively in that object descriptor’s delegatee. Then,
in either case, the method’s receiver is substituted for the variable
bound by the method in the method body. In the case of linear
method invocation, the store is modified by removing the method
from the object that contains it.

!e has no dynamic effect. It only affects the typing of objects.

T-NLINLOC
Σ(`) = obj t.O ← 〈〈R〉〉

Σ;A ` `:obj t.O ← 〈〈R〉〉 =⇒ {}

T-LINLOC
Σ(`) = ¡obj t.O ← 〈〈R〉〉

Σ;A ` `:¡obj t.O ← 〈〈R〉〉 =⇒ {`}

T-NULL

Σ;A ` null:〈〈〉〉 =⇒ {}

T-CHLIN
Σ;A ` e:¡obj t.O ← 〈〈R〉〉 =⇒ l

Σ;A `!e:obj t.O ← 〈〈R〉〉 =⇒ l

T-NLININV
Σ;A ` e:Lt.O ← 〈〈R〉〉 =⇒ l τu = Lt.[t.O ← 〈〈R〉〉/t](O ← 〈〈R〉〉) mtype(τu,m) = Lt.O ← 〈〈R〉〉 → τ

Σ;A ` e.m:τ =⇒ l

T-LININV
Σ;A ` e:¡obj t.O ← 〈〈R〉〉 =⇒ l τu = ¡obj t.[t.O ← 〈〈R〉〉/t](O ← 〈〈R〉〉) lmtype(τu,m) = ¡obj t′.O′ ← 〈〈R′〉〉(τ

¡obj t′′.O′′ ← 〈〈R′′〉〉 = τu ¡obj t′.[t′.O′ ← 〈〈R′〉〉/t′](O′ ← 〈〈R′〉〉) = ¡obj t′′.O′′ ← 〈〈R′′/m:τ ′′〉〉
Σ;A ` e.m:τ =⇒ l

T-UPD
Σ;A ` σ:τ =⇒ l Σ;A ` e:¡obj t.O ← 〈〈R〉〉 =⇒ l′ lmtype(¡obj t.O′ ← 〈〈R′〉〉,m) = τ ′

¡obj t.O′ ← 〈〈R′〉〉 = ¡obj t.[t.O ← 〈〈R〉〉/t](O ← 〈〈R〉〉) ¡obj t.[tO′′ ← 〈〈R′′〉〉/t](O′′ ← 〈〈R′′〉〉) = ¡obj t.O′ ← 〈〈[m:τ/m:τ ′]R′〉〉
Σ;A,A′ ` e←+m = σ : ¡obj t.O′′ ← 〈〈R′′〉〉 =⇒ l, l′

T-ADD
Σ;A ` σ:τ =⇒ l Σ;A ` e:¡obj t.O ← 〈〈R〉〉 =⇒ l′ lmtype(¡obj t.O′ ← 〈〈R′〉〉,m) 6=

¡obj t.O′ ← 〈〈R′〉〉 = ¡obj t.[t.O ← 〈〈R〉〉/t](O ← 〈〈R〉〉) ¡obj t.[t.O′′ ← 〈〈R′′〉〉/t](O′′ ← 〈〈R′′〉〉) = ¡obj t.O′ ← 〈〈R′,m:τ〉〉
Σ;A,A′ ` e←+m = σ : ¡obj t.O′′ ← 〈〈R′′〉〉 =⇒ l, l′

T-NLINMETH
Σ;A, x:τ ` e:τ ′ =⇒ {} x 6∈ Dom(A) A nonlinear

Σ;A ` ςx:τ.e:τ → τ ′ =⇒ {}

T-LINMETH
Σ;A, x : τ ` e:τ ′ =⇒ l x 6∈ Dom(A)

Σ;A ` ¡ςx:τ.e : τ(τ ′ =⇒ l

T-DEL
Σ;A ` e2:¡obj t.O ← 〈〈R〉〉 =⇒ l Σ;A′ ` e1:O′′ =⇒ l′

¡obj t.O′ ← 〈〈R′〉〉 = ¡obj t.[t.O ← 〈〈R〉〉/t]O ← 〈〈R〉〉 ¡obj t.[t.O′′′ ← 〈〈R′′〉〉/t](O′′′ ← 〈〈R′′〉〉) = ¡obj t.O′′ ← 〈〈R′〉〉
Σ;A,A′ ` e1 ← e2:¡obj t.O′′′ ← 〈〈R′′〉〉 =⇒ l, l′

T-NEW

Σ;A ` 〈〉:¡obj t.〈〈〉〉 ← 〈〈·〉〉 =⇒ {}

T-VAR

Σ;x:τ ` x:τ =⇒ {}

T-KILL
Σ;A ` e:τ =⇒ l

Σ;A, x:τ ′ ` e:τ =⇒ l

T-COPY
Σ;A, x:τ ′, x:τ ′ ` e:τ =⇒ l τ ′ nonlinear

Σ;A, x:τ ′ ` e:τ =⇒ l

Figure 4. Static Semantics of Simplified EGO

T-LMETHT
m:τ ∈ R

lmtype(Lt.O ← 〈〈R〉〉,m) = τ

T-METHT1
lmtype(Lt.O ← 〈〈R〉〉,m) = τ

mtype(Lt.O ← 〈〈R〉〉,m) = τ

T-METHT2
lmtype(Lt.O ← 〈〈R〉〉,m) 6= mtype(O,m) = τ

mtype(Lt.O ← 〈〈R〉〉,m) = τ

Figure 5. Method Type Lookup in Simplified and Full EGO

3.3 Type System
EGO’s type system enforces a lack of runtime errors. One important
mechanism for this guarantee is maintenance of the distinction
between linear and nonlinear objects.

The type system allows changes to the interface of an object
only for linear objects. This is because changes to objects are
imperative: they affect the object descriptor on the heap. If an object
is aliased in unknown ways, it may be impossible to update the
types of the other aliases to the object, making the system unsound.
We avoid this unsoundness by prohibiting changes to the interface
on non-linear (potentially aliased) objects.

Interface changes are also allowed only to the object on which
they are performed, not its delegatees, for similar reasons. This
is because we can delegate to nonlinear objects, so we have no
guarantee that this object is not aliased elsewhere. Thus, the same
problems exist with changing the interface of a delegatee as do
with changing the interface of a nonlinear object. Pragmatically,
the effect this has is disallowing method update unless we have a
linear pointer to the object descriptor containing the method.

Our method types, τ → τ ′ and τ (τ ′ have receiver types
as part of them. This contrasts with many other object calculi
[1, 16] where the receiver type is left out, as it is known to be the
type of the object or a subtype. However, since we allow changes
to the type of objects, the receiver type may be different when the
method is called, so we must include it.

Since objects may contain methods whose types contain the
type of the object, the EGO type system assigns recursive types
of the form Lt.O ← 〈〈R〉〉 to objects. Here, t is bound recursively
to the whole type.

In general, when we change the interface of an object, we need
to unfold the type, do the interface change, and refold the new type.
This maintains that any use of the outermost recursive type variable
in the type will always correspond to the current type, rather than a
type from before the interface change. We also need to unfold the
type of an object before looking up a method in it to check that

the receiver type the method expects is the type the whole object
currently has.

To unfold our objects types, we substitute the type, with the
initial linearity indicator removed, in for the bound type variable
in the whole type, not just the body of the recursive type. Since
every type variable usage is prefixed by a linearity indicator, this
gives us a type of the form Lt.O ← 〈〈R〉〉, with the variable binding
and and linearity indicator still at the head of the type. This makes
the type syntactically valid, and allows to compare the linearities of
two unfolded types.

Now, we discuss our typing rules, shown in Figure 4, in more
detail. Our typing judgment looks like

Σ;A ` e:τ =⇒ l

Here, Σ is the store typing, which consists of a mapping, (` 7→ τ)∗

from locations to types. A is the type context. e is the expression
to be typechecked and τ is the type given to it. l is a list of linear
locations in e. This is a technical device used in the type safety
proof for proving that linear locations are never aliased.

Locations are typed by looking them up in the store. The rule
that types linear locations, T-LINLOC, also puts the location it
types into the list of linear locations it returns, l.

null is typed by giving it the type 〈〈〉〉.
We can turn a linear location into a nonlinear location with !e.

All new objects are linear so that methods can be added and other
interface changes can be made. We get a nonlinear object by turning
a linear object into a nonlinear one. This is safe as it can only go
one way: we cannot turn a nonlinear location into a linear one.

Thus, to type a method invocation, we first type the receiver with
a type of the form Lt.O ← 〈〈R〉〉, which is the folded type of the
object. This type is unfolded by substituting it into its recursively
bound variable, and the type of the method is looked up in this
new type. Since invocation of a linear method changes the type
of the receiver object as described below, and we cannot change
the interface of delegatees, we only look up linear method types in
the row of the unfolded object type, which describes the methods
contained in the object. However, invocation of nonlinear methods
on an object does not change the interface of the object, so we
can look such a method up recursively in the delegatee type on
the unfolded object type if the method type is not found in the
row. These lookup rules are defined in Figure 5, where we use the
judgment lmtype(Lt.O ← 〈〈R〉〉,m) 6= to indicate that no such
method is found in the current row. For nonlinear methods, we then
check that the type the method expects is the type of the receiver.
The invocation is then given the return type of the method.

For linear methods, we must do more. Since invocation of lin-
ear methods removes them from the object containing them, the
interface of the object is changed by such invocations. Therefore,
an object invoking a linear method must be linear. Also, rather than
checking equality of the type the method expects with the receiver
type as we do with nonlinear types, we check equality of the type
the method expects with that of the receiver type refolded with the
invoked method removed, as this is what will be substituted into
the method body when the method is invoked.

Method addition and update are checked by typing the object as
some linear object type ¡obj t.O ← 〈〈R〉〉. This type is unfolded,
and we give this expression the type found by adding or updating
the appropriate method and folding the object type back up.

Methods themselves are typed similarly to lambda calculus
functions. The abstracted variable is placed in the typing context
with type which which it is bound and the method body is typed un-
der this new context. However, nonlinear methods are not allowed
to mention linear objects; otherwise, multiple calls to the method
would result in multiple occurrences of the linear object.

T-STORE
∀` ∈ Dom(µ).Σ; · ` µ(`):Σ(`) =⇒ l` Dom(µ) = Dom(Σ)

Σ ` µ ok =⇒ concat l`

T-ODESCR
∀i ∈ 1..n.(Σ;A ` σi:τi =⇒ li) [τ/t]R = m1:τ1, · · · ,mn:τn

Σ;A ` loc:O =⇒ lloc l = lloc, l1, · · · , ln τ = Lt.O ← 〈〈R〉〉
Σ;A ` loc← 〈m1 = σ1, · · · ,mn = σn〉:τ =⇒ l

Figure 6. Store and Object Typing for Simplified EGO

Delegation is typed similarly to addition and update. The type of
the expression whose delegation is being changed is unfolded. The
expression is given this type with the type of the delegatee changed
and the object type folded back up.
〈〉 is given the type of an empty linear object with no delegatee.

This is the type ¡obj t.〈〈〉〉 ← 〈〈·〉〉.
Finally, we type variables by looking them up in the type con-

text, A, according to T-VAR. This rule expects the context to con-
tain only one binding. However, we can use T-KILL to eliminate
extra bindings, as in Wadler’s calculus [30]. This makes our type
system more similar to affine logic than linear logic.

We enforce linearity by splitting the context when we type
subexpressions. This is the approach taken by Wadler in [30],
modeled on the same technique from Girard’s linear logic [17]. We
allow aliases to nonlinear objects through T-COPY, which makes
copies of a nonlinear variable’s binding in the context.

We also have a store typing judgment, defined in T-STORE. This
checks that each object stored in the heap has the type the store
type, Σ, gives it by checking that all the methods in each object
have the type the object type gives them and that the delegatees
have the correct type. The object type has been folded but the types
calculated for a method types are not, so before comparing them,
we must unfold the object type. The store typing judgment also
produces a list of all linear locations mentioned in the store. This is
used to prove that no linear objects are mentioned more than once in
the heap and currently executing expression. These rules are shown
in Figure 6.

3.4 Safety Proof
We have no formal proof of safety for the fragment of EGO pre-
sented so far, only a proof for the system with the extensions de-
scribed below. However, we sketch a hypothetical proof of safety
for this fragment below. Type safety consists of standard progress
and preservation lemmas.

THEOREM 3.1 (Progress). If Σ; · ` e:τ =⇒ l and Σ ` µ ok =⇒
l then µ, e −→ µ′, e′ or e is a value.

The proof of this is by induction on the derivation of Σ;A `
e:τ =⇒ l with a canonical forms lemma.

Preservation states in general that an evaluation step maintains
program invariants. Specifically, we wish to maintain three invari-
ants.

1. The expression has some type τ .

2. The heap is well typed.

3. All linear locations are used at most once in the expression and
store.

To do this, we define a relation on store types, Σ ≥` Σ′, which says
that a new store type is related to an old store type by either extend-
ing it or changing a single location with only a linear reference.

THEOREM 3.2 (Preservation). If

i. Σ; · ` e:τ =⇒ le
ii. Σ ` µ ok =⇒ ls

iii. there are no duplicates in le, ls, and
iv. µ, e −→ µ′, e′

then for some Σ′ ≥` Σ

i. Σ′; · ` e′:τ =⇒ l′e
ii. Σ′ ` µ′ ok =⇒ l′s, and

iii. there are no duplicates in l′e, l
′
s.

The proof of this is by induction on the evaluation judgment and
uses the following substitution lemma.

LEMMA 3.1 (Substitution). If Σ;A, x:τ ′ ` e:τ =⇒ l and Σ; · `
v:τ ′ =⇒ l′, then Σ;A ` [v/x]e:τ =⇒ l′′ and l′′ ⊆ l, l′.
We also need a lemma that says that if we have a well typed
store, and we replace a linear object with a new object and suitably
modify the store typing, the store remains well typed.

LEMMA 3.2 (Store Change). If

i. Σ ` µ ok =⇒ ls
ii. Σ;A ` `L:¡obj t.O ← 〈〈R〉〉 =⇒ le

iii. there are no duplicates in ls, le
iv. µ(`) = s
v. Σ; · ` s:τ =⇒ lo, and

vi. Σ; · ` s′:τ ′ =⇒ l′o

then [` 7→ τ ′]Σ ` [` 7→ s′]µ ok =⇒ ls − lo, l′o

4. Relaxing Linearity
The fragment of the EGO language presented so far is powerful but
has a significant drawback. The aliasing restriction of linearity is
often too restrictive. It is sometimes useful to be able to temporarily
give up the ability to change an object’s interface in order to make
short-lived aliases of it.

One example of this is the use of the network socket example
above. A socket here is a linear object which contains an open
method. Calling this method opens a socket and changes the inter-
face, as the open method is removed and read and close methods
are added. At this point, assuming the read method is reentrant,
there would be no reason to prevent aliasing the object to allow
several sections of the program to read from it simultaneously, as
long as no interface changes are made. After all of these reads are
done, if no aliases of the object exist, a close call could close the
socket and remove the read method.

The hitherto presented fragment of EGO does not allow this. We
now introduce a construct based on let! as presented by Wadler in
[30], to allow us to make temporary aliases of linear objects.

4.1 Additions to the Calculus
Intuitively, our new construct allows us to evaluate three expres-
sions in sequence. The first two each bind a new variable to be used
in the successive expressions. The first expression evaluates to a
possibly linear object which is bound to a variable. In the second
expression, this variable is bound with a borrowed object type. It
can be freely aliased but no changes can be made to its interface.
This borrowed object is similar to a linear object acting temporar-
ily as a nonlinear object. This second expression is evaluated to a
value and bound to a second variable. In the third expression, both
variables are bound with the first being bound with to its original
type, as it is no longer borrowed.

To prevent aliases of a borrowed object escaping the expression
in which it is borrowed, we annotate the types of borrowed objects

with regions. A region is a unique tag generated every time an
object is borrowed which indicates where it is borrowed. We keep
track of which regions are currently annotating borrowed objects
and do not allow typing of an object with a region not in scope.

Our region system differs from previous systems such as [28] in
two ways. First, much previous work focuses on using regions for
statically verifying explicit memory management; we use regions
instead to track aliases. Second, we enforce a weaker invariant.
While previous systems often prohibit references to any pointer
whose region is out of scope, we allow such references but prohibit
their use. This gives our system additional flexibility.

Our let! looks like this:

let! (ρ)x1 = e1 x2 = e2 in e3 end

Here, ρ is a region variable bound to the region generated when a
location is borrowed with this expression. The value of e1 is bound
to x1 in e2 and e3 and the value of e2 is bound to x2 in e3.

Our let! differs from Wadler’s in that Wadler does not use
regions to contain aliases. Instead, he places restrictions on the type
of the expression in which a value is borrowed to prevent it from
escaping. We allow these expressions to have any type as long as it
does not contain the region under which the location is borrowed.
Since we are not relying on the type of the value of this expression
to restrict aliases, just the regions it contains, our system also works
in an imperative setting where values may be stored on the heap.

Similar work to Wadler’s by Odersky [22], allows creation of
read only aliases to a value. Other work, such as Fändrich and
DeLine’s work on adoption[14], also allows temporary aliases to
be stored on the heap.

Several other modifications to the existing calculus need to be
made to accommodate regions. The first of these is the addition of
region polymorphism. Methods can only be added to linear objects.
However, we may wish to call methods on borrowed objects. We
therefore need to add methods to objects before they are borrowed
which expect receivers that are borrowed under regions not yet
in scope. We do this by allowing methods to be abstracted over
a number of regions, which are instantiated when the method is
called. To accomplish this, let! also binds a region variable which
is in scope where the object is borrowed and which refers to the
region at which the object is borrowed so that regions may be
referred to in code and instantiated.

The following example uses region polymorphism. It binds to
x an object containing a single method that returns a new object.
The method is polymorphic in the region of its receiver. In the
type the method expects its receiver to have, the method itself has
a polymorphic type to reflect this. In the second subexpression,
where this object is borrowed, the method is invoked. When this
happens, the polymorphic variable is instantiated with the region in
which the object is borrowed to allow the method to be called. The
value of this method call is bound to y, which is, in the the third
subexpression, returned as the value of the entire expression.

let! (ρ1)x = 〈〉 ←+new =
Λρ2.ς(this:ρ2t1.〈〈〉〉 ← 〈〈

new:(∀ρ3.ρ3t1
·→ ¡obj t2.(〈〈〉〉 ← 〈〈·〉〉)〉〉)).〈〉

y = x.new[ρ1]
in y end

We also now annotate method types with a list of regions used by
the method. This is because it will not always be apparent otherwise
from the arrow type what regions are used in a given method. We
only allow invoking methods with regions that are in scope.

The next example uses this type. It is similar to the above
example, but the added method uses the receiver in its body before
returning an empty object. Since it uses a region in its body, the type
of this method in the receiver type on the method must mention the

J¡λx:τ.eK def
= 〈body =¡ς(this:bodytype(τ)).

let! (ρ) thisbor = this
result = [thisbor.arg[ρ]/x]JeK
in result
end〉

bodytype(τ) def
= ¡obj t.〈〈〉〉 ← 〈〈arg : ∀ρ′.ρ′t ·→ JτK〉〉

J(e1:τ (τ ′)e2K
def
=

(Je1K←+arg = Λρ′.ς(:argtype(τ, ρ′)).Je2K).body

argtype(τ, ρ′) def
= ρ′t′.〈〈〉〉 ← 〈〈arg : ∀ρ′′.ρ′′t′ ·→ JτK〉〉

Jτ (τ ′K def
= ¡obj t′′.〈〈〉〉 ← 〈〈body:(bodytype(τ)

·
(Jτ ′K)〉〉

Figure 7. Linear functions with nonlinear arguments

region. Note that the annotation on the arrow is polymorphic. It, as
well as the region of the receiver, is instantiated when the method
is invoked.

let! (ρ1)x = 〈〉←+new =
Λρ2.ς(this:
ρ2t1.〈〈〉〉 ← 〈〈
new:∀ρ3.ρ3t1

ρ3→ ¡obj t2.(〈〈〉〉 ← 〈〈·〉〉)〉〉).
(this; 〈〉)

y = x.new[ρ1]
in y end

The final modification arises from a similar problem to that which
gave rise to region polymorphism. We may add methods to objects
that refer to regions which are later no longer in scope. We cannot
call these methods, but we allow other methods to be invoked on
such an object. This means that any type annotations we write on
methods must be able to be the type of objects with methods that
mention regions that are not in scope. Since the region variable we
bound to the region is no longer in scope, we cannot write such
a type. We solve this problem by having a type, >, which is the
type of uncallable methods. This type is a supertype of a normal
method type, so can be used on method type annotations which
accept objects whose types contain unknown regions.

This example shows the use of this type. We create an object,
x with one method which returns a new object. Then we borrow a
new object and bind it to the variable y. We then add a new method
to x, which is still linear, that mentions y while y is still borrowed.
After we leave the subexpression where y is borrowed, we call
the first method on x. x now contains a method that mentions a
region no longer in scope. To allow this, on the expected type of
the receiver on the method we call, we give this method the type
>. This means we never can call the method, but, as it mentions
regions no longer in scope, we would not be able to in any case.

typedef receivertype =

obj t.〈〈〉〉 ← 〈〈meth1:objt
·→ (¡obj t.〈〈〉〉 ← 〈〈·〉〉),

meth2:>〉〉
let x = 〈〉 ←+meth1 = ς(this:receivertype).〈〉 in
let! (ρ) y = 〈〉

z = x←+meth2 = ς(this:receivertype).(y; 〈〉)
in z.meth1 end

We now have the necessary linguistic mechanisms to model linear
lambda abstractions which take nonlinear arguments. As with those

typedef closedType = ¡obj t1.(¡obj t2.(〈〈〉〉 ← 〈〈·〉〉)← 〈〈·〉〉)
typedef readType(L) = Lt1.(¡obj t2.(〈〈〉〉 ← 〈〈

read:∀ρ2.ρ2t1
·→ ρ2t1,

close:¡objt1
·→ closedType〉〉)← 〈〈·〉〉)

typedef openType =

¡obj t1.(¡obj t2.(〈〈〉〉 ← 〈〈open:¡objt1
·→ readType〉〉)

← 〈〈·〉〉)

let ClosedSocket = 〈〉 in
let ReadSocket = 〈

read = Λρ1.ς(this:readType(ρ1))./*read from a socket*/;
this

close = ς(this:readType(¡obj))./*close a socket*/;
ClosedSocket← this〉

in let OpenSocket = 〈
open = ς(this:openType)./*open a socket*/;

ReadSocket← this〉
in let Socket = OpenSocket← 〈〉
in /*More code*/
Socket.open;
let! (ρ2)Socket′ = Socket

SomeData = /*Code that aliases Socket’*/
in /*More Code*/

Socket′.close
end

Figure 8. A socket using let!

taking linear arguments, we do this by creating an object with a
linear body method which expects to be called on an object with
an arg method representing the argument to the function. Since
the method will be consumed, it must be called on a linear object.
Now, however, we can duplicate the object within the body of the
expression to access arg multiple times. We do this by borrowing
the object within the bodymethod, so it s borrowed in the function’s
body. The arg method must therefore be abstracted over the region
it expects to be called in. This is shown in Figure 7.

We can also implement the socket example described at the
beginning of this section. In fact, this example is fairly simple; it
is given in Figure 8. It is based on the previous socket example in
Figure 1. The main differences are that the read method is now
parametrized over a region. After defining the objects, we open the
socket and then borrow it as Socket′. Now we can freely alias this
object. We can use the borrowed socket by calling read on any
reference to the object as long as such calls to read instantiate the
polymorphic variable ρ1 with the bound region variable ρ2. After
leaving this expression, we no longer have access to any aliases of
Socket′, so we can close the socket.

5. Formalism
In this section we present extensions to the previous formalism that
implement let! and regions as we have described them.

5.1 Additions to the Syntax
The differences from the syntax of the original fragment of EGO are
presented below and appear in Figure 9.

We add the let! construct itself to the expressions of the lan-
guage. This is of the form let! (%)x1 = e1 x2 = e2 in e3 end.
Here, % is either ρ, a region variable, or r, a region. % is added to
the linearities, L. However, we do not allow users to write down re-
gions, r, so let! (r)x1 = e1 x2 = e2 in e3 end is an intermediate
form generated during program execution.

Expressions e ::= · · · | e.m[%1, · · · , %n] | · · ·
| let! (%)x1 = e1 x2 = e2 in e3 end

Locations loc ::= null | `L
Methods σ ::= Λρ1. · · ·Λρn.ς(x:τ).e

| Λρ1. · · ·Λρn.¡ς(x:τ).e

Types τ ::= · · · | ∀ρ1. · · · ∀ρn.τ
P→ τ ′

| ∀ρ1. · · · ∀ρn.τ
P
(τ ′ | >

Linearities L ::= o | %
Object Linearities o ::= obj | ¡obj
Regions % ::= ρ | r
Region Effects P ::= · | P, %

Figure 9. Additions to the Syntax of EGO

C-LET1
µ, e1 −→ µ′, e′1

µ, let! (ρ)x1 = e1 x2 = e2 in e3 end −→
µ′, let! (ρ)x1 = e′1 x2 = e2 in e3 end

E-LET1
r fresh

µ, let! (ρ)x1 = `L x2 = e2 in e3 end −→
µ, let! (r)x1 = `L x2 = [r, `r/ρ, x1]e2 in e3 end

C-LET2
µ, e2 −→ µ′, e′2

µ, let! (r)x1 = v1 x2 = e2 in e3 end −→
µ′, let! (r)x1 = v1 x2 = e′2 in e3 end

E-LET2

µ, let! (r)x1 = v1 x2 = v2 in e3 end −→ µ, [v1, v2/x1, x2]e3

C-INV
µ, e −→ µ′, e′

µ, e.m[%1, · · · , %n] −→ µ′, e′.m[%1, · · · , %n]

E-NLININV
mbody(µ, `L,m) = Λρ1. · · ·Λρn.ςx:τ.e

µ, `L.m[%1, · · · , %n] −→ µ, [`L, %1, · · · , %n/x, ρ1, · · · , ρn]e

E-LININV
µ(`) = 〈· · · ,m = Λρ1. · · ·Λρn.¡ςx:τ.e, · · ·〉 µ′ = [7̀ → 〈· · ·〉]µ

µ, `L.m%1, · · · , %n −→ µ′, [`L, %1, · · · , %n/x, ρ1, · · · , ρn]e

E-CHLIN

µ, !`¡obj −→ µ, `obj

Figure 10. Additions to the Dynamic Semantics of EGO

We also make changes to methods. Methods are now of the
form Λρ1. · · ·Λρn.ς(x:τ).e, or Λρ1. · · ·Λρn.¡ς(x:τ).e. These are
parametrized over some number of regions.

Method types are are now polymorphic. We also add annota-
tions to method types indicating the regions mentioned by the meth-
ods they type. Our method types now look like ∀ρ1. · · · ∀ρn.τ

P→
τ ′ or ∀ρ1. · · · ∀ρn.τ

P
(τ ′. We use > a separate type for methods

which mention regions no longer in scope.
We add region instantiation to method invocations. e.m[%1, · · · , %n]

invokes a method and instantiates its region arguments. We often
write e.m[] as e.m.

Finally, our locations are now annotated with linearities. They
are now of the form `L. This allows us to give types to objects in
settings where their linearities may change, as discussed below.

5.2 Dynamic Semantics
The rules of the operational semantics of EGO that differ from the
previous system are shown in Figure 10.

The first change is the addition of several rules for let!: C-
LET1, E-LET1, C-LET2 and E-LET2. Given an expression of the
form let! (%)x1 = e1 x2 = e2 in e3 end, these proceed by first
evaluating e1 to a value, of the form `L. Then a new region, r, is
generated for this borrowing, and r and `L are substituted into e2
for ρ and x1 with its linearity annotation changed to reflect that the
location is borrowed. Next, e2 is evaluated. Finally, `L and v2 are
substituted into e3 for x1 and x2, and the entire expression steps to
e3 with these substitutions.

Another change to the dynamic semantics is that method invoca-
tion now instantiates regions over which the method is abstracted.
Methods now can be prefixed by a series of abstractions of the form
Λρwhich abstract these region variables. An invocation of the form
e.m[%1, · · · , %n] looks up this method as before. Upon finding the
method, each of these regions or region variables is substituted for
the appropriate region variable in e, in addition to a reference to the
receiver being substituted for the method’s bound variable.

Finally, as locations are now annotated with linearities, !e must
change this annotation from a linear object to a nonlinear object.

5.3 Type System
The most significant additions to the calculus are in the type sys-
tem. The type system is expanded with several mechanisms for
let! and regions.

The first of these is the change made to object types. We add
two new linearities in addition to obj and ¡obj. These are region
variables, ρ, and regions, r. Both of these indicate that an object
whose type is annotated with this linearity has been borrowed. We
allow the same operations to be performed on borrowed objects as
on nonlinear objects. This is in line with the motivating intuition
that borrowed objects are linear objects that have been made tem-
porarily nonlinear.

The typing judgment is now

Σ;A;P ;S ` e:τ =⇒ l

Here, Σ, A, e, τ and l remain the same as before. However, we
add two new contexts. The first, P (read as a capital ρ), is a list of
regions and region variables which are currently in scope. The sec-
ond, S, is a partial map from regions to locations which indicates
what locations are borrowed at what regions anywhere in the pro-
gram, and is used for checking the well-typedness of the store. All
the typing rules are updated to use the new typing judgment. Most
simply pass P and S up the derivation. The exceptions to this are
discussed here and shown in Figure 11.

We add rules for the typing of let!, T-LET1 and T-LET2. For
some expression, let! (%)x1 = e1 x2 = e2 in e3 end, these rules

type let! by first finding the type of e1. The type of e1 is required
to be some object type Lt.O ← 〈〈R〉〉. x1 is now bound with the
type %t.O ← 〈〈R〉〉 in e2, where % is either ρ, a region variable, or
r, a region. % is added to the region context, P to check the type of
e2. This means that the object is borrowed in e2 and can be aliased
but no changes can be made to its interface. If we are typechecking
a let! currently being evaluated, so locations annotated with this
borrowing’s region, `%, have already been substituted into e2, the
presence of % in the region context will let this location be type-
checked. Under these contexts, we check the type for e2 and that
it does not contain %, as this would allow aliased locations to be
returned as part of the value to which e2 reduces. Finally, we bind
x1 to its original type, Lt.O ← 〈〈R〉〉, and x2 to the type of e2, and
we check the type of e3 under these assumptions to find the type of
the whole expression.

In the case where % is some region r, we also check that r = ` is
in the map of borrowings, S. These checks build S up over all let!
typings in a given derivation to give us a map of all borrowings in
a given program state which we use in checking the heap.

We have also added region annotations to method types which
indicate the regions that a method body uses, as a method’s type
does not always show all the regions used in the method body. This
allows us to tell from its type the regions invoking a method would
use and determine when it is safe to invoke.

In a related vein is the addition of region polymorphism to meth-
ods. As mentioned above, this affects method types by prefixing
them with a series of region variable bindings of the form ∀ρ.

These two changes are reflected in new method typing rules,
T-NLINMETH and T-LINMETH. To type a method a binding of
the method’s bound variable is added to the type context, and the
method body is checked under some region context. This region
context is a nondeterministic subset of the current region context
with the bound type variables added as the method may mention
these regions. The method is then given the type ∀ρ1. · · · ∀ρn.τ

P→
τ ′ or ∀ρ1. · · · ∀ρn.τ

P
(τ ′, where P is the region context under

which the method’s body was typechecked.
As discussed above, we may want the receiver of a method

to contain methods that use regions no longer in scope, as long
as these methods are never called. We cannot write down these
types, but since these methods can never be called, we can simply
give them the type >. This type is supertypes of arrow and lolly
method types. We have a series of standard subtyping rules in
Figure 12 which show how types which differ only by method
type annotations are subtyped. For simplicity, we do not have a
subsumption rule. Instead, where it is necessary we be able to type
some expression at a supertype, we explicitly allow subtyping. This
is needed in method invocation and location typing.

With the above changes, typing invocation is more complex
than before. As before, the receiver object is typed and its type
unfolded before the method type is looked up. Now, however,
the method type will possibly be polymorphic. In this case, we
substitute the regions or region variables with which the invocation
is instantiated for the abstracted region variables in the method type
before comparing it with the receiver type. We no longer check that
the types match exactly, but that the receiver is a subtype of the
expected type. We also check to make sure that the regions the
method call uses are in scope after a similar substitution is done
on the method type’s region list to guarantee that any region which
is used by the method is in scope after instantiation. Finally, we
give the invocation the return type of the method after appropriate
substitutions for abstracted region variables in this type.

One advantage of the let! we have is that it allows borrowed
locations to be referenced by methods added to objects on the heap.
Since we only check that the regions in the current expression are

in scope, we can leave these methods on an object even after the
region is out of scope if we do not call these methods. To prevent
these methods from being called, we do not allow objects in the
executing expression to have methods whose type contains regions
out of scope. Instead, any such method types are replaced with> by
typing locations by looking them up in the store typing and giving
them a supertype of this type such that no arrows in it are annotated
with regions not in scope. Any method types on the object type
given the location by the store type that have arrow annotations
with regions out of scope are thus replaced by >.

Since the linearity of a borrowed location can be different in
different places in an expression, typing locations is slightly more
involved. We now find the linearity of a location from the subscript
on it, rather than from the type it has in the heap. This is apparent in
T-NLINLOC and T-LINLOC. This also arises in typing borrowed
locations, as shown in T-BORLOC. To do so, we first type it as
either a linear or nonlinear object and then replace the linearity
with the region subscripted on the location. This gives it the same
type as the location had before it was borrowed with the linearity
replaced to indicate that it has been borrowed. We also discard the
list of linear locations we get from typechecking the region as an
unborrowed pointer because this pointer does not count towards the
count of linear locations as it is borrowed.

The final alteration made to the calculus is in typing the store.
We still check to make sure every object on the heap has the type
the store typing gives it, but typing each object is more complex.
Methods on objects in the heap may now contain regions that are
not in scope anywhere in the current expression. However, we know
that if these regions are not in scope anywhere, these methods
cannot ever be called. Because of this, we do not actually care
about their type. When checking an entire program state, we have
S which contains all regions at which objects are borrowed in the
program. We use this to typecheck objects. If a method can be
typechecked under the region context defined by S, it could be
possibly used in the future and so we check that the method has
the type expected by the object’s type. Otherwise, we ignore the
method while typechecking the object, as it does not matter. This
lets methods in the heap mention any region, even if the region is
not in scope anywhere in the current program.

5.4 Safety Proof
A proof of type safety for the full version of EGO presented here
is in [19]; we describe it here. The proof is similar to the proof
we sketch for the earlier EGO fragment. As is standard, type safety
consists of two theorems, progress and preservation.

Progress for the full EGO language is slightly different from
earlier, updated to use the full typing judgment.

THEOREM 5.1 (Progress). If Σ; ·;P ;S ` e:τ =⇒ le and Σ;S `
µ ok =⇒ ls then either µ, e −→ µ′, e′ for some µ′ and some e′,
or e is a value.

As before, this is proven by induction on the typing judgments,
using a canonical forms lemma.

Preservation is somewhat more complex. It still shows that
those properties we want to maintain invariant remain true when
a program state steps. The invariants we wish to enforce have
changed, however. We now wish to maintain four invariants.

1. The expression has some type τ or a subtype of τ .

2. The heap is well typed.

3. All linear locations are used at most once in the expression,
store and the list, S, of aliased locations.

4. All regions in the expression appear in the current region con-
text or are bound by region abstraction or a let!.

T-LET!1
Σ;A1;P ;S ` e1:Lt.O ← 〈〈R〉〉 =⇒ l1 Σ;A2, x1:ρt.O ← 〈〈R〉〉;P, ρ;S ` e2:τ2 =⇒ l2

Σ;A3, x1:Lt.O ← 〈〈R〉〉, x2:τ2;P ;S ` e3:τ3 =⇒ l3 ρ 6∈ tregions(τ2) ρ 6∈ P x1 6∈ Dom(A) x2 6∈ Dom(A) x1 6= x2

Σ;A1, A2, A3;P ;S ` let! (ρ)x1 = e1 x2 = e2 in x3 end:τ3 =⇒ l1, l2, l3

T-LET!2
Σ;A1;P ;S ` `L:Lt.O ← 〈〈R〉〉 =⇒ l1

Σ;A2, x1:rt.O ← 〈〈R〉〉;P, r;S ` e2:τ2 =⇒ l2 Σ;A3, x1:Lt.O ← 〈〈R〉〉, x2:τ2;P ;S ` e3:τ3 =⇒ l3
r 6∈ tregions(τ2) r 6∈ P x1 6∈ Dom(A) x2 6∈ Dom(A) x1 6= x2 r = `L ∈ S

Σ;A1, A2, A3;P ;S ` let! (r)x1 = `L x2 = e2 in x3 end:τ3 =⇒ l1, l2, l3

T-NLINMETH
Σ;A, x:τ ;P ′;S ` e:τ ′ =⇒ {} x 6∈ Dom(A) A nonlinear P ′ ⊆ P, ρ1, · · · ρ1, · · · 6∈ P

Σ;A;P ;S ` Λρ1. · · · ςx:τ.e:∀ρ1. · · · ∀ρn.τ
P ′
→ τ ′ =⇒ {}

T-LINMETH
Σ;A, x:τ ;P ′;S ` e:τ ′ =⇒ l x 6∈ Dom(A) P ′ ⊆ P, ρ1, · · · ρ1, · · · 6∈ P

Σ;A;P ;S ` Λρ1. · · ·Λ¡ςx:τ.e:∀ρ1. · · · ∀τ
P ′

(τ ′ =⇒ l

T-NLININV
Σ;A;P ;S ` e:Lt.O ← 〈〈R〉〉 =⇒ l τu = Lt.[t.O ← 〈〈R〉〉/t]O ← 〈〈R〉〉

mtype(τu,m) = ∀ρ1. · · ·Lt′.O′ ← 〈〈R′〉〉 P
′
→ τ · ` Lt.O ← 〈〈R〉〉 ≤ [%1, · · · /ρ1, · · ·]Lt′.O′ ← 〈〈R′〉〉 [%1, · · · /ρ1, · · ·]P ′ ⊆ P

Σ;A;P ;S ` e.m[%1, · · ·]:[%1, · · · /ρ1, · · ·]τ =⇒ l

T-LININV
Σ;A;P ;S ` e:¡obj t.O ← 〈〈R〉〉 =⇒ l

¡obj t.O′′ ← 〈〈R′′〉〉 = ¡obj t.[t.O ← 〈〈R〉〉/t](O ← 〈〈R〉〉) lmtype(¡obj t.O′′ ← 〈〈R′′〉〉,m) = ∀ρ1. · · · ¡obj t′.O′ ← 〈〈R′〉〉
P ′

(τ
¡obj t.[t.O′′′ ← 〈〈R′′′〉〉/t](O′′′ ← 〈〈R′′′〉〉) = ¡obj t.(O′′ ← 〈〈R′′/m:τ ′′〉〉)

· ` ¡obj t.O′′′ ← 〈〈R′′′〉〉 ≤ [%1, · · · /ρ1, · · ·](¡obj t′.O′ ← 〈〈R′〉〉) [%1, · · · /ρ1, · · ·]P ′ ⊆ P
Σ;A;P ;S ` e.m[%1, · · ·]:[%1, · · · /ρ1, · · ·]¡obj t.O′′′ ← 〈〈R′′′〉〉 =⇒ l

T-NLINLOC
Σ(`) = obj t.O ← 〈〈R〉〉 · ` obj t.O ← 〈〈R〉〉 ≤ τ eregions(τ) ⊆ P

Σ;A;P ;S ` `obj:τ =⇒ {}

T-LINLOC
· ` ¡obj t.O ← 〈〈R〉〉 ≤ τ eregions(τ) ⊆ P

Σ;A;P ;S ` `¡obj:τ =⇒ {`}

T-BORLOC
Σ;A;P ;S ` `o:ot.O ← 〈〈R〉〉 =⇒ l · ` ot.O ← 〈〈R〉〉 ≤ ot.O′ ← 〈〈R′〉〉 eregions(%t.O′ ← 〈〈R′〉〉) ⊆ P

Σ;A;P ;S ` `%:%t.O′ ← 〈〈R′〉〉 =⇒ {}

Figure 11. Additions to the Static Semantics of EGO

We formalize the idea of all regions free in a given expression by
defining a function, eregions(e), which recursively examines an
expression.

THEOREM 5.2 (Preservation). If

i. Σ;S ` µ ok =⇒ ls
ii. Σ; ·;P ;S ` e:τ =⇒ le

iii. eregions(e) ⊆ P
iv. there are are no duplicates in le, ls, Range(S), and
v. µ, e −→ µ′, e′

then for some Σ′ ≥` Σ

i. Σ′;S′ ` µ′ ok =⇒ l′s
ii. Σ′; ·;P ;S ` e′:τ ′ =⇒ l′e

iii. eregions(e′) ⊆ P
iv. · ` τ ′ ≤ τ , and
v. there are no duplicates in l′s, l

′
e, Range(S).

Here eregions(e) recursively walks the expression and returns
the set of regions that locations are borrowed at in the expression.

Σ′ ≥` Σ is the same as above: either a new location `was added
or the type mapped to by ` has changed.

To prove this, we need two substitution lemmas. The first is
similar to the one above but now shows that the type produced
is a subtype of the expression substituted into if the substituted
expression is a subtype of that expected.

LEMMA 5.1 (Substitution). If Σ;A, x:τ1;P ;S ` e:τ ′1 =⇒ le,
Σ; ·;P ;S ` v:τ2 =⇒ lx and · ` τ2 ≤ τ1 then Σ;A;P ;S `
[v/x]e:τ ′2 =⇒ l, · ` τ ′2 ≤ τ ′1 and l ⊆ le, lx.

We also need a similar lemma for region substitution, as both poly-
morphic instantiation and evaluating let! do region substitution.
As regions appear in types, the lemma states that substituting a re-
gion in for a region variable in an expression substitutes the region
in for the region variable in the expression’s type.

LEMMA 5.2 (Region Substitution). If Σ;A;P ;S ` e:τ =⇒ l then
Σ;A;[r/ρ]P ;S ` [r/ρ]e:[r/ρ]τ=⇒ l.

We also need a Store Change Lemma similar to the one we saw
earlier, which says that if have a well typed store, and we change the

S-REFL

S ` τ ≤ τ

S-TRANS
S ` τ1 ≤ τ2 S ` τ2 ≤ τ3

S ` τ1 ≤ τ3

S-TVAR
Lt1 ≤ Lt2 ∈ S
S ` Lt1 ≤ Lt2

S-LOC
S,Lt1 ≤ Lt2 ` O1 ≤ O2 S,Lt1 ≤ Lt2 ` R1 ≤ R2

· ` Lt1.O1 ← 〈〈R1〉〉 ≤ Lt1.O2 ← 〈〈R2〉〉

S-ROW1

S ` · ≤ ·

S-ROW2
S ` τ1 ≤ τ2 S ` R1 ≤ R2

S ` R1,m:τ1 ≤ R2,m:τ2

S-NLINMETH
S ` τ ′1 ≤ τ1 S ` τ2 ≤ τ ′2

S ` ∀ρ1. · · · ∀ρn.τ1
P→ τ2 ≤ ∀ρ1. · · · ∀ρn.τ ′1

P→ τ ′2

S-LINMETH
S ` τ ′1 ≤ τ1 S ` τ2 ≤ τ ′2

S ` ∀ρ1. · · · ∀ρn.τ1
P
(τ2 ≤ ∀ρ1. · · · ∀ρn.τ ′1

P
(τ ′2

S-ARROW

S ` ∀ρ1. · · · ∀ρn.τ
P→ /

P
(τ ′ ≤ ∀ρ1. · · · ∀ρn.>

Figure 12. Subtyping Rules

T-STORE
∀` ∈ Dom(µ).Σ; ·; Dom(S);S ` µ(`):Σ(`) =⇒ l`

Dom(µ) = Dom(Σ)

Σ;S ` µ ok =⇒ concat l`

T-ODESCR
∀i ∈ 1..n.Σ;A;P ′;S ` σi:τi =⇒ li if P ′ ⊆ P

[t.O ← 〈〈R〉〉/t]R = m1:τ1
P ′
→ /

P ′

(τ ′1, · · ·
σi = Λρ1., · · ·Λρm.[¡]ς(x:τ1).e

τ1 =, ∀ρ1. · · · ∀ρn.τ ′i
P ′,ρ1,···,ρn→ /

P ′,ρ1,···,ρn
(τ ′′i

Σ;A;P ;S ` loc:L′t′.O′ ← 〈〈R′〉〉 =⇒ lloc
O = L′t′.[t′O′R′/t′](O′ ← 〈〈R′〉〉)

[t.O′′ ← 〈〈R′′〉〉/t]¡obj t.O′′ ← 〈〈R′′〉〉 = Lt.O ← 〈〈R〉〉
Σ;A;P ;S ` loc← 〈m1 = σ1, · · · ,mn = σn〉:

¡obj t.O′′ ← 〈〈R′′〉〉 =⇒ lloc, l1, · · · , ln

Figure 13. Store and Object Typing of EGO

type of a linear location in the store typing and replace the object
at that location in the store with an object of this type, the store
remains well typed.

LEMMA 5.3 (Store Change). If

i. Σ;S ` µ ok =⇒ ls
ii. Σ;A;P ;S ` `L:¡obj t.O ← 〈〈R〉〉 =⇒ le

iii. there are no duplicates in ls, le, Range(S)
iv. µ(`) = s
v. Σ; ·;P ;S ` s:τ =⇒ lo, and

vi. Σ; ·;P ;S ` s′:τ ′ =⇒ l′o

then [` 7→ τ ′]Σ;S ` [` 7→ s′]µ ok =⇒ ls − lo, l′o

6. Related Work
This section gives an overview of previous work in object calculi,
linearity, protocol checking and regions.

Our calculus is derived from features of the calculi of Abadi
and Cardelli [1] and Fisher, Honsell and Mitchell [15, 16]. Like
other object calculi [20, 23, 24], these are focused on modeling
issues of inheritance and subtyping. Most of the work studying
method addition and delegation is in a functional context, unlike
our imperative calculus. Abadi and Cardelli discuss an imperative
variant of their calculus, but when a method is imperatively updated
it must match the type of the original method, whereas we allow
changes to the type of the object as a result of method update.

Our imperative method addition and update, and delegation
change are inspired by the prototype-based Self language [29].
Self is dynamically typed, meaning that programs may experience
runtime type errors, which our static type system prohibits.

The most closely related work is Anderson et al.’s application
of Alias Types to the problem of statically checking imperative
method and delegation updates [3]. Compared to EGO, their design
achieves precision through singleton types and effects, at a cost of
great complexity: the type of a method includes not just the type
of the arguments and body, but also the effects of the method and
the environment where it was typed. EGO’s goal, in contrast, is to
support many useful cases of method and delegation update in a
comparatively simple and practical type system based on linearity.

Re-classification in Fickle [13] can change an object’s class at
runtime in class-based OO languages. In this manner class-based
OO languages can achieve the same effect as changing delegation at
runtime. Fickle is more limited than our system because it restricts
re-classification to a fixed set of state classes rather than supporting
arbitrary changes to the methods and inheritance hierarchy of an
object. Furthermore, because it does not track aliasing of fields,
Fickle cannot track the state of an object in a field as EGO does.

Wadler introduced linear type systems in a functional setting in
[30]. This work was based on Girard’s linear logic [17].

Unique pointers were proposed for Eiffel and C++ in [21],
and for Java in [7]. The concept of borrowing was present in
Wadler’s original let! construct, but Wadler used a restrictive
typing discipline to ensure that the borrowed reference did not
leak; in contrast, we allow the reference to leak but ensure it
cannot be used after the region goes out of scope. Unlike Boyland’s
borrowing proposal [7], regions allow us to store borrowed pointers
in the heap.

Odersky [22], extends Wadler’s work by allowing observer
types as temporary, read-only aliases to mutable, linear objects.
Similarly, Fändrich and DeLine [14] introduce adoption and focus-
ing as mechanisms for relaxing linearity. Our work differs from
these in that we work with type changing operations, rather than
just mutation.

Smith et al. [25] discuss a system for tracking aliasing at a low
level for uses in Typed Assembly Language. They can specify a rich

set of constraints on aliasing, and can reuse locations at different
types.

Several papers describe research into ways to model objects in
linear logic [4, 8, 12]. In [8] methods are characterized as resources
that reside within objects, and are consumed after being invoked.
We apply this intuition in a more concrete setting (i.e., operational
semantics instead of an encoding in logic) for our linear methods.

Typestates were introduced in [26]. DeLine and Fähndrich dis-
cuss typestates for objects, especially in the presence of subtyping,
in [11]. Their system allows an object to specify which state it is
in before and after method calls, and so enforce an ordering on
method calls. We model this by modifying delegation to change
what methods are available, or by adding and removing methods.

Regions have been proposed for memory management, either
using type inference to infer the scopes of regions [28] or with
explicit types as in Cyclone [27].

7. Conclusion
We have presented EGO, an object calculus for studying linearity
in objects. Our calculus contains powerful mechanisms for creating
and using linear objects. We have demonstrated the expressiveness
of our calculus with several examples.

We have shown how linearity allows us to manipulate objects so
as to enforce protocols in a well-typed way. We can add methods
to objects, remove linear methods by invoking them and change
delegation at run time in a statically checkable way. We have shown
that such abilities can be used to enforce protocols.

We have also shown a way of temporarily relaxing linearity to
create short lived aliases. We have shown how to maintain type
safety while doing so.

Acknowledgments
This work was supported in part by NASA cooperative agreements
NCC-2-1298 and NNA05CS30A and NSF grants CCR-0204047
and CCF-0546550. Thanks to Kevin Bierhoff for an earlier version
of the Socket example, to Jason Reed for pointing out a flaw in an
earlier version of the calculus and to Karl Crary for suggesting the
use of>. Thanks also to the CMU POP group for helpful comments
on the calculus and to Timothy Wismer for proofreading.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for
Program Understanding. In Object-Oriented Programming Systems,
Languages, and Applications, November 2002.

[3] C. Anderson, F. Barbanera, and M. Dezani-Ciancaglini. Alias and
Union Types for Delegation. Ann. Math., Comput. & Teleinformatics,
1(1), 2003.

[4] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes
with built-in inheritance. In Proc. 7th International Conference on
Logic Programming, Jerusalem, May 1990.

[5] A. Bejleri, J. Aldrich, and K. Bierhoff. Ego: Controlling the power of
simplicity. In Proceedings of the Workshop on Foundations of Object
Oriented Languages (FOOL/WOOD ’06), January 2006.

[6] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In Object-
Oriented Programming Systems, Languages, and Applications,
November 2002.

[7] J. Boyland. Alias Burying: Unique Variables Without Destructive
Reads. Software Practice and Experience, 6(31):533–553, May
2001.

[8] M. Bugliesi, G. Delzanno, L. Liquori, and M. Martelli. Object calculi
in linear logic. Journal of Logic and Computation, 10(1):75–104,
2000.

[9] D. Clarke and T. Wrigstad. External Uniqueness is Unique Enough.
In European Conference on Object-Oriented Programming, July
2003.

[10] R. DeLine and M. Fähndrich. Enforcing High-Level Protocols
in Low-Level Software. In Programming Language Design and
Implementation, pages 59–69. ACM Press, 2001.

[11] R. DeLine and M. Fähndrich. Typestates for objects. In European
Conference on Object-Oriented Programming. Springer-Verlag,
2004.

[12] G. Delzanno and M. Martelli. Objects in forum. In International
Logic Programming Symposium, pages 115–129, 1995.

[13] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini.
Fickle : Dynamic object re-classification. In European Conference on
Object-Oriented Programming, pages 130–149, 2001.

[14] M. Fahndrich and R. DeLine. Adoption and focus: practical linear
types for imperative programming. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pages 13–24, New York, NY, USA, 2002. ACM.

[15] K. Fisher, F. Honsell, and J. C. Mitchell. A lambda calculus of objects
and method specialization. Nordic J. Computing, 1:3–37, 1994.

[16] K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus
with Subtyping. In Fundamentals of Computation Theory, 1995.

[17] J.-Y. Girard. Linear logic. Theoretical Computer Science, pages
50:1–102, 1987.

[18] A. Igarashi, B. Pierce, and P. Wadler. Featherwieght Java: a Minimal
Core Calculus for Java and GJ. In Object-Oriented Programming
Systems, Languages, and Applications, November 1999.

[19] M. Kehrt, A. Bejleri, and J. Aldrich. Linearity for objects. Technical
Report CMU-ISRI-06-115, Carngie Mellon, 2006.

[20] L. Liquori. An extended theory of primitive objects: First order
system. In European Conference on Object-Oriented Programming,
1997.

[21] N. Minsky. Towards alias-free pointers. In European Conference on
Object-Oriented Programming, pages 189–209. Springer, 1996.

[22] M. Odersky. Observers for linear types. In ESOP’92: Symposium
proceedings on 4th European symposium on programming, pages
390–407, London, UK, 1992. Springer-Verlag.

[23] D. Rémy. From classes to objects via subtyping. In Proc. of European
Symposium on Programming, 1998.

[24] J. G. Riecke and C. A. Stone. Privacy via subsumption. Theory and
Practice of Object Systems, 1999.

[25] F. Smith, D. Walker, and J. G. Morrisett. Alias types. In ESOP
’00: Proceedings of the 9th European Symposium on Programming
Languages and Systems, pages 366–381, London, UK, 2000.
Springer-Verlag.

[26] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on
Software Engineering, 12:157–171, 1986.

[27] N. Swamy, M. Hicks, G. Morrisett, D. Grossman, and T. Jim.
Safe Manual Memory Management in Cyclone. Sci. Comput.
Programming, October 2006.

[28] Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, pages 132(2):109–176, 1997.

[29] D. Ungar and R. B. Smith. Self: The Power of Simplicity. In Object-
Oriented Programming Systems, Languages, and Applications, pages
227–242. ACM Press, 1987.

[30] P. Wadler. Linear types can change the world! In M. Broy and C.
Jones, editors, Programming Concepts and Methods. North Holland,
1990.

