
Proceedings of the 2004 International Conference on Software Engineering, Edinburgh, Scotland, May 2004.

DiscoTect: A System for Discovering Architectures from Running Systems

Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, Rick Kazman
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh PA 15213
{yh,garlan,schmerl,aldrich}@cs.cmu.edu, kazman@sei.cmu.edu

Abstract
One of the challenging problems for software develop-

ers is guaranteeing that a system as built is consistent
with its architectural design. In this paper we describe a
technique that uses run time observations about an exe-
cuting system to construct an architectural view of the
system. With this technique we develop mappings that
exploit regularities in system implementation and archi-
tectural style. These mappings describe how low-level
system events can be interpreted as more abstract archi-
tectural operations. We describe the current implementa-
tion of a tool that uses these mappings, and show that it
can highlight inconsistencies between implementation
and architecture.

1. Introduction

For most complex systems it is crucial to have a well-
defined architecture. Such a definition provides a high
level view of a system in terms of its principal run time
components (e.g., clients, servers, databases), their inter-
actions (e.g., RPC, event multicast), and their properties
(e.g., throughputs, reliabilities). As an abstract representa-
tion of a system, an architecture permits many forms of
high-level inspection and analysis. Consequently, over
the past decade considerable research and development
has gone into the development of notations, tools, and
methods to support architectural design.

Despite advances in developing an engineering basis
for software architectures, a persisting difficult problem is
determining whether a system as implemented has the
architecture as designed. Without some form of consis-
tency guarantees the relationship between architectural
insight and the actual system will be hypothetical at best,
invalidating many of the benefits of architectural design.

Currently two principal techniques have been used to
determine or enforce relationships between a system’s
architecture and implementation. The first is to ensure
consistency by construction. This can be done by embed-
ding architectural constructs in an implementation lan-
guage (e.g., [1]) where program analysis tools can check
for conformance. Or, it can be done through code genera-
tion, using tools to create an implementation from a more
abstract architectural definition [22,23,24]. While effec-
tive when it can be applied, this technique has limited
applicability. In particular, it can usually only be applied
in situations where engineers are required to use specific

architecture-based development tools, languages, and
implementation strategies. For systems that are composed
out of existing parts, or that require a style of architecture
or implementation outside those supported by generation
tools, this approach does not apply.

The second technique is to ensure conformance by ex-
tracting an architecture from a system’s code, using static
code analysis [12,14,19]. When an implementation is
sufficiently constrained that modularization and coding
patterns can be identified with architectural elements, this
can work well. Unfortunately, however, the technique is
limited by an inherent mismatch between static, code-
based structures (such as classes and packages), and the
run-time structures that are the essence of most architec-
tural descriptions [8]. In particular, the actual run-time
structures may not even be known until the program runs:
clients and servers may come and go dynamically; com-
ponents (e.g., DLLs) not under direct control of the im-
plementers may be dynamically loaded, etc.

A third, relatively unexplored, technique is to deter-
mine the architecture of a system by examining its behav-
ior at run time. The key idea is that a system can be moni-
tored while it is running. Observations about its behavior
can then be used to infer its dynamic architecture. This
approach has the advantage that in principal it applies to
any system that can be monitored, it gives an accurate
image of what is actually going on in the real system, it
can accommodate systems whose architecture changes
dynamically, and it imposes no a priori restrictions on
system implementation or architectural style.

There are a number of hard technical challenges in
making this technique work. The most serious is finding
mechanisms to bridge the abstraction gap: in general,
low-level system observations do not map directly to ar-
chitectural actions. For example, the creation of an archi-
tectural connector might involve many low level steps,
and those actions might be interleaved with many other
architecturally relevant actions. Moreover, there is likely
no single architectural interpretation that will apply to all
systems: different systems will use different runtime pat-
terns to achieve the same architectural effect, and con-
versely, there are many possible architectural elements to
which one might map the same low level events. In this
paper we describe a technique to solve the problem of
dynamic architectural discovery for a large class of sys-
tems. The key idea is to provide a framework that allows
one to map implementation styles to architecture styles.

This mapping is defined as a set of conceptually concur-
rent state machines that are used at run time to track the
progress of the system, and output architectural events
when predefined run time patterns are recognized. By
parameterizing the framework by both architectural and
implementation styles, we are able to exploit regularity in
systems, while still providing flexibility in defining new
abstraction mappings.

In this paper we introduce DiscoTect, a system for dis-
covering the architectures of running object-oriented sys-
tems. In Section 2 we discuss related work. Section 3
presents the technical challenges in producing an archi-
tecture discovery framework that can be used with multi-
ple architectural styles and multiple systems. Section 4
presents our main technical contribution: the use of state
machines to map between implementation level events
and architectural operations. We discuss implementation
of DiscoTect in Section 5, and present results from a case
study to illustrate the utility of DiscoTect in Section 6. In
Section 7 we discuss the strengths and weaknesses of our
approach. Finally, we present conclusions and future
work.

2. Related Work

Our work is mostly related to other approaches for dy-
namic analysis of a system. A number of techniques and
tools have been developed to extract information from a
running system. These include instrumenting the source
code to produce trace information and manipulating run-
time artifacts to get the information (e.g., [3] and [28]).
There are many technologies available for monitoring
systems, and we build on those. However, they do not by
themselves solve the hard problem mapping from code to
more abstract models. In previous work, we developed an
infrastructure doing certain kinds of abstraction [10];
however, this approach was limited to observing proper-
ties of a system and reflecting them in an architectural
model in a preconstructed architectural model. In this
work we show how to create that model in the first place.

Dias et al. [4] use an XML-based language to describe
runtime events and use patterns to map these events into
high-level events. Analyzing these events to determine
architectural structure is not addressed. In addition, a sim-
ple static mapping from low-level system events to high-
level events has limited expressiveness. For example, it
cannot handle the case where the event analyzer initially
has interest in one set of events but changes its interest
after the interesting events have occurred. Also it doesn’t
provide a way of specifying event correlations or map-
ping a series of correlated low-level events to a single
high-level event – a crucial capability needed when dis-
covering the architecture of a system. Kaiser [13] uses a
collection of temporal state machines to perform pattern
matching against runtime events,. Our approach is simi-
lar, but makes architectural style explicit in the approach.

A number of researchers have investigated the prob-
lem of presenting dynamic information to an observer.
For example, Reiss [21], Walker [26,27], and Zeller [29]

present information about variables, threads, activations,
object interactions, etc. Ernst [5] shows how to dynami-
cally detect program invariants by examining values com-
puted during a program execution, and by looking for
patterns and relationships among them. This is somewhat
different from detecting architectural structure.

Madhav [18] describes a system that allows Ada 95
programs to be monitored dynamically to check confor-
mance to a Rapide [17] architectural specification. His
approach requires the source code to be annotated so that
it can be transformed to produce events to construct the
architecture. In contrast, our approach does not require
access to the source code, and does not rely on architec-
tural construction operations to be embedded in the code.

A large body of research has investigated specification
of the dynamic behavior of software architectures. Of the
many approaches, some use explicit state machines (e.g.,
[2,25]). These approaches, however, do not link architec-
ture to an executing system.

3. Technical Challenges

Any approach that supports dynamic discovery of ar-
chitectures must address three problems: (a) observing a
system’s runtime behavior, (b) interpreting that runtime
behavior in terms of architecturally meaningful events,
and (c) representing the resulting architecture. In this pa-
per we are primarily concerned with the second problem
of bridging the abstraction gap between system observa-
tions and architectural effects.

There are a number of issues that make this a hard
problem. First, mappings between low-level system ob-
servations and architectural events are not usually one-to-
one. Many low-level events may be completely irrelevant.
More importantly, a given abstract event, such as creating
a new architectural connector, might involve many run-
time events, such as object creation and lookup, library
calls to run time infrastructure, initialization of data struc-
tures, etc. Conversely, a single implementation event
might represent a series of architectural events. For ex-
ample, executing a procedure call between two objects
might signal the creation of a new connector, and its
attachment to the run time ports of the respective
architectural components. This implies the need for a
technique that can keep track of intermediate information
about mappings to an architectural model

Second, architecturally relevant actions are typically
interleaved in an implementation. For example, at a given
moment, a system might be midway through creating sev-
eral components and their connectors. This implies that
any attempt to recognize architectural events must be able
to cope with concurrent intermediate states.

Third, there is no single gold standard for indicating
what implementation patterns represent which architec-
tural events. Different implementations may choose dif-
ferent techniques for creating the same abstract architec-
tural element. Consider the number of ways that one
might implement pipes, for example. Indeed, one might

even find multiple implementation approaches in the
same system. Moreover, for the purposes of architectural
discovery, there is no single architectural style that can be
used for all systems. For example, the use of sockets
might be used to represent many different types of con-
nector. This means we need a flexible way to associate
different implementation styles with architectural styles.

To address these concerns, we adopt an approach illus-
trated in Figure 1. Monitored events are first filtered by a
Trace Engine to select out the subset of system observa-
tions that must be considered. The resulting stream of
events is then fed to a State Engine. The heart of this rec-
ognition engine is a state machine designed to recognize
interleaved patterns of runtime events, and when appro-
priate, to output a set of architectural operations. Those
operations are then fed to an Architecture Builder that
incrementally creates the architecture, which can then be
displayed to a user or processed by architecture analysis
tools.

To handle the variability of implementation strategies
and possible architectural styles of interest, we provide a
language to define new mappings. Given a set of imple-
mentation conventions (which we will refer to as an im-
plementation style) and a vocabulary of architectural ele-
ment types and operations (which we will refer to as an
architectural style [7]), we provide a description that cap-
tures the way in which runtime events should be inter-
preted as operations on elements of the architectural style.
Thus each pair of implementation style and architectural
style has its own mapping. A significant consequence is
that these mappings can be reused across programs that
are implemented in the same style.

4. DiscoTect Design

We now discuss the design of the State Engine portion
of DiscoTect. We first introduce the language to define
the state machine. The semantics for the state machine
differ from the standard definition; the informal opera-
tional semantics are given in Section 4.1.2. We then illus-
trate the approach by showing how it can be used to dis-
cover the Pipe/Filter architecture of a small Java applica-
tion. Later (Section 6) we present a more substantive ex-
ample.

4.1. State Machine Definition

To illustrate the definition of state machines, consider
a situation in which we want to recognize the creation of
instances of some binary connector type. Let’s assume the
implementation constructs the connector by first creating
instances of Read and Write objects through which data is
to be communicated. These objects correspond to read
and write ports on architectural components. A connector
is constructed between those ports when a component
invokes the receive method of its Read object, passing it
the Write object that contains the data. The state machine
to construct this connector will have states that recognize
when Read and Write objects are created, and when a
receive method is called. Transitions between the states
will construct elements in the architecture (ports, roles,
and connectors).

Complicating this scenario is the fact that the imple-
mentation may create Read and Write objects in any or-
der, and in fact may construct many Read and Write ob-
jects before communicating any data. This kind of inter-
leaving requires the recognition engine to have multiple
active states. Furthermore, because the creation of the
connector relies on information from previous states (i.e.,
the Read and Write objects), we must retain information
from previous states to use in evaluations at subsequent
states.

A DiscoTect state machine is a graph of states, trig-
gers, actions, and transitions interpreted by the State En-
gine. States keep track of the progress of architecture dis-
covery. Each state is associated with one or more trig-
gers, which define the type of events that can cause tran-
sitions between states, and that specify the conditions
under which this can occur. When a transition is taken, it
may produce actions to construct architectures.

The elements of a state machine are illustrated in
Figure 2. Specifying a state machine requires the defini-
tion of (1) states, (2) triggers; (3) actions; and (4) transi-
tions.

States. States are staging points in the discovery of
some architectural action. A state may represent partial
knowledge of the architecture – for example, the knowl-
edge that a connector has been created but we don’t yet
know which components it connects – and allows us to
build up complex mappings to combine pieces of infor-
mation into coherent architectural actions. States are
linked by transitions, which form a graph representing
implementation flows leading to architectural actions.

Each state in the state machine is associated with a set
of state variables. A variable v is present in state s if, for
every incoming transition of s, v is defined either on the

Running System

Trace Engine

State
Engine

Architecture
Builder

Model

Figure 1. The DiscoTect Architecture.

Condition
Action

Figure 2. Elements of a state map.

State1 State2

transition or is present in predecessor states. Variables
must be defined on every incoming edge to ensure well
defined values. Conditions and actions on the outgoing
transitions for s can refer to the variables present in s, as
well as any new variables defined by the transition.

Triggers. A trigger consists of two parts: an event
specification, and a condition that must be met for the
transition to occur. In our current prototype there are
three types of parameterized events that can be received
from the running system (via the Trace Engine): 1

- Call (method, caller, callee): A Call event occurs
when a method is invoked in the running system.
Each Call event includes the name of the method,
caller, and callee.

- Init (constructor, creator, instance): An Init event oc-
curs when a constructor is invoked to instantiate a
new object. The event contains the name of the
constructor, the name of the element requesting
the constructor (in the creator parameter), and the
name and type, collected in the instance parame-
ter, of the new element.

- Modify (owner, field, value): A Modify event occurs
when a member variable of an object is assigned a
value. The event includes the name of the owner
object of the field, the name of the field, and the
value that was assigned to the field.

When a state is activated by an event, the parameters
of the event are recorded as state variables, which can be
referred to by subsequent state trigger conditions or ac-
tions. In this way, an architectural action can use informa-
tion from previous states to produce. (We will illustrate
how to access these state variables shortly.)

Conditions are written as boolean expressions over
values of state variables (derived from parameters of the
current event, or the events of previous states). Condi-
tions may also use operators to build up more complex
expressions. For example, the expression v1 == v2 returns

1 The icons next to each list show how the event types are

indicated in figures containing state machines. Although our
current implementation uses only three types of events associ-
ated with object-oriented implementations, the approach could
easily accommodate others events and programming styles.

true if v1 is equal to v2 and v1 contains “foo” returns true if
v1 contains the string “foo”.

To illustrate, consider a trigger that contains a Modify
() event and the condition:

field contains “Reader.lock” && owner == S3.instance

This condition is true when the field parameter of the Mod-
ify event contains the string “Reader.lock” and the owner
parameter is equal to the instance parameter for the Init
event that activated S3. (S3.instance is an example of ac-
cessing a state variable that was recorded earlier.)

Actions. An action specifies a sequence of architec-
ture-related operations that create or modify the software
architecture of the running system. Actions are directly
linked to the style of the target architecture, and are ex-
pressed using operations appropriate to that architectural
style [11]. For example, a pipe-filter style might include
operations for creating pipes and filters; a client-server,
operations for creating and connecting clients to servers.
Similar to event parameters, operations may explicitly
define values of state variables through assignment; this is
so they may be used in later actions and conditions.
4.1.1 Informal operational semantics

DiscoTect must deal with sequences of events that are
interleaved. To do this, DiscoTect may maintain more
than one concurrently active state in a state machine.
Each active state is called a state activations. Each activa-
tion is a pair of a state and a binding for all variables in
that state. DiscoText provides three forms of transitions:
ordinary, fork, and join. Like other state machines, ordi-
nary transitions remove one state activation and add an-
other. To support concurrency DiscoTect also supports
fork transitions that leave the original state activations in
place while also creating a new state activation in parallel
with the original. Likewise, DiscoTect has a join transi-
tion that merges two or more source state activations into
a single destination activation.

The current state of the state engine is a set of state ac-
tivations. The state engine begins with a single activation
for the initial state in the state machine. Whenever an
event is received from the trace engine, it is matched
against all outgoing transitions from all current state acti-
vations. If the event matches the event specification for
one or more transitions, and the condition for the transi-
tion evaluates to true, then each matching transition is
taken.

For ordinary transitions (i.e., non-forking), the source
activation is removed and the new activation is added for
the destination state. Variables in the new state are bound
to values defined in the transition, or if not defined there,

Figure 3. State machine for discovering Filter components.

Start S1

S2

method contains “.main(java.lang.String[])"

CreatePipeForSystem(method);

Call

instance contains “Filter”

filter = CreateFilter (instance);

Init
Figure 4. The architecture fragment resulting from run-
ning the system and using the state machine Figure 3.

to the values of the corresponding variables in the source
activation.

If the transition is a fork, then the machine retains the
source state activation while creating the destination acti-
vation. If the transition is a join, it can only be triggered if
there is a state activation present for all of the source
states of the join. In this case, the source activations are
removed and the destination activation is created as usual.

Consider the state machine fragment in Figure 3, 2 and
assume that S1 is currently active. When S2 becomes
active (because the trigger on the transition into S2 is
fired), S2’s activation consists of the following state vari-
ables:

- instance, creator, and constructor from the Init
event of the trigger,

- filter, which is the result of an operation in the ac-
tion, and

- S1.method, S1.caller, and S1.callee, which are
copied variables from state S1.

These variables may be referred to later on as S2.instance,
S2.filter, etc.

The transition from S1 to S2 is a fork transition. When
it occurs the state activation for S1 is retained and a new
state activation for S2 is spawned. This allows the crea-
tion of other filter components to be tracked by the origi-
nal state activation for S1, while allowing the new state
activation for S2to track subsequent events happening to
the filter created by the transition. In this way, the state
machine can keep track of interleaved architectural map-
pings.

4.2. Pipe-Filter Example

To illustrate the use of DiscoTect for discovering an
architectural model, consider a simple example in a
Pipe/Filter architectural style. Assume that the style de-
fines three component types: a type each for data input
and output files (called InFile and OutFile), and a Filter
type whose instances consume inputs and produce out-
puts. There is also a Pipe connector type, and interface
types specifying the input and output interfaces of filters
and pipes.

Furthermore, assume the Pipe/Filter style defines the
following operators to create elements of the above types:

CreatePipeFilterSystem (name)
CreateFilter (name)
CreatePipe (name)
CreateReadPort (name, component)
CreateWritePort (name, component)
CreateSink (name, pipe)
CreateSource (name, pipe)
CreateAttachment(port, role)
For this example let us assume that the implementation

style uses the following conventions: (1) an instance of
any class that has “Filter” in its name represents the con-

2 Throughout this paper, we denote a fork transition by add-

ing the // icon on the transition.

struction of a Filter component; and (2) Java Piped-
Reader and PipedWriter instances are used by filters to
communicate data. After the write method of a Piped-
Writer is called and the read method of a PipedReader is
called, we need to wait for a call to the receive method of
the PipedWriter before we have all the information to
create a Pipe in the architecture (the receive method pairs
instances of PipedReader and PipedWriter, defining the
ends of the Pipe).

Knowing the style of the implementation and the style
of the architecture, we construct a state machine that
represents the mapping described above to allow us to
recognize when to construct architectural elements. This
state machine can be used to discover the Pipe/Filter ar-
chitecture of any system adopting these implementation
conventions.

As an example we wrote a system (called Pre-
reqCheck) that is implemented using the conventions de-
scribed above. It creates a configuration of filters to check
that sstudents have fulfilled prerequisites for pre-
registered courses by taking a stream of student entries
from a file, splitting the stream depending on whether
prerequisites have been satisfied, checking that students
have taken particular courses, and then merging the
stream to an output file. The code consists of the follow-
ing application-specific classes:

SplitFilter - This filter reads an input file one student
entry at a time and determines whether the student is in
the CS program or not. If so, the entry is sent to one of
the output pipes; if not, the entry is sent to the other pipe.

PassFilter – This filter checks each entry to see if a
student has taken a prescribed course, in which case the
entry is passed on. Otherwise, the entry is discarded.

MergeFilter – This filter takes two inputs and merges
them into one output stream.

RegSys - The RegSys class instantiates and starts the
filters. Users can execute this class by providing the input
and the output file names.

In the remainder of this section, we divide the state

machine into several parts and present each part in turn.
Creating Filters. This part is responsible for creating

the system and the filters in it. The portion of the state
machine for this part is shown in Figure 3. When a Call
event is received from the Trace Engine, it is matched
against the triggers outflowing from all active states. Ini-
tially, there is one state activation for the Start state. The
State Engine will evaluate the condition on the arc out of
the Start state. The transition from Start to S1 in Figure 3
looks for a method name containing the string
“.main(java.lang.String[])”; if this condition is satisfied
by the Call event then the Start activation goes away, S1
becomes active and the accompanying action is executed.
This action creates an empty architectural model of the
PipeAndFilter style. After S1 becomes active, the trigger
condition is evaluated for all newly intercepted object
initializations. In Figure 3, if the instance parameter to the
Init event is a Filter then a new state activation for S2 is
forked due to the fork transition, and an architectural Fil-

ter component is constructed by the action. The action
parameters indicate that the component name should be
captured from the new instance and the component type is
decided by the initialization constructor. This new com-
ponent is assigned to the state variable filter so that it can
be referenced later (for example, in Figure 5). If we fol-
low through this state machine as above, we obtain two
state activations for states S1 and S2 respectively. If a
later Init event satisfies the filter condition on the out-
bound arc of S1, then another Filter component is created,
along with another concurrent state activation for S2
(which will have different variable bindings from the first
activation).

Running PrereqCheck with just this state machine pro-
duces the architecture depicted in Figure 4. Four Filters
are created, one by the constructor for the SplitFilter
class, one by the constructor for MergeFilter, and the
other two by the constructor for PassFilter. We use an ID
generator to label the architectural counterpart of the run-
time object to avoid naming conflicts when multiple in-
stances of the same type exist (for instance, two PassFil-
ters in this example).

Connecting Filters with Pipes. Recall that the target
system uses PipedReaders and PipedWriters to channel
the output from one Filter into the input of another. The
state machine first creates the ports on filters. For exam-
ple, a write port is created after noticing the creation of a
PipedWriter and associating it with an architectural filter
when an implementation filter writes to it. Similarly, a
read port is constructed when a PipeReader is created and
a filter reads from it. A pipe is created and connected after
calling PipedReader’s receive method.

The state machine that achieves this is given in Figure
5. Newly created PipedReader/PipedWriter objects are
stored by S9/S10 in state variables that can be referred to
using S9.instance and S10.instance. Since the creator is

not necessarily the user of those Piped-
Reader/PipedWriter objects, it is still unclear which Fil-
ters they belong to, so no port creation action is produced
at this point. The Filters that are connected by this pipe
become apparent only when they are used. When Piped-
Reader.read or PipeWriter.write is called, the previously
recorded PipedReader/PipeWriter is mapped to ports of
the components that correspond to the callers. Pipe data-
flow is signified by calling the receive method of Pipe-
dReader. This method triggers the join transition from
S11 and S12 to S13. In this transition the source state
activations are removed, a new state activation for S13 is
created, and an action constructs and attaches a pipe be-
tween the previously defined ReadPipe and WritePipe
ports is constructed and attached.

Putting it all together. The fragments of the state ma-
chine from the figures in this section (including one for
file output, not shown) produce a complete state machine
that can discover the architecture of PrereqCheck.

Figure 6 lists the events obtained when running Pre-
reqCheck. This list contains only the events that trigger
actions in the state machine (there are actually 4550
events received by DiscoTect from the Trace Engine),
and for the sake of brevity, we have also removed multi-
ple calls to read and write pipes. The Component Creation
part of the figure has events causing creation of the sys-
tem and filters by the state machine in Part 1.

An example of interleaving occurs in the Connection
section of the trace. First, the PipedReaders and Piped-
Writers are created, then writing to and reading from
them commences. So, the pipes are not created sequen-
tially. The State Engine keeps track of separate activa-
tions for each of the pipes, so that in this trace there are
separate activations after S1 in the state machine in
Figure 5, to track a pair of PipedReader and PipedWriter.

Figure 5. The state machine fragments for discovering pipe connections.

S1

S9

S10

S11 S12 method contains "PipedReader.receive" &&
caller == S12.instance &&
callee = S11.provider

pipeTransportFile =
 CreatePipe (method + caller + callee);
sink = CreateSink (“sink”, pipeTransportFile);
source = CreateSource (“src”, pipeTransportFile);
CreateAttachment (output, src);
CreateAttachment (input, snk);

instance contains “PipedWriter

S13

instance contains “PipedReader”

method contains "PipedWriter.write" &&
caller == S10.instance &&
callee==s2.instance

portWritePipe =

CreateWritePort (“write”, s2.filter);

Init

Init

method contains "PipedReader.read" &&
caller == S9.instance &&
callee == s2.instance

portReadPipe =

CreateReadPort (“read”, s2.filter);

Call

Call

Call

At the end of running the PrereqCheck system, the en-
tire architecture for that run has been created. The result-
ing architecture from the trace in Figure 6, following the
state machine in this section, is shown in Figure 7.

5. Implementation of DiscoTect

Recall from Section 3 that to provide a general frame-
work for discovering architectures, we need to solve three
challenges. In this section, we discuss our implementation
for each of these challenges.

Monitoring: The Trace Engine uses the Java Platform
Debugger Architecture (JPDA) to capture system runtime

events. JPDA provides a communication channel between
a debugger and a target system. The debugger can send
requests to the host virtual machine of the target system
querying for certain types of events. The host virtual ma-
chine can dispatch events to denote changes of state in the
target system. The Trace Engine acts in the role of de-
bugger and sends requests to the virtual machine(s) host-
ing the target system querying for three types of events:
object instantiations, method calls and field modifica-
tions. The request also contains a filter that defines the set
of classes the Trace Engine is interested in. At runtime,
the target system’s virtual machine intercepts requested
events generated by any of the classes defined in the fil-
ter, queues it, and sends it to the Trace Engine. Upon re-
ceiving a runtime event, the Trace Engine classifies it,
converts it into one of Init, Call or Modify, and puts it in
the pipe connected with the Logic Engine.

Mapping: The implementation of the DiscoTect State
Engine follows the design in Section 4. During initializa-
tion, the State Engine parses the state machine definition
and activates the initial state. Then it keeps scanning the
stream sent from the Trace Engine and evaluating the
newly produced events with the trigger conditions of cur-
rently active states. If a trigger condition out of an active
state is satisfied, the target state is activated and any asso-
ciated architectural actions are fired.

Architecture Building: We represent architectures us-
ing the Acme architecture description language [9]. Op-
erations on Acme architectures are defined in a library
that provides operations that form building blocks of ar-
chitectural actions. .

6. AAMS Case Study

In this section we present a case study to determine the
run time architecture of AAMS, a simulation test-bed for
experimenting with mobile system architectural design
decisions [15]. The test-bed allows users to specify usable
system resources, tasks and scheduling strategies, and
simulates the running of the mobile system. We chose
AAMS because it represents a fairly complex real world
application (approximately 28KLOC), and the runtime
architectural view of the system is well documented. This
allows us to compare our discovery result with their

Figure 7. The discovered architectural model of
PrereqCheck.

1. Call(method="v1.RegSys.main(java.lang.String[])", requestor=null, pro-
vider=null)

2. Init(constructor="v1.SplitFilter", creator=null, in-
stance="v1.SplitFilter(name='', id=342)")

3. Init("v1.PassFilter", null, "v1.PassFilter(name='', id=349)")
4. Init("v1.PassFilter", null, "v1.PassFilter(name='', id=351)")
5. Init("v1.MergeFilter", null, "v1.MergeFilter(name='', id=354)")
6. Init("java.io.FileReader", "v1.SplitFilter(id=342)",

"java.io.FileReader(id=369)")
7. Init("java.io.BufferedReader", "v1.SplitFilter(id=342)",

"java.io.BufferedReader(id=418)")
8. Init("java.io.FileWriter", "v1.MergeFilter(id=354)",

"java.io.FileWriter(id=357)")
9. Modify(name="java.io.Reader.lock", value="java.io.FileReader(id=369)")
10. Call("java.io.BufferedReader.readLine()", "v1.SplitFilter(id=342)",

"java.io.BufferedReader(id=418)")
11. Init("java.io.PipedReader", null, "java.io.PipedReader(id=331)")
12. Init("java.io.PipedReader", null, "java.io.PipedReader(id=334)")
13. Init("java.io.PipedReader", null, "java.io.PipedReader(id=336)")
14. Init("java.io.PipedReader", null, "java.io.PipedReader(id=338)")
15. Init("java.io.PipedWriter", null, "java.io.PipedWriter(id=328)")
16. Init("java.io.PipedWriter", null, "java.io.PipedWriter(id=329)")
17. Init("java.io.PipedWriter", null, "java.io.PipedWriter(id=333)")
18. Init("java.io.PipedWriter", null, "java.io.PipedWriter(id=340)")
19. Call("java.io.PipedWriter.write(…)", "v1.SplitFilter(id=342)",

"java.io.PipedWriter(id=328)")
20. Call("java.io.PipedWriter.write(…)", "v1.SplitFilter(id=342)",

"java.io.PipedWriter(id=329)")
21. Call("java.io.PipedReader.read()", "v1.PassFilter(id=351)",

"java.io.PipedReader(id=338)")
22. Call("java.io.PipedReader.read()", "v1.PassFilter(id=349)",

"java.io.PipedReader(id=331)")
23. Call("java.io.PipedWriter.write(…)", "v1.PassFilter(id=349)",

"java.io.PipedWriter(id=333)")
24. Call("java.io.PipedWriter.write(…)", "v1.PassFilter(id=351)",

"java.io.PipedWriter(id=340)")
25. Call("java.io.PipedReader.read()", "v1.MergeFilter(id=354)",

"java.io.PipedReader(id=334)")
26. Call("java.io.PipedReader.read()", "v1.MergeFilter(id=354)",

"java.io.PipedReader(id=336)")
27. … more read and write calls
28. Call("java.io.PipedReader.receivedLast()", "java.io.PipedWriter(id=328)",

"java.io.PipedReader(id=331)")
29. Call("java.io.PipedReader.receivedLast()", "java.io.PipedWriter(id=329)",

"java.io.PipedReader(id=338)")
30. Call("java.io.PipedReader.receivedLast()", "java.io.PipedWriter(id=333)",

"java.io.PipedReader(id=334)")
31. Call("java.io.PipedReader.receivedLast()", "java.io.PipedWriter(id=340)",

"java.io.PipedReader(id=336)")
32. Call("java.io.Writer.write(java.lang.String)", "v1.MergeFilter(id=354)",

"java.io.FileWriter(id=357)")
Figure 6. Relevant output from the event filter.

File
O

utput
Connection

File Input
Com

ponent
Creation

documentation. This comparison illustrates the use of
applying our technique to discover deviations between the
architecture discovered by DiscoTect and the documented
design architecture of AAMS. Furthermore, we can use
this case study to illustrate how we developed and refined
the state machines to produce the final architecture.

Figure 8 shows the (informal) runtime architecture of
AAMS as presented in [15]; the following description of
the runtime is also based on the description in this paper.
The Simulation Controller forms a simulation from re-
sources and tasks, their configuration, user activities and
events, and information that it reads from a set of con-
figuration and script files. The Simulation Controller also
takes commands from the Simulation GUI, to control
runtime parameters and feedback. It then processes each
simulation frame to generate the actual performance of
the system. Each component in the application and re-
source layers simulates its own operation. A set of ser-
vices for File I/O, Error Reporting and Logging are avail-
able via publish/subscribe to any simulated object.

6.1. Design of AAMS State Machine

In this section we present the steps taken to produce
the DiscoTect state machine to discover the AAMS archi-
tecture model. Typically, writing these state machines is a
process of starting with fairly generic state machines to
discover components and connections, and then refining
these state machines to produce architectures correspond-
ing to a particular style. For this case study we used a
specialization of a publish/subscribe style that distin-
guishes participating components as tasks, resources, etc.
These extra component types are based on the description
of AAMS found in [15].

To develop the final state machine, we first produced a
state machine that merely observed object creation and
interaction (through procedure call). We then refined this
to classify objects into their architectural counterparts
(e.g., Resource, Task, etc.). We also reused the File IO
part from the pipe/filter example.

Up to this point, we had not discovered anything about
the publish/subscribe part of the architecture. The pre-
liminary discovery results informed us that all the re-
source and task components interact with an object of the
PubSub class using two procedure calls named publish
and subscribe. We conjectured that the system imple-
ments publish/subscribe by creating a PubSub object and
invoking its two methods. This led us to design a state
machine for this portion of the architecture. This state
machine creates an EventBus connector when it notices
the instantiation of a PubSub object in the implementa-
tion. Once this has been done, an EventTaker role is cre-
ated when DiscoTect notices a call to the publish method
of the PubSub object, and a Publish port on the compo-
nent corresponding to the call, and attaches them. Simi-
larly PubSub.subscribe leads to the creation of an Event-
Sender role on the EventBus providing the method, the
creation of a Subscribe port in the component requesting
the method, and the creation of the attachment.

6.2. The Discovered Architecture

Applying the above state machine to a running in-
stance of AAMS yields the architectural model in Figure
9. We have laid out this model to enable easier compari-
son with the view in Figure 8. By comparison with Figure
8, we uncovered four types of discrepancies between the
documented architectural view and our discovered one.
1. Isolated, extraneous components/connectors. The

result shows two EventBus connectors, one of which
is isolated from the other parts of the system. It indi-
cates that one instance is instantiated but never used.
Code optimization should resolve this discrepancy.

2. Additional connections between components. Figure
8 does not show any connections between the con-
troller component and simulation components such
as tasks and schedulers. Nor does it inform us that
some of the support components (Logger and Report-
ing) also subscribe to the event bus. Ignoring those
“backdoor” connections makes the architectural view
less accurate; moreover, it might compromise archi-
tectural analysis where all meaningful interactions
between components should be considered. For ex-
ample, in evaluating the performance of a pub-
lish/subscribe infrastructure, the existence of hidden
communication channels could invalidate deadlock
analysis.

3. Misplaced connections between components. The
discovered architecture shows a very different File
I/O scheme: instead of the GUI reading three files
(c.f. Figure 8), the controller reads two files.

Task
 Configuration file

Script File

Resource
Configuration file

Simulation
Controller

Simulation
ControllerGUI

event event

Application Modeling

Executive

Action Component
Monitor

Logging

Error
Reporting

Publish/
Subscribe

Simulation
Component Support

Component Event Local
Call

Legend:

USER Envit Scheduler

Task Task Task

Network MEM CPU

Figure 8. Documented runtime view of AAMS [15].

Resource

File

4. Missing components/connectors. Two of the compo-
nents (USER and Environment) recorded in the
document do not show up in the architecture.

To confirm that DiscoTect discovered the actual archi-
tecture of the implementation, and to understand the dis-
crepancies, we conferred with the AAMS developers.
They agreed that DiscoTect produced a more complete
and correct architectural description than their diagram,
and had uncovered some errors in their coding. However,
the missing USER and Environment components are due
to the fact that these represent user interaction, and are
not actual components in the implementation.

7. Discussion and Future Work

In this paper we described a technique for “discover-
ing” the architecture of a running system, using a set of
pattern recognizers that convert monitored system obser-
vations into architecturally-meaningful events. The key
idea is to exploit implementation regularities and knowl-
edge of the architectural style that is being implemented
to create a mapping that can be applied to any system that
conforms to the implementation conventions to yield an
view in that architectural style.

There are a number of advantages of this approach.
First, it can be applied to any system that permits runtime
monitoring. In our case, any Java program can be used,
since the Java runtime provides built-in facilities for
monitoring object creation, method invocation, and in-
stance variable assignment. Our current implementation
uses JPDA, which causes a 10X slowdown in the target

system. To address this, we are investigating AspectJ [16]
to provide similar monitoring capabilities. Initial results
indicate that AspectJ has negligible impact on the speed
of the system. Furthermore, monitoring technology for
other kinds of implementations and system properties is
an active research area (see Section 2) that should con-
tinue to provide increasing capabilities in the future that
we can leverage. Second, by simply substituting one
mapping description for another, it is possible to accom-
modate different implementation conventions for the
same architectural style, or inversely different architec-
tural styles for the same implementation conventions.
Though not described in this paper, we have been able to
discover the Pipe/Filter architecture of a system imple-
mented using a different pipe convention. Third, the tech-
nique can work with a variety of monitoring technologies
and architectural representations. Although we used Java
and Acme, one could substitute other technologies with
relatively minor changes to the recognizer.

There are, however, several inherent weaknesses to the
approach. The first is that it only works if an implementa-
tion obeys regular coding conventions. Completely ad
hoc bodies of code are unlikely to benefit from the tech-
nique. Second, it only works if one can identify a target
architectural style, so that the mapping knows the output
vocabulary. Third, as with any analysis based on runtime
observations, it suffers from the problem that you can
only analyze what is actually executed. Hence, questions
like “is there any execution that might violate a set of
style constraints” cannot be directly answered using this
method. Thus our techniques are best viewed as one of
several technologies that an architect must have in his
arsenal of architecture conformance checking tools.

These potential defects also point the way to future re-
search in this area. First, is the area of system monitoring,
already mentioned. Second is the area of codifying the
ways in which architectural styles are implemented. As
technology advances, implementation techniques will
necessarily change, and it will be important to augment
the set of mappings as that happens. Third is the area of
architectural coverage metrics, similar to coverage met-
rics for testing. It would be good, for example, to have
some confidence that in running a system with various
inputs, we have exercised a sufficiently comprehensive
part of the system to know what its architecture is.
Fourth, we would like to find a way to make the defini-
tion of implementation-architecture mappings more de-
clarative. While the operational definition of state ma-
chines as the carrier of those mappings is a good first
step, we can imagine more abstract forms of characteriza-
tion that will be easier to create and analyze. Finally, we
are developing tool-support for defining state machines.

As mentioned above, our implementation can also be
improved. In addition to using better monitoring facilities,
our approach is not limited to just noticing Create, Init,
and Modify events, but could be extended to use any in-
formation that can be gleaned from the runtime system
through a probing technology (for example, object de-
struction or thread information). We plan to provide a

Figure 9. Discovered architecture of AAMS.

mechanism to define these system-level events so that
they can be used in state machines. To gain further ex-
perience with developing the state machines, we are ap-
plying DiscoTect to other systems, most significantly the
JBoss [6] framework. We anticipate that this will give us
measurements of the amount of reuse that we can get by
matching architectural and implementation style.

Acknowledgements
The research described in this paper was supported by

DARPA, under Grants N66001-99-2-8918 and F30602-
00-2-0616, and by an Software Engineering Institute
(SEI) Internal R&D Grant.

References
[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava:
Connecting Software Architecture to Implementation. In Proc.
ICSE 2002.
[2] R. Allen, D. Garlan Formalizing Architectural Connection.
In Proc. ICSE 1994.
[3] R.M. Balzer and N.M Goldman. Mediating Connectors.
Proc. 1999 ICDCD Workshop on Electronic Commerce and
Web-Based Applications, 1999.
[4] M. Dias and D. Richardson. The Role of Event Description
on Architecting Dependable Systems (extended version from
WADS). Lecture Notes in Computer Science - Book on
Architecting Dependable Systems (Spring-Verlag), 2003.
[5] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. IEEE Tans. on Soft. Eng., 27(2), 2001.
[6] M.Fleury and F. Reverbel. The JBoss Extensible Server.
Proc. International Middleware Conference, 2003.
[7] D. Garlan, R.J. Allen, and J. Ockerbloom. Exploiting Style
in Architectural Design. Proc FSE 94, 1994.
[8] D. Garlan, A.J. Kompanek, S.-W. Cheng. Reconciling the
Needs of Architectural Description with Object Modeling
Notations. Science of Computer Programming vol. 44, 2001.
[9] D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural
Description of Component-Based Systems. Foundations of
Component-Based Systems, Gary T. Leavens and Murali
Sitaraman (eds), Cambridge University Press, 2000.
[10] D. Garlan, B. Schmerl, and J. Chang. Using Gauges for
Architecture-Based Monitoring and Adaptation. Proc. 1st
Working Conference on Complex and Dynamic Systems
Architecture, 2001.
[11] D. Garlan, S.-W. Cheng, B.Schmerl. Increasing System
Dependability through Architecture-based Self-repair.
Architecting Dependable Systems, R. de Lemos, C. Gacek, A.
Romanovsky (Eds). LNCS 2677, Springer-Verlag, 2003.
[12] D. Jackson and A. Waingold. Lightweight extraction of
object models from bytecode. In Proc. ICSE 1999.
[13] G. Kaiser, J. Parekh, P. Gross, and G. Veletto. Kinesthetics
eXtreme: An External Infrastructure for Monitoring Distributed
Legacy Systems. Proc. 5th International Active Middleware
Workshop, 2003.
[14] R. Kazman, and S.J. Carriere. Playing Detective:
Reconstructing Software Architecture from Available Evidence.
Journal of Automated Software Engineering 6(2), 1999
[15] R. Kazman, J. Asundi, J.S. Kim, and B. Sethananda. A
Simulation Testbed for Mobile Adaptive Architectures,
Computer Standards and Interfaces, to appear, 2003.
[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W.G. Griswold. An Overview of Aspect J. ECOOP 2001.
[17] D.C. Luckham. Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Orderings of
Events. DIMACS Partial Order Methods Workshop, 1996.
[18] N Madhav. Testing Ada 95 Programs for Confomance to
Rapide Archtiecturs. Proc. Reliable Software Technologies –

Ada Europe 96, 1996.
[19] G.C. Murphy, D. Notkin, and K.J. Sullivan. Software
Reflexion Models: Bridging the Gap Between Source and High-
Level Models. In Proc. FSE 1995.
[20] G.C. Murphy , D. Notkin, Lightweight lexical source
model extraction, ACM TOSEM, 5(3), 1996
[21] S. Reiss. JIVE: Visualizing Java in Action (Demonstration
Description). Proc. ICSE 2003.
[22] M. Shaw, R. Deline, D. Klein, T.L. Ross, D.M. Young, G.
Zelesnik. Abstractions for Software Architecture and Tools to
Support Them. IEEE Trans. on Soft. Eng. 21(4), 1995.
[23] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J.
Whitehead, J.E. Robbins, K.A. Nies, P. Oriezy, and D. Dubrow.
A Component- and Message-Based Architectural Style for GUI
Software. IEEE Trans. on Soft. Eng. 22(6), 1996.
[24] S. Vestel. MetaH Programmer’s Manual, Version 1.09.
Technical Report, Honeywell Technology Center, 1996.
[25] M. Vieira, M. Dias, D.J. Richardson. Software Architecture
based on Statechart Semantics. Proc. the 10th International
Workshop on Component Based Software Engineering, 2001.
[26] R.J. Walker, G.C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, J. Isaak. Visualizing Dynamic Software System
Information through High-level Models. In Proc. OOPSLA'98,
[27] R.J. Walker, G.C. Murphy, J. Steinbok, and M.P.
Robillard. Efficient Mapping of Software System Traces to
Architectural Views. In S.A. MacKay and J.H. Johnson (eds) In
Proc. CASCON 2000. .
[28] D. Wells and P. Pazandak. Taming Cyber Incognito:
Surveying Dynamic/Reconfigurable Software Landscapes. Proc.
1st Working Conference on Complex and Dynamic Systems
Architectures, 2001.
[29] A. Zeller. Animating Data Structures in DDD. Proc.
SIGCSE/SIGCUE Program Visualization Workshop, 2000.

