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Abstract  
One of the challenging problems for software develop-

ers is guaranteeing that a system as built is consistent 
with its architectural design. In this paper we describe a 
technique that uses run time observations about an exe-
cuting system to construct an architectural view of the 
system. With this technique we develop mappings that 
exploit regularities in system implementation and archi-
tectural style. These mappings describe how low-level 
system events can be interpreted as more abstract archi-
tectural operations. We describe the current implementa-
tion of a tool that uses these mappings, and show that it 
can highlight inconsistencies between implementation 
and architecture. 

1. Introduction 

For most complex systems it is crucial to have a well-
defined architecture. Such a definition provides a high 
level view of a system in terms of its principal run time 
components (e.g., clients, servers, databases), their inter-
actions (e.g., RPC, event multicast), and their properties 
(e.g., throughputs, reliabilities). As an abstract representa-
tion of a system, an architecture permits many forms of 
high-level inspection and analysis. Consequently, over 
the past decade considerable research and development 
has gone into the development of notations, tools, and 
methods to support architectural design. 

Despite advances in developing an engineering basis 
for software architectures, a persisting difficult problem is 
determining whether a system as implemented has the 
architecture as designed. Without some form of consis-
tency guarantees the relationship between architectural 
insight and the actual system will be hypothetical at best, 
invalidating many of the benefits of architectural design. 

Currently two principal techniques have been used to 
determine or enforce relationships between a system’s 
architecture and implementation. The first is to ensure 
consistency by construction. This can be done by embed-
ding architectural constructs in an implementation lan-
guage (e.g., [1]) where program analysis tools can check 
for conformance. Or, it can be done through code genera-
tion, using tools to create an implementation from a more 
abstract architectural definition [22,23,24]. While effec-
tive when it can be applied, this technique has limited 
applicability. In particular, it can usually only be applied 
in situations where engineers are required to use specific 

architecture-based development tools, languages, and 
implementation strategies. For systems that are composed 
out of existing parts, or that require a style of architecture 
or implementation outside those supported by generation 
tools, this approach does not apply. 

The second technique is to ensure conformance by ex-
tracting an architecture from a system’s code, using static 
code analysis [12,14,19]. When an implementation is 
sufficiently constrained that modularization and coding 
patterns can be identified with architectural elements, this 
can work well. Unfortunately, however, the technique is 
limited by an inherent mismatch between static, code-
based structures (such as classes and packages), and the 
run-time structures that are the essence of most architec-
tural descriptions [8]. In particular, the actual run-time 
structures may not even be known until the program runs:  
clients and servers may come and go dynamically; com-
ponents (e.g., DLLs) not under direct control of the im-
plementers may be dynamically loaded, etc. 

A third, relatively unexplored, technique is to deter-
mine the architecture of a system by examining its behav-
ior at run time. The key idea is that a system can be moni-
tored while it is running. Observations about its behavior 
can then be used to infer its dynamic architecture. This 
approach has the advantage that in principal it applies to 
any system that can be monitored, it gives an accurate 
image of what is actually going on in the real system, it 
can accommodate systems whose architecture changes 
dynamically, and it imposes no a priori restrictions on 
system implementation or architectural style.  

There are a number of hard technical challenges in 
making this technique work. The most serious is finding 
mechanisms to bridge the abstraction gap: in general, 
low-level system observations do not map directly to ar-
chitectural actions. For example, the creation of an archi-
tectural connector might involve many low level steps, 
and those actions might be interleaved with many other 
architecturally relevant actions. Moreover, there is likely 
no single architectural interpretation that will apply to all 
systems: different systems will use different runtime pat-
terns to achieve the same architectural effect, and con-
versely, there are many possible architectural elements to 
which one might map the same low level events. In this 
paper we describe a technique to solve the problem of 
dynamic architectural discovery for a large class of sys-
tems.  The key idea is to provide a framework that allows 
one to map implementation styles to architecture styles. 



This mapping is defined as a set of conceptually concur-
rent state machines that are used at run time to track the 
progress of the system, and output architectural events 
when predefined run time patterns are recognized.  By 
parameterizing the framework by both architectural and 
implementation styles, we are able to exploit regularity in 
systems, while still providing flexibility in defining new 
abstraction mappings. 

In this paper we introduce DiscoTect, a system for dis-
covering the architectures of running object-oriented sys-
tems. In Section 2 we discuss related work. Section 3 
presents the technical challenges in producing an archi-
tecture discovery framework that can be used with multi-
ple architectural styles and multiple systems. Section 4 
presents our main technical contribution: the use of state 
machines to map between implementation level events 
and architectural operations. We discuss implementation 
of DiscoTect in Section 5, and present results from a case 
study to illustrate the utility of DiscoTect in Section 6. In 
Section 7 we discuss the strengths and weaknesses of our 
approach. Finally, we present conclusions and future 
work. 

2. Related Work 

Our work is mostly related to other approaches for dy-
namic analysis of a system. A number of techniques and 
tools have been developed to extract information from a 
running system. These include instrumenting the source 
code to produce trace information and manipulating run-
time artifacts to get the information (e.g., [3] and [28]). 
There are many technologies available for monitoring 
systems, and we build on those. However, they do not by 
themselves solve the hard problem mapping from code to 
more abstract models. In previous work, we developed an 
infrastructure doing certain kinds of abstraction [10]; 
however, this approach was limited to observing proper-
ties of a system and reflecting them in an architectural 
model in a preconstructed architectural model. In this 
work we show how to create that model in the first place. 

Dias et al. [4] use an XML-based language to describe 
runtime events and use patterns to map these events into  
high-level events. Analyzing these events to determine 
architectural structure is not addressed. In addition, a sim-
ple static mapping from low-level system events to high-
level events has limited expressiveness. For example, it 
cannot handle the case where the event analyzer initially 
has interest in one set of events but changes its interest 
after the interesting events have occurred. Also it doesn’t 
provide a way of specifying event correlations or map-
ping a series of correlated low-level events to a single 
high-level event – a crucial capability needed when dis-
covering the architecture of a system. Kaiser [13] uses a 
collection of temporal state machines to perform pattern 
matching against runtime events,. Our approach is simi-
lar, but makes architectural style explicit in the approach. 

A number of researchers have investigated the prob-
lem of presenting dynamic information to an observer. 
For example, Reiss [21], Walker [26,27], and Zeller [29] 

present information about variables, threads, activations, 
object interactions, etc. Ernst [5] shows how to dynami-
cally detect program invariants by examining values com-
puted during a program execution, and by looking for 
patterns and relationships among them. This is somewhat 
different from detecting architectural structure.  

Madhav [18] describes a system that allows Ada 95 
programs to be monitored dynamically to check confor-
mance to a Rapide [17] architectural specification. His 
approach requires the source code to be annotated so that 
it can be transformed to produce events to construct the 
architecture. In contrast, our approach does not require 
access to the source code, and does not rely on architec-
tural construction operations to be embedded in the code. 

A large body of research has investigated specification 
of the dynamic behavior of software architectures. Of the 
many approaches, some use explicit state machines (e.g., 
[2,25]). These approaches, however, do not link architec-
ture to an executing system. 

3. Technical Challenges 

Any approach that supports dynamic discovery of ar-
chitectures must address three problems: (a) observing a 
system’s runtime behavior, (b) interpreting that runtime 
behavior in terms of architecturally meaningful events, 
and (c) representing the resulting architecture. In this pa-
per we are primarily concerned with the second problem 
of bridging the abstraction gap between system observa-
tions and architectural effects.  

There are a number of issues that make this a hard 
problem. First, mappings between low-level system ob-
servations and architectural events are not usually one-to-
one. Many low-level events may be completely irrelevant. 
More importantly, a given abstract event, such as creating 
a new architectural connector, might involve many run-
time events, such as object creation and lookup, library 
calls to run time infrastructure, initialization of data struc-
tures, etc. Conversely, a single implementation event 
might represent a series of architectural events. For ex-
ample, executing a procedure call between two objects 
might signal the creation of a new connector, and its 
attachment to the run time ports of the respective 
architectural components. This implies the need for a 
technique that can keep track of intermediate information 
about mappings to an architectural model 

Second, architecturally relevant actions are typically 
interleaved in an implementation. For example, at a given 
moment, a system might be midway through creating sev-
eral components and their connectors. This implies that 
any attempt to recognize architectural events must be able 
to cope with concurrent intermediate states. 

Third, there is no single gold standard for indicating 
what implementation patterns represent which architec-
tural events. Different implementations may choose dif-
ferent techniques for creating the same abstract architec-
tural element. Consider the number of ways that one 
might implement pipes, for example. Indeed, one might 



even find multiple implementation approaches in the 
same system. Moreover, for the purposes of architectural 
discovery, there is no single architectural style that can be 
used for all systems. For example, the use of sockets 
might be used to represent many different types of con-
nector. This means we need a flexible way to associate 
different implementation styles with architectural styles. 

To address these concerns, we adopt an approach illus-
trated in Figure 1. Monitored events are first filtered by a 
Trace Engine to select out the subset of system observa-
tions that must be considered. The resulting stream of 
events is then fed to a State Engine. The heart of this rec-
ognition engine is a state machine designed to recognize 
interleaved patterns of runtime events, and when appro-
priate, to output a set of architectural operations. Those 
operations are then fed to an Architecture Builder that 
incrementally creates the architecture, which can then be 
displayed to a user or processed by architecture analysis 
tools. 

To handle the variability of implementation strategies 
and possible architectural styles of interest, we provide a 
language to define new mappings. Given a set of imple-
mentation conventions (which we will refer to as an im-
plementation style) and a vocabulary of architectural ele-
ment types and operations (which we will refer to as an 
architectural style [7]), we provide a description that cap-
tures the way in which runtime events should be inter-
preted as operations on elements of the architectural style. 
Thus each pair of implementation style and architectural 
style has its own mapping. A significant consequence is 
that these mappings can be reused across programs that 
are implemented in the same style. 

4. DiscoTect Design 

We now discuss the design of the State Engine portion 
of DiscoTect. We first introduce the language to define 
the state machine. The semantics for the state machine 
differ from the standard definition; the informal opera-
tional semantics are given in Section 4.1.2. We then illus-
trate the approach by showing how it can be used to dis-
cover the Pipe/Filter architecture of a small Java applica-
tion. Later (Section 6) we present a more substantive ex-
ample. 

4.1. State Machine Definition 

To illustrate the definition of state machines, consider 
a situation in which we want to recognize the creation of 
instances of some binary connector type. Let’s assume the 
implementation constructs the connector by first creating 
instances of Read and Write objects through which data is 
to be communicated. These objects correspond to read 
and write ports on architectural components. A connector 
is constructed between those ports when a component 
invokes the receive method of its Read object, passing it 
the Write object that contains the data. The state machine 
to construct this connector will have states that recognize 
when Read and Write objects are created, and when a 
receive method is called. Transitions between the states 
will construct elements in the architecture (ports, roles, 
and connectors). 

Complicating this scenario is the fact that the imple-
mentation may create Read and Write objects in any or-
der, and in fact may construct many Read and Write ob-
jects before communicating any data. This kind of inter-
leaving requires the recognition engine to have multiple 
active states. Furthermore, because the creation of the 
connector relies on information from previous states (i.e., 
the Read and Write objects), we must retain information 
from previous states to use in evaluations at subsequent 
states. 

A DiscoTect state machine is a graph of states, trig-
gers, actions, and transitions interpreted by the State En-
gine. States keep track of the progress of architecture dis-
covery. Each state is associated with one or more trig-
gers, which define the type of events that can cause tran-
sitions between states, and that specify  the conditions 
under which this can occur. When a transition is taken, it 
may produce actions to construct architectures.  

The elements of a state machine are illustrated in 
Figure 2. Specifying a state machine requires the defini-
tion of (1) states, (2) triggers; (3) actions; and (4) transi-
tions.  

States. States are staging points in the discovery of 
some architectural action. A state may represent partial 
knowledge of the architecture – for example, the knowl-
edge that a connector has been created but we don’t yet 
know which components it connects – and allows us to 
build up complex mappings to combine pieces of infor-
mation into coherent architectural actions. States are 
linked by transitions, which form a graph representing 
implementation flows leading to architectural actions. 

Each state in the state machine is associated with a set 
of state variables. A variable v is present in state s if, for 
every incoming transition of s, v is defined either on the 
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Figure 1. The DiscoTect Architecture. 
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transition or is present in predecessor states. Variables 
must be defined on every incoming edge to ensure well 
defined values. Conditions and actions on the outgoing 
transitions for s can refer to the variables present in s, as 
well as any new variables defined by the transition. 

Triggers. A trigger consists of two parts: an event 
specification, and a condition that must be met for the 
transition to occur. In our current prototype there are 
three types of parameterized events that can be received 
from the running system (via the Trace Engine): 1 

- Call (method, caller, callee): A Call event occurs 
when a method is invoked in the running system. 
Each Call event includes the name of the method, 
caller, and callee.  

- Init (constructor, creator, instance): An Init event oc-
curs when a constructor is invoked to instantiate a 
new object. The event contains the name of the 
constructor, the name of the element requesting 
the constructor (in the creator parameter), and the 
name and type, collected in the instance parame-
ter, of the new element. 

- Modify (owner, field, value): A Modify event occurs 
when a member variable of an object is assigned a 
value. The event includes the name of the owner 
object of the field, the name of the field, and the 
value that was assigned to the field. 

When a state is activated by an event, the parameters 
of the event are recorded as state variables, which can be 
referred to by subsequent state trigger conditions or ac-
tions. In this way, an architectural action can use informa-
tion from previous states to produce. (We will illustrate 
how to access these state variables shortly.) 

Conditions are written as boolean expressions over 
values of state variables (derived from parameters of the 
current event, or the events of previous states). Condi-
tions may also use operators to build up more complex 
expressions. For example, the expression v1 == v2 returns 

                                                           
1 The icons next to each list show how the event types are 

indicated in figures containing state machines. Although our 
current implementation uses only three types of events associ-
ated with object-oriented implementations, the approach could 
easily accommodate others events and programming styles. 

true if v1 is equal to v2 and v1 contains “foo” returns true if 
v1 contains the string “foo”.  

To illustrate, consider a trigger that contains a Modify 
( ) event and the condition: 

field contains “Reader.lock” && owner == S3.instance 

This condition is true when the field parameter of the Mod-
ify event contains the string “Reader.lock” and the owner 
parameter is equal to the instance parameter for the Init 
event that activated S3. (S3.instance is an example of ac-
cessing a state variable that was recorded earlier.) 

Actions. An action specifies a sequence of architec-
ture-related operations that create or modify the software 
architecture of the running system. Actions are directly 
linked to the style of the target architecture, and are ex-
pressed using operations appropriate to that architectural 
style [11]. For example, a pipe-filter style might include 
operations for creating pipes and filters; a client-server, 
operations for creating and connecting clients to servers. 
Similar to event parameters, operations may explicitly 
define values of state variables through assignment; this is 
so they may be used in later actions and conditions.  
4.1.1 Informal operational semantics 

DiscoTect must deal with sequences of events that are 
interleaved. To do this, DiscoTect may maintain more 
than one concurrently active state in a state machine. 
Each active state is called a state activations. Each activa-
tion is a pair of a state and a binding for all variables in 
that state. DiscoText provides three forms of transitions: 
ordinary, fork, and join. Like other state machines, ordi-
nary transitions remove one state activation and add an-
other. To support concurrency DiscoTect also supports 
fork transitions that leave the original state activations in 
place while also creating a new state activation in parallel 
with the original. Likewise, DiscoTect has a join transi-
tion that merges two or more source state activations into 
a single destination activation. 

The current state of the state engine is a set of state ac-
tivations. The state engine begins with a single activation 
for the initial state in the state machine. Whenever an 
event is received from the trace engine, it is matched 
against all outgoing transitions from all current state acti-
vations. If the event matches the event specification for 
one or more transitions, and the condition for the transi-
tion evaluates to true, then each matching transition is 
taken.  

For ordinary transitions (i.e., non-forking), the source 
activation is removed and the new activation is added for 
the destination state. Variables in the new state are bound 
to values defined in the transition, or if not defined there, 

Figure 3. State machine for discovering Filter components. 
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Figure 4. The architecture fragment resulting from run-
ning the system and using the state machine Figure 3. 



to the values of the corresponding variables in the source 
activation. 

If the transition is a fork, then the machine retains the 
source state activation while creating the destination acti-
vation. If the transition is a join, it can only be triggered if 
there is a state activation present for all of the source 
states of the join. In this case, the source activations are 
removed and the destination activation is created as usual. 

Consider the state machine fragment in Figure 3, 2 and 
assume that S1 is currently active. When S2 becomes 
active (because the trigger on the transition into S2 is 
fired), S2’s activation consists of the following state vari-
ables: 

- instance, creator, and constructor from the Init 
event of the trigger,  

- filter, which is the result of an operation in the ac-
tion, and 

- S1.method, S1.caller, and S1.callee, which are 
copied variables from state S1. 

These variables may be referred to later on as S2.instance, 
S2.filter, etc. 

The transition from S1 to S2 is a fork transition. When 
it occurs the state activation for S1 is retained and a new 
state activation for S2 is spawned. This allows the crea-
tion of other filter components  to be tracked by the origi-
nal state activation for S1, while allowing the new state 
activation for S2to track subsequent events happening to 
the filter created by the transition. In this way, the state 
machine can keep track of interleaved architectural map-
pings. 

4.2. Pipe-Filter Example 

To illustrate the use of DiscoTect for discovering an 
architectural model, consider a simple example in a 
Pipe/Filter architectural style. Assume that the style de-
fines three component types: a type each for data input 
and output files (called InFile and OutFile), and a Filter 
type whose instances consume inputs and produce out-
puts. There is also a Pipe connector type, and interface 
types specifying the input and output interfaces of filters 
and pipes. 

Furthermore, assume the Pipe/Filter style defines the 
following operators to create elements of the above types: 

CreatePipeFilterSystem (name)  
CreateFilter (name)  
CreatePipe (name) 
CreateReadPort (name, component) 
CreateWritePort (name, component) 
CreateSink (name, pipe) 
CreateSource (name, pipe) 
CreateAttachment(port, role) 
For this example let us assume that the implementation 

style uses the following conventions: (1) an instance of 
any class that has “Filter” in its name represents the con-

                                                           
2 Throughout this paper, we denote a fork transition by add-

ing the // icon on the transition. 

struction of a Filter component; and (2) Java Piped-
Reader and PipedWriter instances are used by filters to 
communicate data. After the write method of a Piped-
Writer is called and the read method of a PipedReader is 
called, we need to wait for a call to the receive method of 
the PipedWriter before we have all the information to 
create a Pipe in the architecture (the receive method pairs 
instances of PipedReader and PipedWriter, defining the 
ends of the Pipe).  

Knowing the style of the implementation and the style 
of the architecture, we construct a state machine that 
represents the mapping described above to allow us to 
recognize when to construct architectural elements. This 
state machine can be used to discover the Pipe/Filter ar-
chitecture of any system adopting these implementation 
conventions.  

As an example we wrote a system (called Pre-
reqCheck) that is implemented using the conventions de-
scribed above. It creates a configuration of filters to check 
that sstudents have fulfilled prerequisites for pre-
registered courses by taking a stream of student entries 
from a file, splitting the stream depending on whether 
prerequisites have been satisfied, checking that students 
have taken particular courses, and then merging the 
stream to an output file. The code consists of the follow-
ing application-specific classes: 

SplitFilter - This filter reads an input file one student 
entry at a time and determines whether the student is in 
the CS program or not. If so, the entry is sent to one of 
the output pipes; if not, the entry is sent to the other pipe. 

PassFilter – This filter checks each entry to see if a 
student has taken a prescribed course, in which case the 
entry is passed on. Otherwise, the entry is discarded. 

MergeFilter – This filter takes two inputs and merges 
them into one output stream. 

RegSys - The RegSys class instantiates and starts the 
filters. Users can execute this class by providing the input 
and the output file names. 

 
In the remainder of this section, we divide the state 

machine into several parts and present each part in turn. 
Creating Filters. This part is responsible for creating 

the system and the filters in it. The portion of the state 
machine for this part is shown in Figure 3. When a Call 
event is received from the Trace Engine, it is matched 
against the triggers outflowing from all active states. Ini-
tially, there is one state activation for the Start state. The 
State Engine will evaluate the condition on the arc out of 
the Start state. The transition from Start to S1 in Figure 3 
looks for a method name containing the string 
“.main(java.lang.String[])”; if this condition is satisfied 
by the Call event then the Start activation goes away, S1 
becomes active and the accompanying action is executed. 
This action creates an empty architectural model of the 
PipeAndFilter style. After S1 becomes active, the trigger 
condition is evaluated for all newly intercepted object 
initializations. In Figure 3, if the instance parameter to the 
Init event is a Filter then a new state activation for S2 is 
forked due to the fork transition, and an architectural Fil-



ter component is constructed by the action. The action 
parameters indicate that the component name should be 
captured from the new instance and the component type is 
decided by the initialization constructor. This new com-
ponent is assigned to the state variable filter so that it can 
be referenced later (for example, in Figure 5). If we fol-
low through this state machine as above, we obtain two 
state activations for states S1 and S2 respectively. If a 
later Init event satisfies the filter condition on the out-
bound arc of S1, then another Filter component is created, 
along with another concurrent state activation for S2 
(which will have different variable bindings from the first 
activation). 

Running PrereqCheck with just this state machine pro-
duces the architecture depicted in Figure 4. Four Filters 
are created, one by the constructor for the SplitFilter 
class, one by the constructor for MergeFilter, and the 
other two by the constructor for PassFilter. We use an ID 
generator to label the architectural counterpart of the run-
time object to avoid naming conflicts when multiple in-
stances of the same type exist (for instance, two PassFil-
ters in this example). 

Connecting Filters with Pipes. Recall that the target 
system uses PipedReaders and PipedWriters to channel 
the output from one Filter into the input of another. The 
state machine first creates the ports on filters. For exam-
ple, a write port is created after noticing the creation of a 
PipedWriter and associating it with an architectural filter 
when an implementation filter writes to it. Similarly, a 
read port is constructed when a PipeReader is created and 
a filter reads from it. A pipe is created and connected after 
calling PipedReader’s receive method.   

The state machine that achieves this is given in Figure 
5. Newly created PipedReader/PipedWriter objects are 
stored by S9/S10 in state variables that can be referred to 
using S9.instance and S10.instance. Since the creator is 

not necessarily the user of those Piped-
Reader/PipedWriter objects, it is still unclear which Fil-
ters they belong to, so no port creation action is produced 
at this point. The Filters that are connected by this pipe 
become apparent only when they are used. When Piped-
Reader.read or PipeWriter.write is called, the previously 
recorded PipedReader/PipeWriter is mapped to ports of 
the components that correspond to the callers. Pipe data-
flow is signified by calling the receive method of Pipe-
dReader. This method triggers the join transition from 
S11 and S12 to S13. In this transition the source state 
activations are removed, a new state activation for S13 is 
created, and an action constructs and attaches a pipe be-
tween the previously defined ReadPipe and WritePipe 
ports is constructed and attached. 

Putting it all together. The fragments of the state ma-
chine from the figures in this section (including one for 
file output, not shown) produce a complete state machine 
that can discover the architecture of PrereqCheck.  

Figure 6 lists the events obtained when running Pre-
reqCheck. This list contains only the events that trigger 
actions in the state machine (there are actually 4550 
events received by DiscoTect from the Trace Engine), 
and for the sake of brevity, we have also removed multi-
ple calls to read and write pipes. The Component Creation 
part of the figure has events causing creation of the sys-
tem and filters by the state machine in Part 1. 

An example of interleaving occurs in the Connection 
section of the trace. First, the PipedReaders and Piped-
Writers are created, then writing to and reading from 
them commences. So, the pipes are not created sequen-
tially. The State Engine keeps track of separate activa-
tions for each of the pipes, so that in this trace there are 
separate activations after S1 in the state machine in 
Figure 5, to track a pair of PipedReader and PipedWriter. 

Figure 5. The state machine fragments for discovering pipe connections. 

S1 

S9 

S10 

S11 S12 method contains "PipedReader.receive" &&  
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callee = S11.provider 
 
pipeTransportFile = 
   CreatePipe (method + caller + callee); 
sink = CreateSink (“sink”, pipeTransportFile); 
source = CreateSource (“src”, pipeTransportFile); 
CreateAttachment (output, src); 
CreateAttachment (input, snk); 
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CreateWritePort (“write”, s2.filter); 
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caller == S9.instance &&  
callee == s2.instance 
 
portReadPipe =  

CreateReadPort (“read”, s2.filter); 

Call 
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At the end of running the PrereqCheck system, the en-
tire architecture for that run has been created. The result-
ing architecture from the trace in Figure 6, following the 
state machine in this section, is shown in Figure 7.  

5. Implementation of DiscoTect 

Recall from Section 3 that to provide a general frame-
work for discovering architectures, we need to solve three 
challenges. In this section, we discuss our implementation 
for each of these challenges. 

Monitoring: The Trace Engine uses the Java Platform 
Debugger Architecture (JPDA) to capture system runtime 

events. JPDA provides a communication channel between 
a debugger and a target system. The debugger can send 
requests to the host virtual machine of the target system 
querying for certain types of events. The host virtual ma-
chine can dispatch events to denote changes of state in the 
target system. The Trace Engine acts in the role of de-
bugger and sends requests to the virtual machine(s) host-
ing the target system querying for three types of events: 
object instantiations, method calls and field modifica-
tions. The request also contains a filter that defines the set 
of classes the Trace Engine is interested in. At runtime, 
the target system’s virtual machine intercepts requested 
events generated by any of the classes defined in the fil-
ter, queues it, and sends it to the Trace Engine. Upon re-
ceiving a runtime event, the Trace Engine classifies it, 
converts it into one of Init, Call or Modify, and puts it in 
the pipe connected with the Logic Engine. 

Mapping: The implementation of the DiscoTect State 
Engine follows the design in Section 4. During initializa-
tion, the State Engine parses the state machine definition 
and activates the initial state. Then it keeps scanning the 
stream sent from the Trace Engine and evaluating the 
newly produced events with the trigger conditions of cur-
rently active states. If a trigger condition out of an active 
state is satisfied, the target state is activated and any asso-
ciated architectural actions are fired. 

Architecture Building: We represent architectures us-
ing the Acme architecture description language [9]. Op-
erations on Acme architectures are defined in a library 
that provides operations that form building blocks of ar-
chitectural actions. .  

6. AAMS Case Study  

In this section we present a case study to determine the 
run time architecture of AAMS, a simulation test-bed for 
experimenting with mobile system architectural design 
decisions [15]. The test-bed allows users to specify usable 
system resources, tasks and scheduling strategies, and 
simulates the running of the mobile system. We chose 
AAMS because it represents a fairly complex real world 
application (approximately 28KLOC), and the runtime 
architectural view of the system is well documented. This 
allows us to compare our discovery result with their 

Figure 7. The discovered architectural model of 
PrereqCheck. 

1. Call(method="v1.RegSys.main(java.lang.String[])", requestor=null, pro-
vider=null) 

2. Init(constructor="v1.SplitFilter", creator=null, in-
stance="v1.SplitFilter(name='', id=342)") 

3. Init("v1.PassFilter", null, "v1.PassFilter(name='', id=349)") 
4. Init("v1.PassFilter", null, "v1.PassFilter(name='', id=351)") 
5. Init("v1.MergeFilter", null, "v1.MergeFilter(name='', id=354)") 
6. Init("java.io.FileReader", "v1.SplitFilter( id=342)", 

"java.io.FileReader(id=369)") 
7. Init("java.io.BufferedReader", "v1.SplitFilter(id=342)", 

"java.io.BufferedReader(id=418)") 
8. Init("java.io.FileWriter", "v1.MergeFilter(id=354)", 

"java.io.FileWriter(id=357)") 
9. Modify(name="java.io.Reader.lock", value="java.io.FileReader(id=369)") 
10. Call("java.io.BufferedReader.readLine()", "v1.SplitFilter( id=342)", 

"java.io.BufferedReader(id=418)") 
11. Init("java.io.PipedReader", null, "java.io.PipedReader(id=331)") 
12. Init("java.io.PipedReader", null, "java.io.PipedReader(id=334)") 
13. Init("java.io.PipedReader", null, "java.io.PipedReader(id=336)") 
14. Init("java.io.PipedReader", null, "java.io.PipedReader(id=338)") 
15. Init("java.io.PipedWriter", null, "java.io.PipedWriter(id=328)") 
16. Init("java.io.PipedWriter", null, "java.io.PipedWriter(id=329)") 
17. Init("java.io.PipedWriter", null, "java.io.PipedWriter(id=333)") 
18. Init("java.io.PipedWriter", null, "java.io.PipedWriter(id=340)") 
19. Call("java.io.PipedWriter.write(…)", "v1.SplitFilter(id=342)", 

"java.io.PipedWriter(id=328)") 
20. Call("java.io.PipedWriter.write(…)", "v1.SplitFilter(id=342)", 

"java.io.PipedWriter(id=329)")  
21. Call("java.io.PipedReader.read()", "v1.PassFilter(id=351)", 

"java.io.PipedReader(id=338)") 
22. Call("java.io.PipedReader.read()", "v1.PassFilter(id=349)", 

"java.io.PipedReader(id=331)") 
23. Call("java.io.PipedWriter.write(…)", "v1.PassFilter(id=349)", 

"java.io.PipedWriter(id=333)") 
24. Call("java.io.PipedWriter.write(…)", "v1.PassFilter(id=351)", 

"java.io.PipedWriter(id=340)") 
25. Call("java.io.PipedReader.read()", "v1.MergeFilter(id=354)", 

"java.io.PipedReader(id=334)") 
26. Call("java.io.PipedReader.read()", "v1.MergeFilter(id=354)", 

"java.io.PipedReader(id=336)") 
27. … more read and write calls 
28. Call("java.io.PipedReader.receivedLast()", "java.io.PipedWriter(id=328)", 

"java.io.PipedReader(id=331)") 
29. Call("java.io.PipedReader.receivedLast()", "java.io.PipedWriter(id=329)", 

"java.io.PipedReader(id=338)") 
30. Call("java.io.PipedReader.receivedLast()", "java.io.PipedWriter(id=333)", 

"java.io.PipedReader(id=334)") 
31. Call("java.io.PipedReader.receivedLast()", "java.io.PipedWriter(id=340)", 

"java.io.PipedReader(id=336)") 
32. Call("java.io.Writer.write(java.lang.String)", "v1.MergeFilter(id=354)", 

"java.io.FileWriter(id=357)") 
Figure 6. Relevant output from the event filter. 

File 
O

utput 
Connection 

File Input 
Com

ponent  
Creation 



documentation. This comparison illustrates the use of 
applying our technique to discover deviations between the 
architecture discovered by DiscoTect and the documented 
design architecture of AAMS. Furthermore, we can use 
this case study to illustrate how we developed and refined 
the state machines to produce the final architecture.  

Figure 8 shows the (informal) runtime architecture of 
AAMS as presented in [15]; the following description of 
the runtime is also based on the description in this paper. 
The Simulation Controller forms a simulation from re-
sources and tasks, their configuration, user activities and 
events, and information that it reads from a set of con-
figuration and script files. The Simulation Controller also 
takes commands from the Simulation GUI, to control 
runtime parameters and feedback. It then processes each 
simulation frame to generate the actual performance of 
the system. Each component in the application and re-
source layers simulates its own operation. A set of ser-
vices for File I/O, Error Reporting and Logging are avail-
able via publish/subscribe to any simulated object. 

6.1. Design of AAMS State Machine 

In this section we present the steps taken to produce 
the DiscoTect state machine to discover the AAMS archi-
tecture model. Typically, writing these state machines is a 
process of starting with fairly generic state machines to 
discover components and connections, and then refining 
these state machines to produce architectures correspond-
ing to a particular style. For this case study we used a 
specialization of a publish/subscribe style that distin-
guishes participating components as tasks, resources, etc. 
These extra component types are based on the description 
of AAMS found in [15]. 

To develop the final state machine, we first produced a 
state machine that merely observed object creation and 
interaction (through procedure call). We then refined this 
to classify objects into their architectural counterparts 
(e.g., Resource, Task, etc.). We also reused the File IO 
part from the pipe/filter example. 

Up to this point, we had not discovered anything about 
the publish/subscribe part of the architecture. The pre-
liminary discovery results informed us that all the re-
source and task components interact with an object of the 
PubSub class using two procedure calls named publish 
and subscribe. We conjectured that the system imple-
ments publish/subscribe by creating a PubSub object and 
invoking its two methods. This led us to design a state 
machine for this portion of the architecture. This state 
machine creates an EventBus connector when it notices 
the instantiation of a PubSub object in the implementa-
tion. Once this has been done, an EventTaker role is cre-
ated when DiscoTect notices a call to the publish method 
of the PubSub object, and a Publish port on the compo-
nent corresponding to the call, and attaches them. Simi-
larly PubSub.subscribe leads to the creation of an Event-
Sender role on the EventBus providing the method, the 
creation of a Subscribe port in the component requesting 
the method, and the creation of the attachment. 

6.2. The Discovered Architecture 

Applying the above state machine to a running in-
stance of AAMS yields the architectural model in Figure 
9. We have laid out this model to enable easier compari-
son with the view in Figure 8. By comparison with Figure 
8, we uncovered four types of discrepancies between the 
documented architectural view and our discovered one.  
1. Isolated, extraneous components/connectors. The 

result shows two EventBus connectors, one of which 
is isolated from the other parts of the system. It indi-
cates that one instance is instantiated but never used. 
Code optimization should resolve this discrepancy.  

2. Additional connections between components. Figure 
8 does not show any connections between the con-
troller component and simulation components such 
as tasks and schedulers. Nor does it inform us that 
some of the support components (Logger and Report-
ing) also subscribe to the event bus. Ignoring those 
“backdoor” connections makes the architectural view 
less accurate; moreover, it might compromise archi-
tectural analysis where all meaningful interactions 
between components should be considered. For ex-
ample, in evaluating the performance of a pub-
lish/subscribe infrastructure, the existence of hidden 
communication channels could invalidate deadlock 
analysis. 

3. Misplaced connections between components. The 
discovered architecture shows a very different File 
I/O scheme: instead of the GUI reading three files 
(c.f. Figure 8), the controller reads two files. 
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4. Missing components/connectors. Two of the compo-
nents (USER and Environment) recorded in the 
document do not show up in the architecture.  

To confirm that DiscoTect discovered the actual archi-
tecture of the implementation, and to understand the dis-
crepancies, we conferred with the AAMS developers. 
They agreed that DiscoTect produced a more complete 
and correct architectural description than their diagram, 
and had uncovered some errors in their coding.  However, 
the missing USER and Environment components are due 
to the fact that these represent user interaction, and are 
not actual components in the implementation.  

7. Discussion and Future Work 

In this paper we described a technique for “discover-
ing” the architecture of a running system, using a set of 
pattern recognizers that convert monitored system obser-
vations into architecturally-meaningful events. The key 
idea is to exploit implementation regularities and knowl-
edge of the architectural style that is being implemented 
to create a mapping that can be applied to any system that 
conforms to the implementation conventions to yield an 
view in that architectural style. 

There are a number of advantages of this approach. 
First, it can be applied to any system that permits runtime 
monitoring. In our case, any Java program can be used, 
since the Java runtime provides built-in facilities for 
monitoring object creation, method invocation, and in-
stance variable assignment. Our current implementation 
uses JPDA, which causes a 10X slowdown in the target 

system. To address this, we are investigating AspectJ [16] 
to provide similar monitoring capabilities. Initial results 
indicate that AspectJ has negligible impact on the speed 
of the system. Furthermore, monitoring technology for 
other kinds of implementations and system properties is 
an active research area (see Section 2) that should con-
tinue to provide increasing capabilities in the future that 
we can leverage. Second, by simply substituting one 
mapping description for another, it is possible to accom-
modate different implementation conventions for the 
same architectural style, or inversely different architec-
tural styles for the same implementation conventions.  
Though not described in this paper, we have been able to 
discover the Pipe/Filter architecture of a system imple-
mented using a different pipe convention. Third, the tech-
nique can work with a variety of monitoring technologies 
and architectural representations. Although we used Java 
and Acme, one could substitute other technologies with 
relatively minor changes to the recognizer. 

There are, however, several inherent weaknesses to the 
approach. The first is that it only works if an implementa-
tion obeys regular coding conventions. Completely ad 
hoc bodies of code are unlikely to benefit from the tech-
nique. Second, it only works if one can identify a target 
architectural style, so that the mapping knows the output 
vocabulary. Third, as with any analysis based on runtime 
observations, it suffers from the problem that you can 
only analyze what is actually executed. Hence, questions 
like “is there any execution that might violate a set of 
style constraints” cannot be directly answered using this 
method. Thus our techniques are best viewed as one of 
several technologies that an architect must have in his 
arsenal of architecture conformance checking tools. 

These potential defects also point the way to future re-
search in this area. First, is the area of system monitoring, 
already mentioned. Second is the area of codifying the 
ways in which architectural styles are implemented. As 
technology advances, implementation techniques will 
necessarily change, and it will be important to augment 
the set of mappings as that happens. Third is the area of 
architectural coverage metrics, similar to coverage met-
rics for testing. It would be good, for example, to have 
some confidence that in running a system with various 
inputs, we have exercised a sufficiently comprehensive 
part of the system to know what its architecture is. 
Fourth, we would like to find a way to make the defini-
tion of implementation-architecture mappings more de-
clarative. While the operational definition of state ma-
chines as the carrier of those mappings is a good first 
step, we can imagine more abstract forms of characteriza-
tion that will be easier to create and analyze. Finally, we 
are developing tool-support for defining state machines. 

As mentioned above, our implementation can also be 
improved. In addition to using better monitoring facilities, 
our approach is not limited to just noticing Create, Init, 
and Modify events, but could be extended to use any in-
formation that can be gleaned from the runtime system 
through a probing technology (for example, object de-
struction or thread information). We plan to provide a 

Figure 9. Discovered architecture of AAMS. 



mechanism to define these system-level events so that 
they can be used in state machines. To gain further ex-
perience with developing the state machines, we are ap-
plying DiscoTect to other systems, most significantly the 
JBoss [6] framework. We anticipate that this will give us 
measurements of the amount of reuse that we can get by 
matching architectural and implementation style. 

Acknowledgements 
The research described in this paper was supported by 

DARPA, under Grants N66001-99-2-8918 and F30602-
00-2-0616, and by an Software Engineering Institute 
(SEI) Internal R&D Grant.  

References 
[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: 
Connecting Software Architecture to Implementation. In Proc. 
ICSE 2002. 
[2] R. Allen, D. Garlan Formalizing Architectural Connection. 
In Proc. ICSE 1994. 
[3] R.M. Balzer and N.M Goldman. Mediating Connectors. 
Proc. 1999 ICDCD Workshop on Electronic Commerce and 
Web-Based Applications, 1999. 
[4] M. Dias and D. Richardson. The Role of Event Description 
on Architecting Dependable Systems (extended version from 
WADS). Lecture Notes in Computer Science - Book on 
Architecting Dependable Systems (Spring-Verlag), 2003. 
[5] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. 
Dynamically discovering likely program invariants to support 
program evolution. IEEE Tans. on Soft. Eng., 27(2), 2001. 
[6] M.Fleury and F. Reverbel. The JBoss Extensible Server. 
Proc. International Middleware Conference, 2003. 
[7] D. Garlan, R.J. Allen, and J. Ockerbloom. Exploiting Style 
in Architectural Design. Proc FSE 94, 1994. 
[8] D. Garlan, A.J. Kompanek, S.-W. Cheng. Reconciling the 
Needs of Architectural Description with Object Modeling 
Notations. Science of Computer Programming vol. 44, 2001. 
[9] D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural 
Description of Component-Based Systems. Foundations of 
Component-Based Systems, Gary T. Leavens and Murali 
Sitaraman (eds), Cambridge University Press, 2000. 
[10] D. Garlan, B. Schmerl, and J. Chang. Using Gauges for 
Architecture-Based Monitoring and Adaptation. Proc. 1st 
Working Conference on Complex and Dynamic Systems 
Architecture, 2001. 
[11] D. Garlan, S.-W. Cheng, B.Schmerl. Increasing System 
Dependability through Architecture-based Self-repair. 
Architecting Dependable Systems, R. de Lemos, C. Gacek, A. 
Romanovsky (Eds). LNCS 2677, Springer-Verlag, 2003. 
[12] D. Jackson and A. Waingold. Lightweight extraction of 
object models from bytecode. In Proc. ICSE 1999. 
[13] G. Kaiser, J. Parekh, P. Gross, and G. Veletto. Kinesthetics 
eXtreme: An External Infrastructure for Monitoring Distributed 
Legacy Systems. Proc. 5th International Active Middleware 
Workshop, 2003. 
[14] R. Kazman, and S.J. Carriere. Playing Detective: 
Reconstructing Software Architecture from Available Evidence. 
Journal of Automated Software Engineering 6(2), 1999 
[15] R. Kazman, J. Asundi, J.S. Kim, and B. Sethananda. A 
Simulation Testbed for Mobile Adaptive Architectures, 
Computer Standards and Interfaces, to appear, 2003. 
[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, 
and W.G. Griswold. An Overview of Aspect J. ECOOP 2001. 
[17]  D.C. Luckham. Rapide: A Language and Toolset for 
Simulation of Distributed Systems by Partial Orderings of 
Events. DIMACS Partial Order Methods Workshop, 1996. 
[18] N Madhav. Testing Ada 95 Programs for Confomance to 
Rapide Archtiecturs. Proc. Reliable Software Technologies – 

Ada Europe 96, 1996. 
[19] G.C. Murphy, D. Notkin, and K.J. Sullivan. Software 
Reflexion Models: Bridging the Gap Between Source and High-
Level Models. In Proc. FSE 1995.  
[20]   G.C. Murphy , D. Notkin, Lightweight lexical source 
model extraction, ACM TOSEM, 5(3), 1996  
[21] S. Reiss. JIVE: Visualizing Java in Action (Demonstration 
Description). Proc. ICSE 2003. 
[22] M. Shaw, R. Deline, D. Klein, T.L. Ross, D.M. Young, G. 
Zelesnik. Abstractions for Software Architecture and Tools to 
Support Them. IEEE Trans. on Soft. Eng. 21(4), 1995. 
[23] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. 
Whitehead, J.E. Robbins, K.A. Nies, P. Oriezy, and D. Dubrow. 
A Component- and Message-Based Architectural Style for GUI 
Software. IEEE Trans. on Soft. Eng. 22(6), 1996. 
[24] S. Vestel. MetaH Programmer’s Manual, Version 1.09. 
Technical Report, Honeywell Technology Center, 1996. 
[25] M. Vieira, M. Dias, D.J. Richardson. Software Architecture 
based on Statechart Semantics. Proc. the 10th International 
Workshop on Component Based Software Engineering, 2001. 
[26] R.J. Walker, G.C. Murphy, B. Freeman-Benson, D. Wright, 
D. Swanson, J. Isaak. Visualizing Dynamic Software System 
Information through High-level Models. In Proc. OOPSLA'98,  
[27] R.J. Walker, G.C. Murphy, J. Steinbok, and M.P. 
Robillard. Efficient Mapping of Software System Traces to 
Architectural Views. In S.A. MacKay and J.H. Johnson (eds) In 
Proc. CASCON 2000. . 
[28] D. Wells and P. Pazandak. Taming Cyber Incognito: 
Surveying Dynamic/Reconfigurable Software Landscapes. Proc. 
1st Working Conference on Complex and Dynamic Systems 
Architectures, 2001. 
[29] A. Zeller. Animating Data Structures in DDD. Proc. 
SIGCSE/SIGCUE Program Visualization Workshop, 2000.  


