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Abstract 
Software architecture describes the structure of a system, enabling 
more effective design, program understanding, and formal 
analysis.  However, existing approaches decouple implementation 
code from architecture, allowing inconsistencies, causing 
confusion, violating architectural properties, and inhibiting 
software evolution.  ArchJava is an extension to Java that 
seamlessly unifies software architecture with implementation, 
ensuring that the implementation conforms to architectural 
constraints.  A case study applying ArchJava to a circuit-design 
application suggests that ArchJava can express architectural 
structure effectively within an implementation, and that it can aid 
in program understanding and software evolution. 

1. Introduction 
Software architecture [GS93,PW92] is the organization of a 
software system as a collection of components, connections 
between the components, and constraints on how the components 
interact.  Describing architecture in a formal architecture 
description language (ADL) [MT00] can aid in the specification 
and analysis of high-level designs.  Software architecture can also 
facilitate the implementation and evolution of large software 
systems.  For example, a system’s architecture can show which 
components a module may interact with, help identify the 
components involved in a change, and describe system invariants 
that should be respected during software evolution. 

Existing ADLs, however, are loosely coupled to implementation 
languages, causing problems in the analysis, implementation, 
understanding, and evolution of software systems.  Some ADLs 
[SDK+95,LV95] connect components that are implemented in a 
separate language.  However, these languages do not guarantee 
that the implementation code obeys architectural constraints.  
Instead, they require developers to follow style guidelines that 
prohibit common programming idioms such as data sharing.  
Architectures described with more abstract ADLs 
[AG97,MQR95] must be implemented in an entirely different 

language.  Thus, it may be difficult to trace architectural features 
to the implementation, and the implementation may become 
inconsistent with the architecture as the program evolves.  In 
summary, while architectural analysis in existing ADLs may 
reveal important architectural properties, these properties are not 
guaranteed to hold in the implementation. 

In order to enable architectural reasoning about an 
implementation, the implementation must obey a consistency 
property called communication integrity [MQR95,LV95].  A 
system has communication integrity if implementation 
components only communicate directly with the components they 
are connected to in the architecture. 

This paper presents ArchJava, a small, backwards-compatible 
extension to Java that integrates software architecture 
specifications smoothly into Java implementation code.  Our 
design makes two novel contributions: 

• ArchJava seamlessly unifies architectural structure and 
implementation in one language, allowing flexible 
implementation techniques, ensuring traceability between 
architecture and code, and supporting the co-evolution of 
architecture and implementation. 

• ArchJava guarantees communication integrity between an 
architecture and its implementation, even in the presence of 
advanced architectural features like run time component 
creation and connection. 

To help evaluate our approach, we applied ArchJava to Aphyds, a 
moderate-size circuit design application.  Using an informal 
architecture diagram hand-drawn by the developer as our guide, 
we reengineered Aphyds to make this architecture explicit in the 
implementation code.  The resulting architecture revealed 
inconsistency and complexity in the communication between 
components, and made it easier to refactor the program to clarify 
that communication.  Our experience suggests that the resulting 
program may be easier to understand and evolve than the original 
program. 

The rest of this paper is organized as follows.  After the next 
section’s discussion of previous work, section 3 introduces the 
ArchJava language.  Section 4 describes our experience applying 
ArchJava to Aphyds, and we conclude by discussing future work. 

2. Previous Work 
Architecture Description Languages.   A number of architecture 
description languages (ADLs) have been defined to describe, 
model, check, and implement software architectures [MT00].  
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Many of these languages support sophisticated analysis and 
reasoning.  For example, Wright [AG97] allows architects to 
specify temporal communication protocols and check properties 
such as deadlock freedom.  SADL [MQR95] formalizes 
architectures in terms of theories, shows how generic refinement 
operations can be proved correct, and describes a number of 
flexible refinement patterns.  Rapide [LV95] supports event-based 
behavioral specification and simulation of reactive architectures.  
ArchJava’s architectural specifications are probably most similar 
to those of Darwin [MK96], an ADL designed to support 
dynamically changing distributed architectures. 

While Wright and SADL are pure design languages, other ADLs 
have supported implementation in a number of ways.  UniCon’s 
tools  [SDK+95] generate code to connect components 
implemented in other languages, while C2 [MOR+96] provides 
runtime libraries in C++ and Java that connect components 
together.  Rapide architectures can be given implementations in 
an executable sub-language or in languages such as C++ or Ada.  
More recently, the component-oriented programming languages 
ComponentJ [SC00] and ACOEL [Sre02] extend a Java-like base 
language to explicitly support component composition. 

However, existing ADLs cannot enforce communication integrity.  
Instead, system implementers must follow style guidelines that 
ensure communication integrity.  For example, the Rapide 
language manual suggests that components should only 
communicate with other components through their own interfaces, 
and interfaces should not include references to mutable types.  
These guidelines are not enforced automatically and are 
incompatible with common programming idioms such as shared 
mutable data structures. 

Module Interconnection Languages.  Module interconnection 
languages (MILs) support system composition from separate 
modules [PN86]. Jiazzi [MFH01] is a component infrastructure 
for Java, and a similar system, Knit, supports component-based 
programming in C.  These tools are derived from research into 
advanced module systems, exemplified by MzScheme’s Units 
[FF98] and ML’s functors.  ADLs differ from MILs in that the 
former make connectors explicit in order to describe data and 
control flow between components, while the latter focus on 
describing the uses relationship between modules [MT00].  
Existing MILs cannot be used to describe dynamic architectures, 
where component object instances are created and linked together 
at run time. 

Furthermore, MILs provide encapsulation by hiding names, which 
is insufficient to guarantee communication integrity in general.  
For example, first-class functions or objects can be passed from 
one module to another, and later used to communicate in ways 
that are not directly described in the MIL description.  Thus, in 
these systems, programmers must follow a careful methodology to 
ensure that each module communicates only with the modules to 
which it is connected in the architecture. 

CASE tools.  A number of computer-aided software engineering 
tools allow programmers to define a software architecture in a 
design language such as UML, ROOM, or SDL, and fill in the 
architecture with code in the same language or in C++ or Java.  
While these tools have powerful capabilities, they either do not 
enforce communication integrity or enforce it in a restricted 
language that is only applicable to certain domains.  For example, 
the SDL embedded system language prohibits sharing objects 

between components. This restriction ensures communication 
integrity, but it also makes the language awkward for general-
purpose programming.  Many UML tools such as Rational Rose 
RealTime or I-Logix Rhapsody, in contrast, allow method 
implementations to be specified in a language like C++ or Java.  
This supports a great deal of flexibility, but since the C++ or Java 
code may communicate arbitrarily with other system components, 
there is no guarantee of communication integrity in the 
implementation code. 

Other tools.  Tools such as Reflexion Models [MNS01] have 
been developed to show an engineer where an implementation is 
and is not consistent with an architectural view of a software 
system.  Similar systems include Virtual Software Classifications 
[MW99] and Gestalt [SSW96].  Unlike ArchJava, these systems 
describe architectural components in terms of source code, not 
run-time component object instances, and the architectural 
descriptions must be updated separately as the code evolves. 

Component Infrastructures.  Component-based infrastructures 
such as COM, CORBA, and Java Beans provide sophisticated 
services such as naming, transactions and distribution for 
component-based applications.  While these infrastructures do not 
include mechanisms for explicitly describing software 
architecture, the Arabica environment [RN00] supports C2 
architectures built from off the shelf Java Beans components.  
This system shows how software architecture can be expressed in 
the context of component infrastructures, but verifying 
communication integrity of a Java Beans implementation is left to 
future work. 

3. The ArchJava Language 
ArchJava is intended to investigate the benefits and drawbacks of 
a relatively unexplored part of the ADL design space.  Our 
approach extends a practical implementation language to 
incorporate architectural features and enforce communication 
integrity.  Key benefits we hope to realize with this approach 
include better program understanding, reliable architectural 
reasoning about code, keeping architecture and code consistent as 
they evolve, and encouraging more developers to take advantage 
of software architecture.  ArchJava’s design also has some 
limitations, discussed below in section 3.6. 

A prototype compiler for ArchJava is publicly available for 
download at the ArchJava web site [Arc02].  Although in 
ArchJava the source code is the canonical representation of the 
architecture, visual representations are also important for 
conveying architectural structure.  Parts of this paper use hand-
drawn diagrams to communicate architecture; however, we have 
also constructed a simple visualization tool that generates 
architectural diagrams automatically from ArchJava source code.  
In addition, we intend to provide an archjavadoc tool that 
would automatically construct graphical and textual web-based 
documentation for ArchJava architectures. 

To allow programmers to describe software architecture, ArchJava 
adds new language constructs to support components, 
connections, and ports.  The rest of this section describes by 
example how to use these constructs to express software 
architectures.  Throughout the discussion, we show how the 
constructs work together to enforce communication integrity.  
Reports on the ArchJava web site [Arc02] provide more 



information, including the complete language semantics and a 
formal proof of communication integrity in the core of ArchJava. 

3.1. Components and Ports 
A component is a special kind of object that communicates with 
other components in a structured way.  Components are instances 
of component classes, such as the Parser in Figure 1. 

A component can only communicate with other components at its 
level in the architecture through explicitly declared ports—regular 
method calls between components are not allowed.  A port 
represents a logical communication channel between a component 
and one or more components that it is connected to. 

Ports declare three sets of methods, specified using the 
requires, provides, and broadcasts keywords.  A 
provided method is implemented by the component and is 
available to be called by other components connected to this port.  
Conversely, each required method is provided by some other 
component connected to this port.  A component can invoke one 
of its required methods by sending a message to the port that 
defines the required method.  For example, the parse method 
calls nextToken on the parser’s in port.  Broadcast methods 
are just like required methods, except that they can be connected 
to any number of implementations and must return void. 

The goal of this port design is to specify both the services 
implemented by a component and the services a component needs 
to do its job.  Required interfaces make dependencies explicit, 
reducing coupling between components and promoting 
understanding of components in isolation.  Ports also make it 
easier to reason about a component’s communication patterns. 

ArchJava supports design with abstract components and ports, 
which allow an architect to specify and typecheck an ArchJava 
architecture before beginning program implementation. 

3.2. Component Composition 
In ArchJava, hierarchical software architecture is expressed with 
composite components, which are made up of a number of 
subcomponents connected together.  A subcomponent1 is a 
component instance nested within another component.  Singleton 
subcomponents are typically declared with final fields of 
component type.  Figure 2 shows how a compiler’s architecture 
can be expressed in ArchJava.  The example shows that the parser 
communicates with the scanner using one protocol, and with the 
code generator using another.  The architecture also implies that 
the scanner does not communicate directly with the code 
generator.  A primary goal of ArchJava is to ease program 
understanding tasks by supporting this kind of reasoning about 
program structure. 

Connections.  The symmetric connect primitive connects two 
or more ports together, binding each required method to a 
provided method with the same name and signature.   The 
arguments to connect may be a component’s own ports, or those 
of subcomponents in final fields.  Connection consistency 
checks are performed to ensure that each required method is 
bound to a unique provided method. 

Provided methods can be implemented by forwarding invocations 
to subcomponents or to the required methods of another port.  The 

                                                                 
1 Note: the term subcomponent indicates composition, whereas 

the term component subclass would indicate inheritance. 
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public component class Compiler { 
  private final Scanner scanner = ...; 
  private final Parser parser = ...; 
  private final CodeGen codegen = ...; 
 
  connect scanner.out, parser.in; 
  connect parser.out, codegen.in; 
 
  public static void main(String args[]) { 
    new Compiler().compile(args); 
  } 
 
  public void compile(String args[]) { 
    // for each file in args do: 
    ...parser.parse(file);... 
  } 
} 
 

Figure 2.  A graphical compiler architecture and its ArchJava 
representation.  The Compiler component class contains 
three subcomponents—a Scanner, a Parser, and a 
CodeGen.  This compiler architecture follows the well-known 
pipeline compiler design [GS93].  The scanner, parser, and 
codegen components are connected in a linear sequence, with 
the out port of one component connected to the in port of the 
next component. 

public component class Parser { 
  public port in { 
    provides void setInfo(Token symbol, 
                          SymTabEntry e); 
    requires Token nextToken() 
                   throws ScanException; 
  } 
  public port out { 
    provides SymTabEntry getInfo(Token t); 
    requires void compile(AST ast); 
  } 
 
  void parse(String file) { 
    Token tok = in.nextToken(); 
    AST ast = parseFile(tok); 
    out.compile(ast); 
  } 
 
  AST parseFile(Token lookahead) { ... } 
  void setInfo(Token t, SymTabEntry e) {...} 
  SymTabEntry getInfo(Token t) { ... } 
  ... 
} 
 

Figure 1.  A parser component in ArchJava.  The Parser 
component class uses two ports to communicate with other 
components in a compiler.  The parser’s in port declares a 
required method that requests a token from the lexical 
analyzer, and a provided method that initializes tokens in the 
symbol table.  The out port requires a method that compiles 
an AST to object code, and provides a method that looks up 
tokens in the symbol table. 



detailed semantics of method forwarding and broadcast methods 
are given in the language reference manual on the ArchJava web 
site [Arc02].  Alternative connection semantics, such as 
asynchronous communication, can be implemented in ArchJava 
by writing custom “smart connector” components that take the 
place of ordinary connections in the architecture. 

3.3. Communication Integrity 
The compiler architecture in Figure 2 shows that while the parser 
communicates with the scanner and code generator, the scanner 
and code generator do not directly communicate with each other.  
If the diagram in Figure 2 represented an abstract architecture to 
be implemented in Java code, it might be difficult to verify the 
correctness of this reasoning in the implementation.  For example, 
if the scanner obtained a reference to the code generator, it could 
invoke any of the code generator’s methods, violating the 
intuition communicated by the architecture.  In contrast, 
programmers can have confidence that an ArchJava architecture 
accurately represents communication between components, 
because the language semantics enforce communication integrity. 

Communication integrity in ArchJava means that components in 
an architecture can only call each other’s methods along declared 
connections between ports.  Each component in the architecture 
can use its ports to communicate with the components to which it 
is connected.  However, a component may not directly invoke the 
methods of components other than its own subcomponents, 
because this communication may not be declared in the 
architecture—a violation of communication integrity.  We 
describe how communication integrity is enforced in section 3.5. 

3.4. Dynamic Architectures 
The constructs described above express architecture as a static 
hierarchy of interacting component instances, which is sufficient 
for a large class of systems.  However, some system architectures 
require creating and connecting together a dynamically 
determined number of components. 

Dynamic Component Creation.  Components can be 
dynamically instantiated using the same new syntax used to create 
ordinary objects.  For example, Figure 2 shows the compiler’s 
main method, which creates a Compiler component and calls 
its compile method.  At creation time, each component records 
the component instance that created it as its parent component.  
For components like Compiler that are instantiated outside the 
scope of any component instance, the parent component is null. 

Communication integrity places restrictions on the ways in which 
component instances can be used.  Because only a component’s 
parent can invoke its methods directly, it is essential that typed 
references to subcomponents do not escape the scope of their 
parent component.  This requirement is enforced by prohibiting 
component types in the ports and public interfaces of components, 
and prohibiting ordinary classes from declaring arrays or fields of 
component type.  Since a component instance can still be freely 
passed between components as an expression of type Object, a 
ComponentCastException is thrown if an expression is 
downcast to a component type outside the scope of its parent 
component instance. 

Connect Expressions.  Dynamically created components can be 
connected together at run time using a connect expression.  For 
instance, Figure 3 shows a web server architecture where a 

Router component receives incoming HTTP requests and passes 
them through connections to Worker components that serve the 
request.  The requestWorker method of the web server 
dynamically creates a Worker component and then connects its 
serve port to the workers port on the Router. 
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public component class WebServer { 
  private final Router r = new Router(); 
  connect r.request, create; 
  connect pattern Router.workers, Worker.serve; 
 
  private port create { 
    provides r.workers requestWorker() { 
      final Worker newWorker = new Worker(); 
      r.workers connection 
        = connect(r.workers, newWorker.serve); 
      return connection; 
    } 
  } 
  public void run() { r.listen(); } 
} 
  
public component class Router { 
  public port interface workers { 
    requires void httpRequest(InputStream in, 
                              OutputStream out); 
  } 
  public port request { 
    requires this.workers requestWorker(); 
  } 
  public void listen() { 
    ServerSocket server = new ServerSocket(80); 
    while (true) { 
      Socket sock = server.accept(); 
      this.workers conn = request.requestWorker(); 
      conn.httpRequest(sock.getInputStream(), 
                       sock.getOutputStream()); 
    } 
} } 
 
public component class Worker extends Thread { 
  public port serve { 
    provides void httpRequest(InputStream in, 
                              OutputStream out) { 
      this.in = in; this.out = out; start(); 
    } 
  } 
  public void run() { 
    File f = getRequestedFile(in); 
    sendHeaders(out); 
    copyFile(f, out); 
  } 
  // more method & data declarations... 
} 
 

Figure 3.  A web server architecture.  The Router 
subcomponent accepts HTTP requests and passes them on to a 
set of Worker components that respond.  When a request 
comes in, the Router requests a new worker connection on its 
request port.  The WebServer then creates a new worker 
and connects it to the Router.  The Router assigns requests 
to Workers through its workers port. 



Communication integrity requires each component to explicitly 
document the kinds of architectural interactions that are permitted 
between its subcomponents.  A connection pattern is used to 
describe a set of connections that can be instantiated at run time 
using connect expressions.  For example, connect pattern 
Router.workers, Worker.serve describes a set of 
connections between the Router subcomponent and dynamically 
created Worker subcomponents. 

Each connect expression must match a connection pattern 
declared in the enclosing component.  A connect expression 
matches a connection pattern if the connected ports are identical 
and each connected component instance is an instance of the type 
specified in the pattern.  The connect expression in the web server 
example matches the corresponding connection pattern because 
the r and newWorker components in the connect expression 
have static types Router and Worker, as declared in the 
pattern. 

Port Interfaces. Often a single component participates in several 
connections using the same conceptual protocol.  For example, 
the Router component in the web server communicates with 
several Worker components, each through a different 
connection.  A port interface describes a port that can be 
instantiated several times to communicate through different 
connections. 

Each port interface defines a type that includes all of the required 
methods in that port.  A port interface type combines a port’s 
required interface with an instance expression that indicates 
which component instance the port belongs to.  For example, in 
the Router component, the type this.workers refers to an 
instance of the workers port of the current Router component.  
Similarly, in the WebServer, the type r.workers refers to an 
instance of the workers port of the r subcomponent.  Port 
interface types can be used in method signatures such as 
requestWorker and in local variable declarations such as 
conn in the listen method.  In ArchJava, the required methods 
of a port can only be called by the component instance the port 
belongs to.  Therefore, required methods can only be invoked on 
expressions of port interface type when the instance expression is 
this, as shown by the call to httpRequest within 
Router.listen. 

Port interfaces are instantiated by connect expressions.  A connect 
expression returns a connection object that represents the 
connection.  This connection object implements the port 
interfaces of all the connected ports.  Thus, in Figure 3, the 
connection object connection implements the interfaces 
newWorker.serve and r.workers, and can therefore be 
assigned to a variable of either type. 

Provided methods can obtain the connection object through which 
they were invoked using the sender keyword.  The detailed 
semantics of sender and other language features are covered in 
the ArchJava language reference available on the ArchJava web 
site [Arc02]. 

Removing Components and Connections.  Just as Java does not 
provide a way to explicitly delete objects, ArchJava does not 
provide a way to explicitly remove components and connections.  
Instead, components are garbage-collected when they are no 
longer reachable through direct references or connections.  For 
example, in Figure 3, a Worker component will be garbage 

collected when the reference to the original worker 
(newWorker) and the references to its connections 
(connection and conn) go out of scope, and the thread within 
Worker finishes execution. 

3.5. Enforcing Communication Integrity 
An ArchJava architecture shows all of the control-flow paths 
between sibling components in a subsystem. Thus, 
communication integrity requires that all inter-component method 
calls in ArchJava must follow architectural connections, except 
method calls from a component to its children. 

There are two ways in which communication integrity could be 
violated, corresponding to the two kinds of method calls in 
ArchJava: direct method calls, and method calls through ports.  
Below, we describe intuitively how communication integrity is 
enforced in each of these cases.  This intuition corresponds 
closely to the actual proof of communication integrity in a formal 
version of ArchJava [Arc02], which we omit for space reasons. 

Direct Method Calls.  A direct component method call is a 
method call that dispatches to a component instance.  The sending 
component of the method call is the receiver of the most recent 
component method on the stack. 

Communication integrity in ArchJava requires that all direct 
component method calls made from a sending component instance 
C are to C itself, or to an immediate subcomponent of C.  In 
ArchJava, the only way to directly invoke a component method is 
to call a method on an expression of component type.  ArchJava 
enforces communication integrity by ensuring the invariant that 
all of the component-typed expressions in the scope of a 
component instance C refer to C itself or to an immediate 
subcomponent of C. 

In our formal system, we prove this invariant by induction over 
program execution, with a case analysis of component type 
introductions.  The invariant is true in the base case of component 
creation, because a component’s parent is by definition the 
component that created it.  Component types can only be read 
from or written to fields of the current component this, so they 
are guaranteed to be children of this by the induction 
hypothesis.  Similarly, component types cannot be passed directly 
between components.  The final case is casts to component type; 
but in ArchJava, component casts dynamically check that the cast 
expression’s parent component is the current component this, 
ensuring that the invariant continues to hold. 

Method Calls through Ports.  A connection pattern in a 
component instance C allows method calls between immediate 
subcomponents of C through the connected ports.  The ArchJava 
compiler uses a two-part test to verify that all method calls 
through ports conform to a connection pattern.  First, it checks 
that every connect expression in a component C matches a 
connect pattern declared in C; the invariant described above 
ensures that the connected component instances are 
subcomponents of C.  Second, the compiler uses port interface 
types to verify that each connection object can only be used by the 
component instances it connects.  In ArchJava’s type system, only 
the component instance named in the port interface type is 
permitted to make calls through the connection object that 
implements that port interface type.  Thus, ArchJava’s type system 
prohibits method calls that would violate architectural constraints. 



3.6. Limitations of ArchJava 
There are currently several limitations to the ArchJava approach.  
Our technique is presently only applicable to programs written in 
a single language and running on a single JVM, although the 
concepts should extend to any statically typed language.  
Architectures in ArchJava are more concrete than architectures in 
ADLs such as Wright, restricting the ways in which a given 
architecture can be implemented—for example, inter-component 
connections must be implemented with method calls.  Also, 
because of our focus on ensuring communication integrity, we do 
not yet support other types of architectural reasoning, such as 
reasoning about connection protocols, architectural styles, or 
component multiplicity. 

ArchJava’s definition of communication integrity supports 
reasoning about communication through method calls between 
components.  Components can also communicate through shared 
data or the runtime system.  Because existing ways to control 
communication through shared data involve significant 
restrictions on programming style, we chose not to adopt these 
mechanisms.  Future work includes developing ways to reason 
about communication through shared data while preserving 
expressiveness.  Meanwhile, our experience (described below) 
suggests that rigorous reasoning about architectural control flow 
can aid in program understanding and evolution, even in the 
presence of shared data structures. 

4. Evaluation 
In order to determine whether the ArchJava language meets its 
design goals, we undertook a case study to answer the following 
experimental questions: 

�� Can ArchJava express the architecture of a real program of 
significant complexity? 

�� How difficult is it to reengineer a Java program in order to 
express its architecture explicitly in ArchJava? 

�� Does expressing a program’s architecture in ArchJava help 
or hinder software evolution? 

4.1. Methodology 
Our approach to answering these questions was to translate a Java 
program into ArchJava, using the conceptual architecture 
provided by the program’s developer as a guide.  In addition to a 
direct answer to the first two questions for the chosen program 
and programmer, we hoped to gain some insight into the third 
question.  Other goals included learning about the conceptual 
architecture of Java programs, gaining practical experience using 
ArchJava, and refining ArchJava’s language design.  In the 
process of our case study, we formed hypotheses for future 
research, outlined in italics below. 

We looked for Java programs that would be at least 10,000 lines 
of code—large enough that a developer would have difficulty 
keeping it all in his or her head, and thus might benefit from an 
explicit software architecture.  To avoid biasing our study toward 
architectures easily expressible in ArchJava, we chose a program 
and architecture conceived and developed by a third party.  Our 
choice for this case study was the Aphyds program described in 
the next subsection. 

The study’s subject (one of us, hereafter “we”) was a graduate 
student with five year’s experience of system programming in 
Java.  Although the subject was the developer of the ArchJava 

compiler, he was unfamiliar with Aphyds and had little experience 
writing user interfaces in Java.  Thus, the study reflects the 
common reality of a programmer asked to evolve an unfamiliar 
system. 

We reengineered Aphyds to express the conceptual architecture 
described by the developer.  After browsing the code to determine 
which classes corresponded to the components in the developer’s 
conceptual architecture, we converted these classes into ArchJava 
component classes.  The resulting architecture was finer grained 
than the developer’s conceptual architecture, so we grouped the 
component classes into higher-level components. 

In order to gain insight into ArchJava’s support for software 
evolution tasks, we performed three experiments.  First, we 
analyzed the inter-component communication patterns in Aphyds, 
describing and categorizing each different message.  Next, we 
refactored the architecture to simplify and regularize these inter-
component communication patterns.  Finally, we removed a 
defect from both the original source code and the ArchJava 
version of Aphyds. 

The next three subsections describe the reengineering process, the 
software evolution experiments, and how our experience affected 
the ArchJava language design. 

4.2. Reengineering Aphyds 
Aphyds, for Academic Physical Design System, is a pedagogical 
circuit layout application written by an electrical engineering 
professor for one of his classes.  Students are given the program 
with several key algorithms omitted, and are asked to code the 
algorithms as assignments.  The developer is an experienced 
programmer with a Ph.D. in computer science, but had no Java 
background prior to writing Aphyds.  The application code is 
12,101 lines long, as measured by the Unix wc (word count) 
program, not counting the Java and Symantec libraries used. 

Figure 4 shows the developer’s drawing of the conceptual 
architecture of Aphyds.  According to the developer, this 
abstraction allows him to evolve the system even though the code 
base is too large to hold in his head at once. 

Validating Aphyds’ Architecture.  We expected that this 
architecture would be generally accurate, although it might leave 
out some details.  The developer concurred, saying that all of the 
links in the architecture are present, but may be subtle to find.  
Furthermore, the division between UI and functional classes is an 
important conceptual device for him, but he told us that this 
division would not necessarily be obvious from looking at the 
code. 

We decided to test this hypothesis by using the Reflexion Model 
technique [MNS01] to compare the connections in the 
developer’s conceptual diagram with actual communication 
patterns between classes in the source code.  To each of the 
developer’s conceptual components, we assigned one or more 
implementation classes.  We ignored library classes as well as 
data structures shared by the whole application.  We compared the 
call graph computed by a simple tool to the arrows in the 
developer’s diagram, reversing the direction of his dataflow 
arrows to reflect control flow in the opposite direction. 

Overall, the architecture was a good overview of communication 
in Aphyds.  However, the study revealed several minor missing 
communication paths in the architecture.  For example, although 



most calls in the application go from the user interface into the 
model, we found two callbacks going the opposite direction.  We 
also discovered that the communication paths between the 
CircuitViewer and the other viewer objects were actually bi-
directional. 

Moreover, this architecture is also incomplete in some important 
respects.  It does not describe the multiplicity or temporal 
lifetimes of components.  It is at a high level of granularity, as 
each user interface component represents between 2 and 7 objects.  
Several complex and messy multi-object communication 
protocols, dealing with diverse issues, are represented with single 
lines in the architecture. 

Although the developer’s conceptual architecture was informal 
and flawed in certain respects, this is a realistic example of 
common practice today.  Many developers do not define a formal 
and precise architecture, but instead communicate the structure of 
their applications through informal diagrams.  One of the 
motivations for ArchJava is to provide an easy way for developers 
to gain the benefits of a formal architecture, by embedding it in 
the code that they write.  Our experience with the conceptual 
architecture of Aphyds is summarized by our first hypothesis, 
which corroborates findings in the Reflexion Model work 
[MNS01]. 

Hypothesis 1:  Developers have a conceptual model of their 
architecture that is mostly accurate, but this model may be a 
simplification of reality, and it is often not explicit in the code. 

Reengineering Process.  We decided to design a static 
architecture that follows the developer’s drawing as closely as 
possible.  Therefore, we proposed an Aphyds component to 
encapsulate the whole application.  The Aphyds component 
would contain the UI components, and would connect them to an 
AphydsModel component, which would contain a 
subcomponent for each unit in the lower half of the developer’s 
diagram.  We decided that the Node and Net objects in the 
circuit database would remain shared between components; it 
would have been extremely unnatural to restrict them to within the 
Circuit component. 

Hypothesis 2:  Programming languages that prohibit sharing 
data between components are too inflexible to express the natural 
architecture for many programs. 

We proceeded to reengineer Aphyds to take advantage of the 
architectural features of ArchJava.  Our technique was to choose 
one class at a time from the architectural diagram, and turn it into 
a component class.  We started with the Circuit class, as this 
forms the central part of the architectural diagram.  We expected 
that this process would primarily consist of converting instance 
variables into ports or subcomponents, invoking methods on ports 
instead of instance variables, and connecting the ports 
appropriately in the architecture. 

The structure of the Aphyds implementation made this task more 
difficult.  We initially believed that the architectural drawing 
represented a set of objects whose membership didn’t change over 
the course of program execution.  This was in fact true of the user 
interface, but the circuit database and computational components 
were re-created each time they were read from a file or executed.  
There were a number of methods that set instance variables in the 
user interface to point to these components; however, many of 
these methods also had side effects such as refreshing the screen. 

We decided to convert the system into a static architecture with 
components that persisted for the entire execution of the program.  
Our rationale was that this architecture would be simpler to reason 
about than a dynamically changing architecture.  Therefore, we 
transformed Aphyds to re-initialize old circuit data structures 
instead of creating new data structures each time the circuit was 
loaded.  We also separated out the refresh logic from the instance-
variable setting messages, so that the architectural connections 
could be set up at startup time, but the display would still work 
properly throughout program execution.  This reengineering 
process introduced a number of subtle bugs, partly because we did 
not recognize the dual nature of these messages until partway 
through the study. 

Hypothesis 3: Describing an existing program’s architecture with 
ArchJava may involve significant restructuring if the desired 
architecture does not match the implementation well. 

Reengineering Cost.  Due to the complexity of separating out the 
Circuit component and our initial unfamiliarity with the 
application, this first reengineering step took a significant amount 
of time—about 9½ programmer hours, including time to fix 
several injected defects. 

 

 

Figure 4.  The developer’s drawing of Aphyds’s architecture. 
The architecture follows the Model-View design pattern, with 
the user interface above the line in the middle of the diagram 
and the circuit database and computational code below.  The 
user interface consists of the CircuitViewer window and 
several subsidiary windows.  Below the line are a circuit 
database of Node and Net objects and a set of computational 
modules that act on the circuit database.  The unlabeled 
arrows represent data flow, while the arrows labeled call 
represent control flow. 



 

One of the reasons this task may have been difficult is that it was 
done in a single large step, involving significant application 
restructuring.  An important refactoring principle is to test a 
program repeatedly while making incremental changes, rather 
than making a large change all at once [FBB+99].  If we had first 
transformed the code into an equivalent Java program with a static 
structure, and only then converted Circuit into a component 
class, we might have been able to detect and repair injected 
defects earlier and at a smaller cost. 

Hypothesis 4:  Refactoring an application to expose its 
architecture is done most efficiently in small increments. 

We found support for this hypothesis when transforming the 
remaining classes into components.  These smaller tasks went 
quickly, taking between 30 and 90 minutes each.  We spent a total 
of 30 hours working on Aphyds—15 hours converting the model 
into components, 8½ hours converting the user interface into 
components, and 6½ hours refactoring the resulting architecture 
(as described below).  This works out to approximately 2½ hours 
of work per KLOC.  The current code is 12652 lines long—only 
551 lines longer than the original application, suggesting that the 
added architecture code was largely offset by simplifications to 
the application code. 

Hypothesis 5:  Applications can be translated into ArchJava with 
a modest amount of effort, and without excessive code bloat. 

Further study is needed to validate this hypothesis on larger 
programs, and to determine how the amount of time spent in 
translation varies with the size of the application and the extent of 
architectural refactoring required. 

Final Architecture.  Figure 5 shows the ArchJava code that 
expresses the architecture of Aphyds.  Compared to the 
developer’s conceptual architecture, our final ArchJava 
architecture describes almost identical communication patterns 
within the circuit database and between the user interface and the 
database.  The multi-way communication between windows that 
was missing from the original architecture but was present in the 
program has been consolidated into the window port of Aphyds. 

Aphyds

window

CircuitViewer

FloorplanDialog PlaceRouteViewer ChannelRouteViewer

AphydsModel

 
Figure 6.  A visualization of the Aphyds architecture, 
automatically derived from the ArchJava source code.  Boxes 
represent subcomponents, and arrows represent inter-
component control flow.  The oval denotes the window port, 
used for window management messages like screen refresh. 
The circuit database and computational code in the 
developer’s diagram have been isolated in the AphydsModel 
component. 

public component class Aphyds { 
  // user interface components 
  final FloorplanViewer floorplan = ...; 
  final ChannelRouteViewer channelRoute = ...; 
  final PlaceRouteViewer placeRoute = ...; 
  final CircuitViewer viewer = ...; 
 
  // window event communication 
  private port window { ... }; 
  connect window, channelRoute.window, 
    viewer.window, placeRoute.window, 
    floorplan.window; 
 
  // command protocol 
  connect viewer.command, placeRoute.command, 
    channelRoute.command, floorplan.command; 
 
  // model components 
  final AphydsModel model = ...; 
 
  // protocols for communication with the model 
  connect viewer.circuit, placeRoute.circuit, 
    model.circuit; 
  connect viewer.partition, model.partition; 
  connect floorplan.floorplan, model.floorplan; 
  connect placeRoute.place, viewer.place, 
    model.place; 
  connect placeRoute.router, viewer.place, 
    model.router; 
  connect channelRoute.channel, model.channels; 
 
  // the program’s starting point 
  public static void main(String args[]) { 
    new Aphyds().run(); 
  } 
  public void run() { viewer.setVisible(true);} 
} 
 
public component class AphydsModel { 
  final Circuit circuitData = ...; 
  final Partitioner partitioner = ...; 
  final Floorplanner floorplanner = ...; 
  final Placer placer = ...; 
  final GlobalRouter globalRouter = ...; 
  final ChannelRouter channelRouter = ...; 
 
  public port place { ... } 
  public port partition { ... } 
  public port floorplan { ... } 
  public port circuit { ... } 
  public port router { ... } 
  public port channels { ... } 
 
  connect circuit, partitioner.circuit, 
    floorplanner.circuit, placer.circuit, 
    globalRouter.circuit, circuitData.main, 
    channelRouter.circuit; 
  connect place, globalRouter.place, 
    placer.place; 
  connect partition, partitioner.partition; 
  connect floorplan, floorplanner.floorplan; 
  connect router, globalRouter.router; 
  connect channels, channelRouter.channels; 
} 
 

Figure 5.  ArchJava code for the Aphyds and AphydsModel 
components.  There are subcomponent declarations for each 
element in the user interface, as well as a model component 
that contains the computational code.  Connect declarations 
show communication patterns between components. 



Figure 6 shows a visualization of the current Aphyds architecture, 
generated automatically from the ArchJava code.  The developer 
of Aphyds examined an earlier version of this diagram, and said 
that it captures his conceptual architecture well, including the 
separation between the user interface and the circuit database. 

The ArchJava architecture has a number of advantages compared 
to the original, conceptual architecture.  ArchJava architectures 
are guaranteed to be complete, listing all method call 
communication between components.  The ArchJava architecture 
is guaranteed to stay up-to-date as the code evolves with changing 
requirements, and a visualization can be generated automatically.  
Finally, it is easy to zoom in on an ArchJava architecture to look 
at the interior structure of a component, determine what methods 
are in each port, or examine how the methods are implemented. 

Alternative Architectural Choices.  In our study, we tried to 
implement the developer’s conceptual architecture as directly as 
possible in ArchJava.  However, an architect could have 
expressed any of several alternative Aphyds architectures using 
ArchJava.  For example, we could have factored the architecture 
by functionality, combining each user interface window with the 
logic that computes the information the window displays.  
Alternatively, we could have followed the original source code 
more closely, creating and connecting the model elements on 
demand as circuits and windows are opened.  ArchJava is flexible 
enough to express these architectures, if the software architect 
deems them more appropriate. 

4.3. Software Evolution in ArchJava 
In order to gain insight into using ArchJava for software evolution 
tasks, we examined three concrete problems identified by the 
developer: understanding communication within the program, 
refactoring the program to clean up its architecture, and fixing 
defects related to display updates. 

Program Understanding.  When we asked the developer if there 
were any problems with the current structure of Aphyds, he said 
that communication between the main structures was awkward, 
especially with respect to change propagation messages.  He said 
that this problem makes it difficult to add new features to the 
system.  This problem had a number of sources: the user interface 
was partly automatically generated, the developer was new to Java 
when he started to write the program, and the program grew 
gradually over time as features were added. 

Our experience while reengineering Aphyds corroborated the 
developer’s assertions.  Using ad-hoc methods to manually trace 
method executions was ineffective, because different methods 
with similar names often did different things, and each method 
typically depended on the operation of several others.  In the 
original program, the communication patterns were obscure 
enough that it was hard to analyze and criticize them. 

After we initially converted Aphyds to ArchJava, it became clear 
that the program’s communication structure remained inconsistent 
and unnecessarily complex.  Some of these problems had been 
introduced while refactoring Aphyds to express the architecture, 
while some were left over from the original source code.  
However, in the modified program, the port descriptions made 
communication patterns explicit, and so the communication 
problems became obvious simply by looking at the methods 
defined in the ports. 

Hypothesis 6:  Expressing software architecture in ArchJava 
highlights refactoring opportunities by making communication 
protocols explicit. 

We decided to systematically analyze the communication patterns 
to find opportunities for refactoring.  For each category of 
messages, we examined the source code to identify the messages’ 
purpose, the message implementers, the message invokers, and the 
invocation trigger conditions. 

ArchJava’s language constructs and its guarantee of 
communication integrity eased this communication analysis.  
Simply scanning the required and provided methods in each port 
showed which methods are invoked by and which are 
implemented by each component.  Ports also narrowed our focus 
to the subset of a component’s methods that are involved in inter-
component communication.  The name of a port also gave a clue 
about the purpose of the port’s methods.  Connections showed 
which other component instances might implement a given 
component’s required methods. 

Automated tools could have gathered some of this connectivity 
information from the original Java program.  However, these tools 
would require sophisticated alias analysis to support the level of 
reasoning about component instances that is provided by 
ArchJava’s communication integrity.  Furthermore, ArchJava 
makes this connectivity explicit at the source code level, and an 
architect can use ports and connections to express design intent in 
a way that tools cannot duplicate. 

Hypothesis 7: Using separate ports and connections to 
distinguish different protocols and describing protocols with 
separate provided and required port interfaces may ease program 
understanding tasks. 

Refactoring Architectural Communication.  The 
communication analysis yielded a number of refactoring 
opportunities.  For example, the window refresh logic had been 
identified by the developer as troublesome in the original 
application.  We found that there were several different refresh 
methods, each of which affected a subset of the windows.  We 
refactored these into one refresh method that accepted a list of 
windows to refresh, and modified the method call sites to refresh 
only the windows affected by the surrounding code. 

We found another refactoring opportunity in the data invalidation 
code.  When a new circuit is loaded into the program, data 
computed about the old circuit must be invalidated.  Originally, 
this was done from many different places in the user interface 
code, using different message protocols.  First, we refactored the 
invalidation methods to give them consistent names and 
semantics, and then we simplified the user interface code by 
moving the invalidation logic from the user interface into the 
model. 

After this refactoring step, communication in Aphyds was 
considerably easier to understand.  Refactoring eliminated a 
number of methods and even entire categories of communication.  
The communication categories in the user interface that remained 
after refactoring include menu update, window refresh, and 
open/close/show window messages. Between the user interface 
and the model, our communication categories were user interface 
callback, command, data query, data update, and validity check 
messages. 



We could have refactored the program to make these message 
categories explicit by defining separate ports and connections for 
each category.  In the end, we chose not to do this because the 
user’s conceptual architecture divided up communication 
according to the computational task, rather than the type of 
message. 

Architectural Refactoring during Translation.  While 
reengineering Aphyds to express the developer’s architecture, we 
found that ArchJava’s communication integrity rules forced us to 
refactor problematic code.  For example, class 
ChannelRouteDialog enabled a menu item as follows: 

getDisplayer().getViewer() 
.ChannelRouterMenuItem.setEnabled(b); 

This code traverses a series of object links before calling a method 
on the final object.  It violates a design principle known as the 
Law of Demeter [LH89], which states, “objects should only talk 
to their immediate neighbors in a system.”  Code like this makes a 
program fragile, because this line may break if any object in the 
sequence of links is changed. 

In ArchJava, this code violates communication integrity, because 
it makes a method call across architectural boundaries.  Therefore, 
during our reengineering, we were forced to refactor this code to 
call a required method on a local port, which was connected 
through the architecture to the code that enables the menu item. 

Hypothesis 8:  Communication integrity in ArchJava encourages 
local communication and helps to reduce coupling between 
components. 

Fixing Defects.  Aphyds’ developer said that there were subtle 
defects in the window update code.  To investigate how ArchJava 
affects the defect-fixing process, we identified and removed a 
defect that was present both in the original Aphyds code and in 
the ArchJava version.  The defect occurred whenever the user 
changed the location of one element in a routed circuit.  The 
program did not re-compute the routing data, and so the routing 
display was left in an inconsistent state. 

This was a relatively trivial defect, and the solution was the same 
in both versions: we added a call to the doGlobalRouting 
function from the code that moved the circuit element.  We 
repaired the defect in the ArchJava version first.  The repair 
involved adding a router port to the component that moves the 
circuit element, calling doGlobalRouting on that port, and 
connecting the port to the model in the architecture. 

Fixing the bug in the original Java version was conceptually 
simpler, since we didn’t have to create or link up the extra port.  
To our surprise, however, the operation actually turned out to be 
more complex and took longer, because it was difficult to figure 
out how to get a reference to the GlobalRouter object.  The 
following code shows the complex chain of objects we had to 
traverse to fix this bug: 

getDisplayer().placeroutedialog1.placeRouteDisplay
er1.getCircuitGlobalRouter().doGlobalRouting(); 

This defect-fixing example is extremely simple and may not 
generalize to more complex defects.  The comparison above is 
confounded by many factors, including the order in which the 
defects were repaired, the confusing user interface source code in 
the original program, and our familiarity with the two versions of 
the source code.  However, it illustrates the potential of software 

architecture to ease software evolution tasks by making structure 
more explicit. 

Hypothesis 9: An explicit software architecture makes it easier to 
identify and evolve the components involved in a change. 

4.4. Effect on the ArchJava Language 
While reengineering the Aphyds architecture, we discovered a 
major shortcoming in the ArchJava language design.  To preserve 
a strong notion of communication integrity, ArchJava’s design 
assumes that control flow originates in components.  Components 
can invoke the methods of objects, but since objects cannot store 
references to components in their instance fields, they can only 
invoke methods on components that are passed as arguments to 
the currently executing method.  This creates a significant 
problem for framework libraries such as the swing library used 
in Aphyds, because these libraries are not written using 
component classes, yet often they must invoke component 
methods.  This made it impossible to express any meaningful 
architecture for Aphyds, since all of the application’s control flow 
is driven by the user interface. 

Initially, we decided to extend the language by allowing port 
declarations within objects, and permitting components to make 
connections between objects and their own subcomponents.  This 
had the crucial advantage of allowing us to work incrementally, 
transforming one class at a time into a component class by 
connecting its ports to ports of the surrounding objects.  In our 
reengineering process, we made the database classes into 
component classes, and initially left the user interface classes as 
they were, adding ports for communication channels that led to 
the database.  However, the thorniest architectural problems in 
Aphyds were in the user interface interactions, and since we 
didn’t make the user interface classes into components, our 
architecture didn’t help with these problems at all. 

In order for ArchJava to aid our reasoning about communication 
within the user interface, we decided to also allow component 
classes to extend regular classes and interfaces, so that legacy 
libraries could invoke the inherited methods of components 
through references to the appropriate superclass.  The inherited 
methods of these components can then be invoked arbitrarily 
through their inherited interfaces, threatening communication 
integrity.  However, the new methods introduced in these 
components can only be called through declared connections in 
the architecture.  These are the methods that express the 
application logic that we felt was essential to capture and reason 
about with software architecture.  This solution allowed us to 
convey the architecture of the user interface much more 
effectively, and was responsible for a disproportionate amount of 
the software engineering benefits we observed. 

To support these new language features, we designed three modes 
of operation for the ArchJava compiler.  A strict mode prohibits 
all of these extensions, and rigidly enforces communication 
integrity.  This mode could be used with future ArchJava user-
interface libraries, modeled after the architecture-centric user 
interface paradigms explored by the C2 project [MOR+96].  An 
evolution mode allows ports to be defined in regular classes, 
enabling an architecture specification to be added incrementally to 
a legacy code base such as Aphyds.  Finally, a legacy mode allows 
component classes to inherit from ordinary classes and interfaces 
(with warnings that can be turned off).  This mode also permits 



inner classes within components, which are important for smooth 
interoperation with the swing library. 

Our experience with Aphyds also motivated the design of 
broadcast methods, and suggested other usability improvements. 

4.5. Case Study Summary 
We were able to capture the conceptual architecture of Aphyds 
effectively in ArchJava with a small amount of effort relative to 
the size of the program.  The language made the architecture 
explicit, and expressing communication protocols through ports 
helped to clean up communication in the program.  The ArchJava 
compiler helped us in the restructuring task by enforcing 
communication integrity: it wouldn’t let us forget any 
communication backdoors between components. 

5. Conclusion and Future Work 
ArchJava allows programmers to express architectural structure 
and then seamlessly fill in the implementation with Java code.  At 
every stage of the software lifecycle, ArchJava enforces 
communication integrity, ensuring that the implementation 
conforms to the specified architecture.  A case study suggests that 
ArchJava can be applied to moderate sized Java programs with 
relatively little effort, resulting in a program structure that more 
closely matches the designer’s conceptual architecture.  Thus, 
ArchJava helps to promote effective architecture-based design, 
implementation, program understanding, and evolution. 

In future work, we intend to gather experience from outside users 
of ArchJava, and perform further case studies to see if the 
language can be successfully applied to programs larger than 
100,000 lines of code.  We will also investigate extending the 
language design to enable more advanced architectural reasoning, 
including temporal ordering constraints on component method 
invocations and constraints on data sharing between components. 
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