
Searching the State Space: A Qualitative Study of
API Protocol Usability

Joshua Sushine, James D. Herbsleb, and Jonathan Aldrich
{sunshine, jdh, aldrich}@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA

Abstract—Application Programming Interfaces (APIs) often
define protocols — restrictions on the order of client calls to
API methods. API protocols are common and difficult to use,
which has generated tremendous research effort in alternative
specification, implementation, and verification techniques. How-
ever, little is understood about the barriers programmers face
when using these APIs, and therefore the research effort may be
misdirected.

To understand these barriers better, we perform a two-
part qualitative study. First, we study developer forums to
identify problems that developers have with protocols. Second,
we perform a think-aloud observational study, in which we
systematically observe professional programmers struggle with
these same problems to get more detail on the nature of
their struggles and how they use available resources. In our
observations, programmer time was spent primarily on four types
of searches of the protocol state space. These observations suggest
protocol-targeted tools, languages, and verification techniques
will be most effective if they enable programmers to efficiently
perform state search.

I. INTRODUCTION

Application Programming Interfaces (APIs) often define
protocols — restrictions on the order of client calls to API
methods. These protocols are common: more than three times
as many types in the Java Standard Library define protocols
as define type parameters [2]. Protocols can also be complex:
ResultSet from the Java database connectivity (JDBC) library
contains 33 unique states dealing with different combinations
of openness, direction, random access, and insertions [3].
Protocols also cause significant pain: for instance, in a study
of problems developers experienced when using a portion of
the ASP.NET framework, three quarters of the issues identified
involved temporal constraints such as the state of the framework
in various callback functions [16]. Finally, protocols are poorly
supported by mainstream languages and tooling — the state of
practice is to specify protocols with documentation, implement
them with low-level language constructs, and react to violations
with exceptions.

All of the factors just mentioned have spurred a tremendous
number of research projects aimed at improving the usability
of API protocols. There have been many tools and languages
designed to specify and verify protocols. Strom and Yemini
[28] proposed typestate as a compiler checkable abstraction of
the states of a data structure. The Fugue system later integrated
typestates into an object-oriented programming language [8].
Many tools verify protocols (e.g. Bierhoff et al. [4], Dwyer

et al. [9], Foster et al. [11]). These tools require programmers
to specify protocols using alias and typestate annotations
separate from code. To automate the annotation, many tools
mine protocol specifications from program executions or static
analysis. A recent survey of automated API property inference
techniques uncovered 35 inference techniques for ordering
specificationss [25].

This massive research effort has gone on despite the fact that
very little is known about precisely what problems programmers
have when using APIs with protocols. In this work we attempt
to answer four research questions which we hope will provide
more solid guidance for future researchers:

RQ1 What are the characteristics of protocol tasks that are
difficult for programmers?

RQ2 How do programmers approach protocol tasks?
RQ3 What information do programmers seek and have

difficulty locating while performing protocol tasks?
RQ4 What resources do programmers use while performing

protocol tasks?

To answer these questions, we performed two studies of
professional developers. The first study identifies real-world
phenomena, and the second investigates the heart of those
phenomena in more detail.

In the first study, we searched the popular developer
forum, Stack Overflow, for questions related to known APIs
with protocols. We then winnowed, analyzed, distilled, and
merged the resulting questions into a list of distinct protocol-
specific tasks. These tasks represent real protocol programming
challenges and we noted five common characteristics in answer
to RQ1.

In the second study, we brought seasoned professional pro-
grammers into the lab and observed them performing the tasks
uncovered by the forum mining. To answer RQ2, we analyzed
the transcripts to categorize the activities that programmers
performed. Information seeking dominated programmer effort
and we therefore noted the information the developers sought
while performing the tasks and how they sought it. We found
that developer time was spent primarily on state search. We also
found that developers debugging protocol violations looked
first to the documentation related to the method call occurring
at the exception location to solve their problems. These findings
address RQ3 and RQ4.

II. PROTOCOLS

This paper intends to investigate API protocols, but the
term protocol is widely used with conflicting or ambiguous
definitions. In this paper, we focus on object-oriented APIs
and we borrow the precise definition from Beckman et al. [2,
p. 4]:

A type defines an object protocol if the concrete state
of objects of that type can be abstracted into a finite
number of abstract states of which clients must be
aware in order to use that type correctly, and among
which object instances will dynamically transition.

The focus of this definition is on state machines. An object
with a protocol must have a finite number of states which are
abstractions over concrete internal representations. These states
are visible and relevant to API clients. An object transitions
between abstract states when particular methods are called at
runtime. Clients programs that do not comply with a protocol
will cause the API to throw an exception, operate incorrectly,
or fail to operate at all. We had this definition in mind while
conducting both of the studies discussed in this paper. Therefore,
all of the API protocols we studied conform to this state-based
definition.

III. RELATED WORK

The studies we discuss in this paper focus on the usability
of API protocols. This works builds on many recent studies of
more general programming obstacles. Two classes of studies
have particular relevance to this paper. The first class, which
we will refer to as information needs studies, includes mostly-
qualitative studies that are often conducted in the field. They
investigate what information developers look for in their work,
how they look for it, and the purpose of the information. The
second class of studies, which we will refer to as API usability
studies, are mostly quantitive and are usually conducted in the
laboratory. They investigate the usability of particular APIs,
or more recently the usability of API design choices. There is
not space to discuss all of the examples in either class. Instead
we will delve deeply into a few examples in each class (and
one gap-bridger) to highlight important lessons for this paper
and motivate the study’s design.

A. Information needs studies

In an oft-cited example of an information needs study, Ko
et al. [18] observed 17 Microsoft developers as they performed
their regular work. During the study, participants searched for
information 334 times, which the experimenters abstracted into
21 categories. The abstracted categories are all very high-level,
reflecting the breadth of the activities performed. For example,
the most common category was “did I make any mistakes in
my new code?” Two categories identified by Ko are particularly
relevant to protocols: 1) “What code causes this program state?”
— A programmer using an API protocol needs to understand
how an object transitions to a particular abstract state.1 2)
“In what situations does this failure occur?” — Debugging a

1Ko addressed this category with the Whyline tool [17].

protocol violations requires understanding when a particular
method call is invalid. Our studies expand on these results,
discovering in more detail when question like these arise and
what kinds of state information are needed.

Other studies, also information needs studies, have narrowed
the developer tasks slightly to delve more deeply into specific
topics. For example, Sillito et al. [26], like Ko, studied
professional programmers in their work environments. However,
instead of studying whatever the programmers happened to be
working on, the programmers were asked to select an “involved”
software change task, and never “a simple fix.” Silito observed
programmers pursued an answer to a higher-level question “by
asking a number of other, lower-level questions.” Sometimes the
programmers even asked the low-level question first and built up
to the higher-level question. Our studies will investigate which
low-level questions are most useful in learning to correctly use
API protocols.

LaToza et al. [20] brought programmers to the lab and asked
them to contribute architecture-level design improvements
to a 54KLOC open source tool. They noted several high-
level differences between experts and novice participants:
novices focused more on symptoms of problems, experts on
sources; novices spoke in terms of specifics, and experts in
terms of abstractions; novices wasted more time understanding
implementation details, while experts’ focus was wider. Again,
these results are interesting and contribute to our general
knowledge, but are of little direct utility to most language
and tool designers.

Robillard and DeLine [24] surveyed and interviewed Mi-
crosoft developers about the obstacles they faced when they last
learned to use a public API. The most common obstacles men-
tioned involved documentation. More particularly, the answers
suggested five problematic issues commonly found in API
documentation: design intent, code examples, matching APIs
with use cases, penetrability, and formatting/presentation. Many
of these issues were simply missing from documentation, (e.g.
no discussion of performance characteristics), mistargeted (e.g.
examples of inapplicable usage), or buried (e.g. most method
documentation contains boilerplate repetition of information
contained in the method signature).

B. API usability studies

The more traditional API usability studies observe program-
mers in the laboratory while they use APIs. In most of these
studies, the participants performed tasks that were selected by
the experimenters as “representative of typical use” of the API.
McLellan et al. [22] were among the first to publish a study
of a particular API, and they are also credited with spreading
the recognition that “the techniques and theory developed for
usability should be applied directly to the API” [6]. McLellan’s
study uncovered many low-level difficulties with the API under
investigation, but more importantly for the purpose here, agreed
with Robillard about the importance of code examples and
documentation.

McLellan’s study and those like it are primarily useful for the
designers of the API under investigation. To provide guidance to

designers of future APIs, Jeff Stylos and colleagues performed
a series of studies to evaluate API “design choices” [10, 29, 30].
In Ellis et al. [10], the experimenters compared the usability
of constructor-based instance creation with instance creation
using a factory method or abstract factory [12], which Ellis
refers to collectively as the “factory pattern.” The study used
both within and between subjects comparisons and found that
users required much more time to instantiate objects when the
API used the factory pattern rather than constructors.

The design choice studies provide data-driven design guid-
ance, but it is difficult to abstract principles from them. For
example, the Ellis study does not provide insight into why it
is harder to use the factory method pattern than a constructor.

C. Discussion

The two studies we report in this paper lie between the two
classes discussed above. The studies in this paper, like those in
the first class, are qualitative and focus on the information needs
of developers. Unlike the other information needs studies, we
focus on a particular programming domain — API protocols—
to add detail and richness to our existing general knowledge
so that it can be used for tool building.

Our think-aloud laboratory study shares many elements with
the studies in the second class. However, our tasks were mined
from developer forums and we therefore expect the study to
be more connected to practice. Finally, the laboratory study
was not looking for quantitative results like the design-choices
studies, nor specific issues with the APIs like the McLellan-type
studies. Instead, the results of the second study are principles
and understanding which we hope can be applied to any API
with protocols. Our follow-on work, which validates this paper’s
conclusions, evaluates state-structured documentation using
programming experiments that are similar to the McLellan-
type studies [32].

IV. FORUM MINING

We mined Stack Overflow, a widely-used developer forum,
primarily to identify the characteristics of protocol tasks that
are difficult for programmers (RQ1). We discuss the strengths
and weaknesses of StackOverflow data in Section IV-A. We
downloaded the entire Stack Overflow database which is freely
available to anyone under a Creative Commons license. When
this study was conducted there were 2.6 million questions on
Stack Overflow. This is far too many to read and digest, so
we winnowed the question list with the techniques we discuss
in Section IV-B. The goal of the filtering was to focus our
efforts on questions that were likely to be protocol-related and
significant. Once we had a reasonable-sized list of questions, we
manually read each questions to: 1) determine if the question
was protocol-related, 2) distill a task, and 3) merge with existing
tasks. This study’s aim is to characterize recurring protocol
problems, but does not attempt to estimate commonality. The
study also required a lot of manual labor, so we likely excluded
many protocol question for the sake of efficiency. The strategies
we used in all of these efforts are discussed in Section IV-C.

Fig. 1. Screen snap of the StackOverflow question page.

The most frequent and interesting characteristics of protocol-
related questions are discussed in Section IV-D.

A. Strengths and weaknesses of forum data

Forums provide a window into developer practice that is
particularly well suited to mining examples. Asking a question
on a forum requires significant effort — it requires composing
a question, extracting relevant code or documentation, and
describing important context. After asking a question, the
answers do not come immediately, so developers often wait to
post questions until they have struggled for a while. Therefore,
the questions usually contain distilled problems of practical
significance.

We chose to use Stack Overflow for its wide use, feature set,
and openness. Stack Overflow is the most popular developer
forum on the web and it therefore contains questions in a
uniquely broad set of categories. Parnin and Treude [23] found
that StackOverflow covered 84% of the methods in the JQuery
API. This was important for us because it allowed us to distill
a wide-range of protocol-related tasks. A sample question page
with important highlighted features is shown in Figure 1.

According to Mamykina et al. [21] Stack Overflow is also
the fastest forum on the web, with median answer time of
only 11 minutes. This speed encourages posting on low-level
topics, which includes most protocol issues, since questioners
can expect a fast answer. Mamykina credits the popularity
primarily to the engagement of the Stack Overflow designers
with the user community. In addition, the feature set, which
includes a “reputation score” earned for asking well-liked
questions or providing well-liked answers, incentivizes use [33].
All viewers of a question can categorize the question with a
“tag,” which helps programmers determine question relevance.
Of particular importance to this effort is that questioners are
rewarded for “accepting” an answer, which often gives the
most important clue about the real problem the questioner

faces. For example, the code search and recommendation tool
Example Overflow uses these social features to the determine
quality and relevance of programming examples contained in
StackOverflow questions. [36].

Despite the numerous benefits of forum questions as a data
source, and Stack Overflow in particular, the questions there
are by no means representative of all programming problems.
Vasilescu et al. [34] found that women are substantially less
likely to participate in Stack Overflow than men. Furthermore,
women that did participate were less likely to participate heavily
or earn reputation points. More generally, Kuk [19] found
that forum participants act strategically in a number of ways
including by helping those who are likely to reciprocate and by
seeking out career advancement opportunities. This strategic
behavior results in a question and answer pool that is largely
authored by a heavily active elite. Finally, the quality and
difficulty of StackOverflow questions vary dramatically [13].
Therefore, one cannot count questions of a certain type to gauge
commonality of that type. In summary, Stack Overflow is a
useful resource for finding real-world programming problems
but the participant and question population is not representative,
nor are the questions sets directly comparable.

B. Winnowing the Question List

We wanted tasks that both are protocol-related and caused
problems for real developers. Therefore, we started by assem-
bling a list of 109 Java Standard Library classes that contain
a protocol. The bulk of the classes are listed in two studies,
Beckman et al. [2] and Whaley et al. [35], that identified
protocols via semi-automated static analysis. Neither Beckman
nor Whaley identified any protocols in interfaces, so 9 interfaces
were added from other sources (e.g. Bierhoff et al. [4]). These
interfaces are not implemented in the Java Standard Library,
but they are implemented by many third parties, and so the
interface protocols can be very widely used.

We downloaded a data dump from Stack Overflow that
contained questions and answers that were created through
March 2012.2 We discarded 40 of the classes because their
protocols were very familiar and simple. In particular three
protocol patterns were removed: 1) Boundary protocols in
which a method named next or starting with next (e.g. nextInt)
cannot be called after the end of an underlying list (e.g.
java.util.Iterator). 2) Deactivation protocols in which many
methods cannot be called after the close method is called
(e.g. java.util.Scanner). 3) Redundancy prevention protocols in
which the cause of a Throwable or Exception cannot be set
more than once3

We then searched for questions about each of 69 remaining
classes systematically, to ensure that later analysis was done

2This was the latest data dump available at the time this part of the study
was conducted.

3In unpublished experiments conducted by Ciera Japan, tasks involving these
protocol patterns were very simple for expert developers, but still challenging
for novices. It seems that experts have memorized or otherwise internalized
the steps needed to use these libraries correctly. In these experiments, experts
completed tasks involving these patterns very quickly and the observations
therefore yielded little insight.

fairly. The SQL queries used are described in detail in Sunshine
[31].

For most classes the search returned fewer than five related
questions, and only nine had more than 100. In order to include
only well-used APIs in the results, we focused our efforts on
these nine classes.4 We examined all of the questions and
answers related to these nine classes, looking for protocol-
related questions. We discuss how we determine if a question
is protocol related in detail in Section IV-C. Of the nine,
five had protocol-related questions: URLConnection, its close
cousin HttpURLConnection, Timer, ResultSet, and Socket had
protocol-related questions. The results in this section are drawn
from questions related to these classes.

C. Analyzing a Question

We manually examined a total of 5,039 questions related
to nine classes. The first order of business was to eliminate
questions that were unrelated to protocols. The single fastest
heuristic we used was to examine how the search keyword was
used in the post. The keyword was often found in an import
statement, method return type, type of an unused variable
or argument, comment, throwaway reference, etc. but never
used again. This phenomenon was especially common in cases
where long code blocks were attached to a question for context.
The vast majority (more than 90%) of questions were discarded
by this heuristic alone. For example, in question #5302656,
“java.sql.ResultSet” appears exactly once in a list of possible
types of values accepted by a particular value. In question
#2609535, ResultSet only appears in an import statement and
is never used.

If the keyword heuristic did not eliminate a question, we
examined the question more thoroughly. We focused on the
accepted answers to questions, the exception types and error
messages described, and searched all text and code for protocol
violating methods. More details can be found in Sunshine [31,
ch. 3].

Excluding questions. If none of the protocol violating
methods appeared and none of the earlier strategies were useful,
then we excluded the question from the study. It is therefore
possible we incorrectly excluded questions this way, especially
if the protocol issue was not in code but buried in difficult to
parse prose. However, the large number of questions required
us to be expedient. The goal of the study was not to estimate
the commonality of protocol problems, but to characterize
recurring patterns—which justifies the expediency.

Brute force. In rare instances, none of the above strategies
worked. These instances usually included large blocks of code
with many method calls and exceptions. When none of the
earlier strategies worked, we carefully read the full text of the
post, including all the answers, to understand the problem or
problems faced by the questioner.

Distillation. If a question was found to be protocol related,
we then distilled a concrete protocol-based task from the

4We cutoff questions with fewer than 100 questions because 100 is a round
number and there was a sizable gap in the data at that point. All of the APIs
included in the final study had a minimum of 210 questions.

question being asked. We focused our efforts on discovering
the particular difficulty the programmer had with the protocol.
Protocols are composed of rules, and in most cases, the
programmer violated one of these rules. In these cases, the
distillation involved identifying the specific rule that was
violated. We excluded all domain specific information from
the task. For example a Timer running on Android is the same
as a Timer running on a PC.

D. Results

After completing the winnowing, analysis, and distillation
we selected 28 Stack Overflow questions. We merged these 28
question into 13 distinct topics. The results are summarized
in Table I. The most common distilled question was about
the violation of a protocol rule. There were 23 such questions
and these were merged into nine topics, one for each distinct
protocol violation (marked “Cannot” in the table).

Three questioners confused two rules that compose the proto-
col. These three questions represent two distinct confusions and
they were therefore merged into topics (marked “Confusion”
in the table). Finally, two questioners requested the APIs add a
new protocol-related feature. These were distinct and therefore
represent two topics (marked “Wanted” in the table). In both
cases, the questioners requested state-tests, which we will
discuss further in the next section. All of the questions, except
in two topics, asked for help debugging a protocol violation.

1) Characteristics: The questions and corresponding topics
had five common and interesting characteristics that we
highlight here. These characteristics address RQ1, “what are
the characteristics of protocol tasks that are difficult for
programmers?” In each case we discuss the evidence for each
characteristic in the data and then discuss its significance. After
all the characteristics are introduced, we discuss the significance
of the full collection.

Missing state transition. Many questioners hoped for or
assumed a state transition that the protocol did not allow. For
example, questioner #4278917 explicitly asks if there is a
method that allows a client to “disconnect” and thereby reuse a
URLConnection (there is none). Similarly, one way of looking
at all six questions about rescheduling a TimerTask, is as a
question about the ability to transition the TimerTask from the
scheduled to the virgin state. Finally, two of the questioners
trying to call scrolling methods on a forward-only specifically
looked for a method to transition that ResultSet to the scrolling
state. Documentation is particularly ill-suited to addressing this
type of question. It often requires a global search of all of the
method and class documentation to discover that a transition
is not available.

State tests. For three of the four libraries, questioners asked
for a method to test the abstract state of the object. The state
test questions for Timer (#13880202) and URLConnection
(#7614408) are listed in Table I. In addition, questioner
#2741276 requests a method to test if a ResultSet has been
closed. However, this question was not included in the results
because an isClosed method was added in Java 6. Presumably,
the questioner was using an earlier version of Java. There

were no similar questions about Socket, but for good reason —
Socket includes state tests for every state it defines.

State independence. In some cases, objects with protocols
can occupy multiple states simultaneously. For example, a
ResultSet object, whose UML state machine is shown in
Figure 2, occupies the and-states Direction and Position simul-
taneously. State transitions on and-states act independently, and
this independence confused several questioners. For example,
the connectedness and openness of a socket are independent.
Questioner #3701073, perhaps unsurprisingly, thought that a
closed socket could not be connected, but this is incorrect.
Similarly, the four forward-only questioners did not seem to
understand that the act of calling a scrolling method did not
change the Direction state.

Multi-object protocols. All four of the APIs we looked at
closely inspired questions about the relationship to other APIs.
For example, a ResultSet object is closed if the Statement object
that created it is closed or reused. Four questioners in the sample
struggled with this one issue (4646561, 4864920, 5840866,
10118129). Questioners also asked about the following other
relationships: Timers with threads, Sockets with data streams,
and URLConnections with Sockets. We did not include these
multi-object protocol issues in the primary results to focus
on the vast majority of protocol-specific tooling that does not
support multi-object protocols.

Terminology Confusion. Many of the questioners seem
to be confused by terminology. This type of confusion is
extremely common and not protocol-specific. However, the
frequency of its appearance in the data warrants a brief
discussion. Questioners often assumed a particular definition
for a term, and when the definition was wrong they struggled.
For example, questioner #9497100 assumed that canceling
a TimerTask would always abort the Task. The questioner
therefore tried to cancel the task in the task’s own run
method, in a failed attempt to halt execution immediately. Other
questions misinterpreted Socket.isConnected, Timer.schedule,
and URLConnection.inputStream.

Discussion. All of the characteristics just highlighted, except
terminology confusion, are protocol-specific. This suggests that
protocol-targeted tooling or languages may be necessary to
improve the usability of API protocols.

The challenge of missing state transitions suggests that
documentation should include a list of state transitions in
an easily digestible form. This would enable programmers to
quickly learn which transitions are, and are not, available. The
very existence of state test questions suggests the usefulness
of state tests. Josh Bloch, the designer of much of the Java
Standard Library including several of these classes, suggests
that all APIs with protocols “should generally have a state-
testing method indicating whether it is appropriate to invoke
state-dependent method[s].” [5, p. 242].

That repeating occurrence of multi-object protocols in the
forum mining data buttresses the evidence collected by Jaspan
and Aldrich [14] that multi-object protocols are important.
Therefore, this study motivates the those working on relation-
ship types [15, 1]. Unfortunately, many protocol-targeted tools

TABLE I
LISTS THE APIS, QUESTIONS AND MERGED TOPICS DISCOVERED IN THE FORUM MINING.

API Topic #Qs Question IDs

URLConnection
Cannot: Set request property after connected 2 331538, 5368535
Cannot: Reuse connection 1 4278917
Wanted: IsConnected state test 1 7614408

Timer

Cannot: Reschedule TimerTask 6 1041675, 1801324, 4388353, 6813654, 7631542, 8404736
Cannot: Change Scheduled time of TimerTask 4 5014132, 6555583, 6762099, 8173147
Confusion: Timer.cancel() vs. TimerTask.cancel() 2 1801324, 6477608
Cannot: Cancel running TimerTask 1 9497100
Wanted: State Test for TimerTask 1 13880202a

Socket Confusion: Closed vs. Connected 1 3701073b

ResultSet

Cannot: Read after end 1 3502005
Cannot: Call next on InsertRow 3 4874574, 6684753, 9836972
Cannot: Call scrolling methods on forwardonly 4 6367737, 6871641, 8032214, 9007051
Cannot: Read before calling next() 1 8039233

a This question was discovered after the forum mining, but matches all of the criteria used to select the other questions.
b This is the only Socket protocol question, but as of Sep. 2013 it had the highest reputation score in this table, suggesting its importance.

Fig. 2. UML State Machine for ResultSet.

do not support and-states. The data suggests and-states are
particularly problematic, which in turn suggests that these
tools are missing an opportunity to address an important
usability challenge. Finally, the prevalence of terminology
confusion, suggests that API protocol designers should carefully
name state-related methods to ensure that the standard English
definition matches its use in the protocol.

These characteristics share one significant weakness with
the source from which they were derived. Each forum post
represents a snapshot of a single programmer’s thinking. It
is difficult to know whether these characteristic problems are
challenging for most programmers or just a tiny minority.

Similarly, it is difficult to know what common programmer
challenges were missed because they were resolved before
a question was ever asked. Finally, and most significantly,
the forum mining has given us a better idea of what is hard,
but we still need to understand why they are hard. What do
programmers do when trying to address these tasks? Why are
their tools and documentations inadequate? We address these
weakness in the laboratory observations we discuss next.

V. LABORATORY OBSERVATIONS

In this section, we describe the methodology and results of
the laboratory study. The aim of this study is to learn how

programmers approach protocol tasks (RQ2), with particular
focus on the information they seek (RQ3) and the resources
they use (RQ4). In this study, the tasks are taken from the forum
mining and therefore connected to practice. We discuss how
we transform the topics mined from Stack Overflow into tasks
in the next section. We then discuss the study design. Next,
we highlight observations from one particular task—inserting
a new row into a ResultSet—which we will use to illustrate
the important results from this study. Finally, we summarize
the results from all of the tasks including quantitative and
qualitative analysis.

A. Methodology

1) Topics to tasks: We converted each of the topics uncov-
ered by the forum mining study, as summarized in Table I, into
a corresponding programming task. The tasks were derived
from the code contained in the topical question(s). The tasks did
not include project context such as package names, or code that
was not protocol related. Each task included instructions and a
method annotated with pre and post-conditions. The source files
are available on the web.5 In some cases, a test case is included
with the task to trigger the bug. This was necessary whenever
the method was passed a Socket, TimerTask, ResultSet, or
URLConnnection instance.

The code in the method body was most commonly taken
directly from one of the questions related to a topic. However,
some topics required more creativity because the questions did
not include code. For example, the state-test related questions
did not contain code which motivated the questioner’s need
for the state test. Therefore, we created tasks that required
knowledge of the state. These tasks each involved writing a
method which takes a Timer or URLConnection instance as
an argument and uses the instance in a state-specific manner.

2) Example task: To understand better how tasks were
constructed, let us look at an example task in more depth.
We focus on a task corresponding to the topic “Cannot: Call
next on InsertRow.” The task involves inserting a new row in
a database table via a ResultSet instance and then trying to
call the next method.

The ResultSet protocol prohibits scrolling (e.g. calling the
next method), while the “cursor is on the insert row.” To
understand this better, let us look at the state machine diagram
show in Figure 2. The cursor position is modeled by the
abstract state Position. The Position state has two or-children,
CurrentRow and InsertRow, which represent the state of the
ResultSet when the cursor is on existing row or on the insert row
respectively. Note that the method moveToInsertRow transitions
the ResultSet from the CurrentRow state to the InsertRow
state. In reverse, the method moveToCurrentRow transitions
the object back to the CurrentRow.

A slightly abbreviate version of the code participants were
given is shown in Listing 1. Programmers were asked to fix a
bug, revealed by a test case, in the insertHarryBovik method.

5http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/
qualitative-study-tasks.zip

1 /∗∗
2 ∗ Precondition: rs is a CONCUR_UPDATABLE ResultSet
3 ∗ to an attached table with at least one row and String
4 ∗ columns labeled, ‘‘first’’ and ‘‘last’’
5 ∗
6 ∗ Postcondition: Insert a new row with ‘‘Harry’’ in the
7 ∗ ‘‘first’’ column and ‘‘Bovik’’ in the last column. Update
8 ∗ next row’s last name to ‘‘Carnegie’’.
9 ∗/

10 public void insertHarryBovik(ResultSet rs) {
11 rs.moveToInsertRow();
12 rs.updateString("first", "Harry");
13 rs.updateString("last", "Bovik");
14 rs.insertRow();
15 rs.next();
16 rs.updateString("last", "Carnegie");
17 rs.updateRow();
18 }

Listing 1. Source code for example task.

In particular, running the test case results in an SQLException
when the next method is called on line 15.

To fix the bug participants needed to add just one line
in the code. Before calling next, the ResultSet needs to be
transitioned to the CurrentRow state by calling the method
moveToCurrentRow. As we will see in Section V-B1, this task
was surprisingly difficult even for the expert programmers
performing the study.

The rest of the tasks have a similar flavor. They require
programmers to write new small programs or fix existing
small programs involving protocols. All require programmers
to navigate the state machine of an underlying object.

3) Study design: We have found that protocols are very
challenging for novice programmers or programmers with-
out significant experience using object-oriented libraries and
frameworks written in statically typed languages. Therefore we
recruited 6 programmers with at least 3 years of professional
experience with Java or C#. However, these programmers had
never used any of the particular libraries under evaluation. The
programmers were recruited via personal contacts.

Participants performed the tasks in a campus laboratory. They
worked with a computer that had been prepared with Eclipse
and a browser opened to the relevant JavaDoc. Participants
were asked to “think aloud.” The analysis of this study
relies on correctly interpreting what participants were looking
for while performing the tasks. Therefore, we followed Ko
et al. [18] and asked “what are you looking for?” when
participants forgot to think aloud, or their statements were
unclear. Participants screens and speech were recorded. The
study itself took between 1 and 3 hours, almost all of which
was spent performing programming tasks. Task instructions
were read to each participant and also provided in written form.

B. Results

In this section, we discuss the results of our observations.
These observations address RQ2, “How do programmers ap-
proach protocol tasks?” We first describe detailed observations

from one particular task and then present the aggregate results
from the full study.

1) Example task observations: We introduced the ResultSet
insertion task the participants performed in Section V-A2. This
task was the most time consuming for the participants — time to
completion ranged from 16 minutes to 49 minutes. In addition,
the participant observations of this task illustrate well the major
results we will discuss in the next section.

Recall from Section V-A2 that participants are debugging
a protocol violation. In particular, the next method is called
while the ResultSet’s cursor is on the insert row. However,
none of the participants immediately knew this was the source
of the problem.

All participants immediately read and interpreted the error
message “invalid cursor state: cannot FETCH NEXT, PRIOR,
CURRENT, or RELATIVE, cursor position is unknown.” Most
participants articulated a rapid-fire set of questions about the
details of the error message: e.g. “What is FETCH NEXT?,”
“Why is the cursor position unknown?” The participants seemed
to leave these questions unanswered and focus on the beginning
of the error message, “invalid cursor state.” The participants
recognized that this was protocol related and they asked one
of two questions: “What is the cursor status of [ResultSet]
rs?” (4 participants) or “Which cursor state does rs need to be
in to call next?” (2 participants). As we will discuss later in
detail later in this section, these two questions are instances of
common question categories.

Regardless of the question asked, all six participants looked
first at the method documentation for the next method to see
if it could help them answer their question. Unfortunately, the
next method documentation does not answer either question.
Three participants noted that the documentation states that a
SQLException is thrown “if a database access error occurs
or this method is called on a closed result set.” All three
immediately decided neither cited source was the cause of the
bug in this case.

The participants’ searches diverged from this point forward.
Three general categories of searches were used: linear scan
of task lines, linear scan of method documentation search,
undirected/random search through class documentation.

The fastest strategy, employed by two participants, was
to look at the method documentation of each method in
the source code one by one. They started at next (line 15)
and moved upward to insertRow, then updateString,6 and
finally to moveToInsertRow. These participants looked at the
documentation by hovering over the method name inside the
Eclipse code editor. This strategy is reasonably natural in an
IDE that supports hover documentation, but would require
constant switching between editor and webpage documentation
if a more traditional editor is used.

The fourth sentence of the ResultSet documentation for
moveToInsertRow helps participants identify the state that
the result set is in: “Only the updater, getter, and insertRow

6One participant actually moved down to the updateRow documentation
before proceeding upward again to updateString. However, the strategies were
otherwise identical.

methods may be called when the cursor is on the insert row.”
All 3 participants that read this documentation articulated a
new understanding of the exception message and articulated a
follow up question. One participants said, “Aha! The cursor is
on the insert row. How do we get the cursor off the insert row
to call next?”

Fortunately for the participants that reached the move-
ToInsertRow documentation the answer to the follow-up
question was immediately evident. To call next, one must
call moveToCurrentRow, which both has a parallel name and
appears after moveToInsertRow in the documentation.

One participant read the method documentation in the
order they appeared on the JavaDoc webpage (the previously
discussed participants scanned in the order they appear in
the task code), which was the slowest search strategy. This
participant looked at the next documentation in the Javadoc
generated web page. On the web page, the next method
appears first in the Method Detail list. The order of the method
documentation matches the order that methods appear in the
ResultSet source code. The participant scanned all of the
documentation between next and moveToInsertRow which
represents 2240 lines of the ResultSet source code and more
than 100 methods. Thankfully, much of it is repetitive and could
therefore be skimmed. After reaching the moveToInsertRow
documentation, this participant acted similarly to the task line
searchers.

The remaining three participants, like the method docu-
mentation scanner, read the next documentation on the web
page. From there these participants skipped around somewhat
randomly on the webpage. All three of these participant read
at least a few irrelevant sections of method documentation.
However, these three eventually found themselves at the top of
the webpage at the class level documentation. The penultimate
section of this documentation provides a code example that
“moves the cursor to the insert row, builds a three-column row,
and inserts it into rs and into the data source table using the
method insertRow.”

After reading the example, the participants compared the
example code to the buggy code and noticed the missing call
to moveToCurrentRow in the buggy code. The participants
read the method documentation for moveToCurrentRow before
adding it to insertHarryBovik. One explained he was “trying
to figure out if you could call next on the current row?” The
observations from this task are illustrative of the aggregate
results we discuss next.

2) Aggregate results: To address RQ3 (“What information
do programmers seek and have difficulty locating while per-
forming protocol tasks?"), we transcribed the audio recordings,
noting the time of every statement made or question asked by
the participants. We will refer to anything the participant says
as a quote. We then watched the video recording and mapped
these quotes to blocks of time. Whenever we believed the
activity on screen was motivated by a quote, we assigned the
block in which it was performed to the quote. This mapping
allows me to estimate how much time was spent on each quote.

In the vast majority of cases, the mapping was based on
simple temporal ordering — if the activity was performed
during or after quote A and before any other quote it was
assigned to quote A. In a small number of cases, an activity
did not seem to match the preceding quote, and therefore the
activity left unassigned. This phenomenon was rare because the
experimenter usually noticed when this happened and asked the
participant to explain his or her actions. In total, we assigned
87% of participant time to a quote.

We then performed open-coding [27] on the quotes, looking
for similar quotes that tended to repeat. Four categories of
quotes were particularly common. Each of these categories
represents a state search task. In total, 82% of the assigned
time (or 71% of the total time) was spent working on the
following four categories of search. We list here each general
category followed by two specific instances of that category
drawn from the transcripts:

A What abstract state is an object in?
• “Is the TimerTask scheduled?”
• “What is the cursor state of [ResultSet] rs?”

B What are the capabilities of an object in state X?
• “Can I schedule a scheduled TimerTask?”
• “What can I do on the insert row?”

C In what state(s) can I do operation Z?
• “When can I call doInput?”
• “Which ResultSets can I update?”

D How do I transition from state X to state Y?
• “How do I get off the insert row to the current row?”
• “Which method schedules the TimerTask?’

These search problems are all specific to protocols, and
therefore the protocol tasks are dominated by state search.

To clarify the coding process, consider the two instances
of category A listed above. The instance, “Is the TimerTask
scheduled,” contains the name of an abstract state of TimerTask,
“scheduled," so that part of the instance was generalized to
“state X.” “The TimerTask” refers to a an object so that part
of the question was generalized to “an object.” Therefore, the
question was first coded as “Is the object in state X?” In the
second instance, “What is the cursor status of [ResultSet] rs,"
the “cursor status” refers to the state of the ResultSet. This
instance maps directly to “What abstract state is an object in?”
The code for the first instance was later merged into this more
general category.

Many concrete questions are compositions of several cate-
gories. Answering, “What do I need to do to the conn to set
doInput?” requires answering general questions C and D. The
method doInput can only be set in the disconnected state (C),
and the only way to get a disconnected connection is to create
a new connection (D). Similarly, answering “What methods can
I call on [the object referenced] by [variable] conn?” requires
answering a combination of A and B.

We break down the questions and time spent in Figure 3.
These charts break down only the 71% subset of time spent on
state search activities. As you can see, the only combination
categories that appeared in the quotes were A+B and C+D.

21%$

4%$

16%$

20%$

8%$

31%$
24%$

6%$

20%$24%$

10%$

16%$

A$ B$ C$
D$ A+B$ C+D$

%of1me$ %ofques1ons$

A)  What$abstract$stateisthe$object$in?$
B)  Whatarethe$capabili1es$of$object$in$state$X?$
C)  In$what$state(s)canIdoopera1on$Z?$
D)  HowdoI$transi1on$from$state$Xtostate$Y?$ $$

Fig. 3. Question type frequencies.

It’s possible to come up with other combinations (e.g. B+D:
“I wonder what would happen if I find a transition to state Y?)
but harder to envision how they would be useful.

The question types appeared with almost equal frequency,
except for category B which was relatively infrequent. We
expect category B, which is relatively exploratory, to be more
useful in greenfield tasks than the tasks in this study.

A reader who compares the two pie charts will observe that
the category C+D questions were relatively time consuming
(31% of time was spent on 16% of questions). This relationship
held for all 6 participants—C+D questions had the highest
average time spent for everyone. When category D questions
occur alone, it is possible to guess the method name that will
transition the object to the wanted state. To give one trivial
but common example, if the state is called “connected” it is
likely that you want to call a method called connect. However,
when you do not know what state you want to transition to,
the implication of the category C component of the question,
answering question D requires a global search of the class
methods.

Resources. This subsection addresses RQ4, “What resources
do programmers use while perform- ing protocol tasks?” Par-
ticipants were allowed to use any resource they liked. However,
participants spent 76% of their total time on documentation
webpages or hovering over a method documentation. This
result conforms with expectations set by the studies discussed
in Section III.

We also noted patterns in the particular documentation
looked at by programmers. In 56 out 74 cases (including
all 6 programmers in the Result Set insertion example) the
programmer looked first to the documentation related to the
method call occurring at the exception location to solve their
problem (next in the Result example). In 13 of the remaining 18
cases the programmer looked first at the method documentation
one line above or below the exception location.The participants
never looked at the documentation related to the parameter
types, including the receiver type, of the method being called
when the exception occurs.

Unfortunately, the exception-location method documentation
was not the right place to look for the information developers

were seeking. We already discussed the problem with the
Result.next documentation, but the ResultSet.get* methods
were similarly unhelpful for the “Cannot: read after end”
task. Equally commonly, the information needed is buried
in the very last element of the documentation, the @throws
annotation. This information is not displayed in Eclipse
hover documentation by default. It was also often skipped by
developers reading the documentation in the web page, even
when they were looking for the source of an exception! These
findings support tools that push rules necessary for invoking
methods to developers, like eMoose directives [7].

Question characteristics. We now return to two of the char-
acteristics discussed in Section IV-D1. Participants performed
two tasks that specifically required the participants to determine
the state of an unknown instance. In both cases, all participants
expressed hope for or requested a state test method. More
surprisingly, participants requested state test method in 5 other
instances. This further reinforces the advice that state test
methods should always be provided.

We mentioned that missing state transitions caused frequent
questions. However, type qualifier protocols—in which objects
never support certain methods after construction—were very
easy for participants. Participants seemed to intuitively under-
stand that a ResultSet is created as scrolling or forward only
and cannot be changed thereafter. On the other hand, lifecycle
protocols, in which the state transitions only moved in one
direction frustrated the participants.

VI. THREATS TO VALIDITY

We started the forum mining with a large list of classes
from the Java Standard Library. These were taken primarily
from the results of a single study [2]. Beckman’s study
used a static analysis to find candidate protocols for manual
investigation. This analysis missed protocols whose violations
do not result in a thrown exception, nor protocols that check
for protocol violations in non-standard ways. The interested
reader is referred to Section 2.4 of that paper for further details.
More generally, all of the APIs in our study are both libraries
and from the “resource programming” domain. The protocol
barriers may be different for other types of APIs.

We also do not know exactly how representative the Stack
Overflow questions are of actual problems encountered in
practice, nor if they really are the most difficult problems. For
example, programmers may look to other sources to solve their
hardest problems. Similarly, the particular demographic that
uses Stack Overflow the most may have different problems
than a more representative sample.

The developers who performed the laboratory study were
professional engineers, but they were all personal contacts.
It is therefore possible that they are very unrepresentative
of the population of all skilled developers. Furthermore,
the developer sample size was very small. A larger, more
representative sample of developers may have needed very
different information or very different resources.

Finally, a single experimenter analyzed all of the forum
questions, assigning quotes to programmer activity, and cate-

gorizing quotes. Another rater would have enabled a reliability
assessment and may have caught errors. The question categories
may be poorly defined and the quantitative results may be
skewed by experimenter biases.

VII. CONCLUSION

In this study, we identified five common characteristics
of the questions about API protocols that developers find
particularly problematic. Using the tasks that brought about the
problematic questions, we found that experienced developers
spent the majority of their time (71%) addressing four types of
state searches, some of which are poorly supported by current
approaches to documentation.

Our observations suggest that protocol-targeted tools, lan-
guages, and verification techniques will be most effective if
they enable programmers to efficiently answer the four state
search questions. Unfortunately, many of the tools in this area
do not directly address any of these questions.

That said, when a protocol is violated some of these tools
provide an error message that tells the developer what part of
the protocol has been violated. In particular, the messages
usually say what abstract state the object is in, thereby
answering question A. Unfortunately, we are unaware of any
tool that gives the developer this information when there is not
an error. This is probably achievable fairly simply for tools
that rely on type systems or static analysis, but is much more
difficult for dynamic checkers.

The research community has provided substantially less
support in answering the other three state search questions (B,
C, and D). However, some programming languages support
separating members by abstract state which will likely make
it easier for developers to answer B and C. Similarly, a first
class state change operation in a programming language makes
it easier to answer D.

Throughout this paper we discussed many examples in
which the information needs of developers do not match
the documentation at the location it is needed. In most of
the instances the relevant instructions are simply misplaced.
We urge writers of documentation to carefully consider how
documentation is used when considering its structure. In
addition, we believe there is a research opportunity to generate
protocol-specific documentation in all of the locations it is
needed from simple specifications.

Finally, we mentioned briefly in Section IV-C that answerers
sometimes suggested alternative libraries to questioners. These
answers were often accepted and/or received many “up-votes”
from the Stack Overflow community. This suggests that
developers who struggle with protocol violations abandon the
APIs. Researchers and practitioners are very interested in what
causes tools to be adopted by developers. This study provides
evidence that potential adopters can be driven away by difficulty
using an API correctly.

VIII. ACKNOWLEGEMENTS

This work was supported by NSA lablet contract #H98230-
14-C-014, and NSF grant #CCF-1116907.

REFERENCES

[1] Stephanie Balzer and Thomas R. Gross. Verifying multi-
object invariants with relationships. In ECOOP 2011 –
Object-Oriented Programming, pages 358–382. Springer
Berlin Heidelberg, 2011.

[2] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An
empirical study of object protocols in the wild. In
ECOOP 2011 – Object-Oriented Programming, pages
2–26. Springer Berlin Heidelberg, 2011.

[3] Kevin Bierhoff and Jonathan Aldrich. Lightweight object
specification with typestates. In Proceedings of the
10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, ESEC/FSE-13,
pages 217–226, New York, NY, USA, 2005. ACM.

[4] Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich.
Practical API protocol checking with access permissions.
In Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming, Genoa,
pages 195–219, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] Joshua Bloch. Effective Java. Addison-Wesley Profes-
sional, second edition, 2008.

[6] John M Daughtry, Umer Farooq, Jeffrey Stylos, and
Brad A Myers. API usability: CHI’2009 special interest
group meeting. In Proceedings of the 27th international
conference extended abstracts on Human factors in
computing systems, pages 2771–2774. ACM, 2009.

[7] Uri Dekel and James D. Herbsleb. Improving API
documentation usability with knowledge pushing. In
Proceedings of the 31st International Conference on Soft-
ware Engineering, ICSE ’09, pages 320–330, Washington,
DC, USA, 2009. IEEE Computer Society.

[8] Robert DeLine and Manuel Fähndrich. Typestates for
objects. In Proceedings of the 18th European Conference
on Object-Oriented Programming, ECOOP ’04, pages
465–490, London, UK, 2004. Springer-Verlag.

[9] Matthew B. Dwyer, Alex Kinneer, and Sebastian Elbaum.
Adaptive online program analysis. In Proceedings of the
29th international conference on Software Engineering,
ICSE ’07, pages 220–229, Washington, DC, USA, 2007.
IEEE Computer Society.

[10] Brian Ellis, Jeffrey Stylos, and Brad Myers. The factory
pattern in API design: A usability evaluation. In Pro-
ceedings of the 29th international conference on Software
Engineering, ICSE ’07, pages 302–312, Washington, DC,
USA, 2007. IEEE Computer Society.

[11] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-
sensitive type qualifiers. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language
design and implementation, PLDI ’02, pages 1–12, New
York, NY, USA, 2002. ACM.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design patterns: elements of reusable object-
oriented software. Addison-Wesley, 1995.

[13] Benjamin V. Hanrahan, Gregorio Convertino, and Les
Nelson. Modeling problem difficulty and expertise
in stackoverflow. In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work
Companion, CSCW ’12, pages 91–94, New York, NY,
USA, 2012. ACM.

[14] Ciera Jaspan and Jonatathan Aldrich. Are object protocols
burdensome? an empirical study of developer forums. In
Evaluation and Usability of Programming Languages and
Tools Workshop (PLATEAU ’11), 2011.

[15] Ciera Jaspan and Jonathan Aldrich. Checking framework
interactions with relationships. In ECOOP 2009 – Object-
Oriented Programming, pages 27–51. Springer Berlin
Heidelberg, 2009.

[16] Ciera N.C. Jaspan. Proper Plugin Protocols. PhD thesis,
Carnegie Mellon University, December 2011. Technical
Report: CMU-ISR-11-116.

[17] Andrew J. Ko and Brad A. Myers. Finding causes of
program output with the Java Whyline. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 1569–1578, New York, NY, USA,
2009. ACM.

[18] Andrew J. Ko, Robert DeLine, and Gina Venolia. Infor-
mation needs in collocated software development teams.
In Proceedings of the 29th international conference
on Software Engineering, ICSE ’07, pages 344–353,
Washington, DC, USA, 2007. IEEE Computer Society.

[19] George Kuk. Strategic interaction and knowledge sharing
in the kde developer mailing list. Management Science,
52(7):1031–1042, 2006.

[20] Thomas D. LaToza, David Garlan, James D. Herbsleb,
and Brad A. Myers. Program comprehension as fact
finding. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, ESEC-FSE ’07, pages 361–370, New York,
NY, USA, 2007. ACM.

[21] Lena Mamykina, Bella Manoim, Manas Mittal, George
Hripcsak, and Björn Hartmann. Design lessons from
the fastest Q&A site in the west. In Proceedings of
the SIGCHI conference on Human factors in computing
systems, pages 2857–2866. ACM, 2011.

[22] Samuel G. McLellan, Alvin W. Roesler, Joseph T. Tem-
pest, and Clay I. Spinuzzi. Building more usable APIs.
IEEE Software, 15(3):78–86, 1998.

[23] Chris Parnin and Christoph Treude. Measuring api
documentation on the web. In Proceedings of the
2nd international workshop on Web 2.0 for software
engineering, pages 25–30. ACM, 2011.

[24] Martin P. Robillard and Robert DeLine. A field study of
API learning obstacles. Empirical Software Engineering,
16:703–732, 2011.

[25] Martin P. Robillard, Eric Bodden, David Kawrykow,
Mira Mezini, and Tristan Ratchford. Automated api
property inference techniques. Software Engineering,
IEEE Transactions on, 39(5):613–637, 2013.

[26] J. Sillito, G.C. Murphy, and K. De Volder. Asking and
answering questions during a programming change task.
Software Engineering, IEEE Transactions on, 34(4):434–
451, 2008.

[27] Anselm L. Strauss. Qualitative Analysis for Social
Scientists. Cambridge University Press, June 1987.

[28] Robert E. Strom and Shaula Yemini. Typestate: A
programming language concept for enhancing software
reliability. IEEE Transactions on Software Engineering,
12(1):157–171, January 1986.

[29] Jeffrey Stylos and Steven Clarke. Usability implications
of requiring parameters in objects’ constructors. In Pro-
ceedings of the 29th international conference on Software
Engineering, ICSE ’07, pages 529–539, Washington, DC,
USA, 2007. IEEE Computer Society.

[30] Jeffrey Stylos and Brad A. Myers. The implications of
method placement on API learnability. In Proceedings
of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, SIGSOFT ’08/FSE-
16, pages 105–112, New York, NY, USA, 2008. ACM.

[31] Joshua Sunshine. Protocol Programmability. PhD thesis,
Carnegie Mellon University, December 2013. CMU-ISR-
13-117.

[32] Joshua Sunshine, James D. Herbsleb, and Jonathan
Aldrich. Structuring documentation to support state search:
A laboratory experiment about protocol programming. In
European Conference on Object Oriented Programming
(ECOOP), 2014.

[33] Christoph Treude, Ohad Barzilay, and M-A Storey. How
do programmers ask and answer questions on the web?:
NIER track. In Software Engineering (ICSE), 2011 33rd
International Conference on, pages 804–807. IEEE, 2011.

[34] Bogdan Vasilescu, Andrea Capiluppi, and Alexander Sere-
brenik. Gender, representation and online participation:
A quantitative study of stackoverflow. In International
Conference on Social Informatics. ASE, 2012.

[35] John Whaley, Michael C. Martin, and Monica S. Lam. Au-
tomatic extraction of object-oriented component interfaces.
In Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA ’02,
pages 218–228, New York, NY, USA, 2002. ACM.

[36] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai.
Example overflow: Using social media for code recom-
mendation. In Recommendation Systems for Software
Engineering (RSSE), 2012 Third International Workshop
on, pages 38–42. IEEE, 2012.

