
In-Nimbo Sandboxing

Michael Maass, William L. Scherlis, and Jonathan Aldrich
Institute for Software Research

Carnegie Mellon University
{mmaass, wls, aldrich}@cs.cmu.edu

ABSTRACT
Sandboxes impose a security policy, isolating applications
and their components from the rest of a system. While
many sandboxing techniques exist, state of the art sand-
boxes generally perform their functions within the system
that is being defended. As a result, when the sandbox fails
or is bypassed, the security of the surrounding system can
no longer be assured. We experiment with the idea of in-
nimbo sandboxing, encapsulating untrusted computations
away from the system we are trying to protect. The idea
is to delegate computations that may be vulnerable or ma-
licious to virtual machine instances in a cloud computing
environment.

This may not reduce the possibility of an in-situ sand-
box compromise, but it could significantly reduce the conse-
quences should that possibility be realized. To achieve this
advantage, there are additional requirements, including: (1)
A regulated channel between the local and cloud environ-
ments that supports interaction with the encapsulated ap-
plication, (2) Performance design that acceptably minimizes
latencies in excess of the in-situ baseline.

To test the feasibility of the idea, we built an in-nimbo
sandbox for Adobe Reader, an application that historically
has been subject to significant attacks. We undertook a
prototype deployment with PDF users in a large aerospace
firm. In addition to thwarting several examples of existing
PDF-based malware, we found that the added increment of
latency, perhaps surprisingly, does not overly impair the user
experience with respect to performance or usability.

1. INTRODUCTION
Sandboxes are the most common way to secure systems

and components that are currently intractable to verify and
that we cannot trust. Application sandboxing is a technique
used to impose a security policy on an application. Rather
than assuring the compliance of an application or a compu-
tation with a policy, a sandbox is constructed to encapsulate
the application or computation and any malicious behavior

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSoS ’14 Raleigh, NC USA
Copyright 2014 ACM 978-1-4503-2907-1/14/04 ...$15.00.

it may manifest. The sandbox implements a security pol-
icy on control and data flows to reduce the likelihood and
consequences to a target system of malicious code execution
within the sandbox. Sandboxing is also useful for increasing
confidence in the execution of applications that are trusted
but that are nonetheless vulnerable, due to complexity or
other factors.

But what happens when the sandbox fails? This pa-
per presents and evaluates an application-focused sandbox-
ing technique that is intended to address both sides of the
risk calculation – mitigating the consequences of traditional
sandbox failures while also increasing the effort required by
an attacker attempting to compromise the target system.
Our technique is reminiscent of software as a service, thus
allowing us to evaluate the security benefits of those and
similar architectures. We present the technique, describe a
prototype we developed to support a field trial deployment,
and assess the technique according to a set of defined cri-
teria. Here is a summary of our hypotheses regarding the
in-nimbo technique for application sandboxing:

• Attack Surface Design Flexibility: In-nimbo sandbox-
ing provides flexibility in attack surface design. We fo-
cus on tailoring the sandbox to the application, which
doesn’t allow for a “one size fits all” implementation.
Our technique allows architects to more easily design
and implement an attack surface they can confidently
defend when compared to other techniques. This is
because the technique is less constrained by structures
within an existing client system.

• Attack Surface Extent: Our technique results in en-
capsulated components with smaller, more defensible
attack surfaces compared to the cases where the com-
ponent is encapsulated using other techniques. Along
with the previous criterion, this should have the effect
of diminishing the ”likelihood”part of the risk product.

• Consequence of Attack Success: Remote encapsulation
reduces the consequences of attack success. Our tech-
nique reduces the magnitude of the damage resulting
from an attack on the encapsulated component when
compared to the same attack on the component when
it is encapsulated using other techniques. That is, we
suggest that our approach diminishes the extent of con-
sequence in the risk product.

We also apply the following criteria:

• Performance: We focus on latency and ignore resource
consumption. Our technique slightly increases the user-



perceived latency of an encapsulated component com-
pared to the original version of the component. This is
based on data from our field-trial deployment, and in
this regard we do benefit from the fact that the encap-
sulated component is a large, complex, and relatively
slow vendor application.

• Usability: We focus on changes to the user experience
as well as ease of deployment. Our technique does
not substantially alter the user’s qualitative experi-
ence with the encapsulated component. Deployment
is straightforward, as described below.

As alluded to above, we evaluate these points based on data
from a field trial with disinterested users at a large aerospace
company. Performance measurements were taken from this
deployment. We should note that we were not able to con-
trol all features of the deployment, and there was some ar-
chitectural mismatch with respect to communications chan-
nels and cloud architecture. Additionally, our system is
an operationalized prototype with some inconvenient design
choices. The data we obtained nonetheless suggests that our
approach offers real benefits – even in the presence of these
limitations.

In sections below, we detail the design of the sandbox
architecture and the prototype we developed. The principal
user-visible change is in the form of window chroming as
seen by the user; this is a consequence of expedient features
of our prototype design.

We also present two thought experiments to illustrate the
potential flexibility our technique provides when designing
the attack surface. Finally, we present a structured compar-
ison between our implemented approach and a mainstream
approach to highlight the points above regarding the risk
product – controlling and minimizing the extent of the at-
tack surface and diminishing the consequences of attack suc-
cess.

Researchers have been working on encapsulation techniques
since at least 1993, when Wahbe[56] introduced the term
sandboxing to describe software-based fault isolation (SFI)
as a means of preventing distrusted modules from escap-
ing their fault domains. Since then a plethora of sandbox-
ing techniques have been introduced, including mainstream
uses such as the Java Runtime Environment in the 1990’s
and Microsoft’s Protected Mode for Internet Explorer 7 in
late 2006.

Modern applications that have been sandboxed are typ-
ically complex to a degree that defies most existing tech-
niques for finding and fixing vulnerabilities. Sandboxing
has helped architects make an application’s attack surface
smaller and more defensible. Essentially, the architect in-
creases the attacker’s costs by applying a security layer to
exposed computations. It is particularly valuable for ap-
plications that have been compromised repeatedly, are an
advantageous target to an attacker, or that cannot be veri-
fied using existing methods. In doing so, the defender effec-
tively reduces the verification problem to that of verifying
the sandbox.

In practice, sandboxes tend to combine a number of dis-
tinct encapsulation techniques to achieve their goal. For
example:

• chroot sandboxes (commonly referred to as chroot jails)
redirect the root of the filesystem for a specific applica-
tion [23]. This redirection has the effect of preventing

the application from accessing files that are not below
what it sees as the filesystem root.

• Google NaCl applies SFI and runtime isolation to pre-
vent memory corruption exploits in native code and
to constrain what the native code can do at runtime
respectively [57].

• Microsoft Internet Explorer’s Protected Mode works
by constraining the execution of risky components,
such as the HTML render, using rules encoded as in-
tegrity levels [12].

• TxBox intercepts all of the system calls made by an
application and ensures the calls do not violate a se-
curity policy [31].

• TRuE intercepts systems calls, employs SFI, and redi-
rects system resources [31].

The combination of techniques applied by each sandbox
varies both the types of policies that can be enforced by the
sandbox [19, 26] and how usable the sandbox is for the archi-
tect applying it. A chroot jail cannot prevent the execution
of arbitrary code via a buffer overflow, but chroot jails can
make sensitive files unavailable to the arbitrary code and are
quick and easy to deploy when compared to applying Google
NaCl to a component. Of course, these two sandboxes are
not intended to encapsulate the same types of applications
(locally installed desktop applications versus remote web ap-
plication components), but the comparison does illustrate
that the techniques applied by a sandbox have an impact on
both how widely a particular sandbox can be applied and
how it can fail to protect the underlying system.

Software complexity adds an additional wrinkle. Consider
Adobe Reader, which has as a robust PDF parser, a PDF
renderer, a JavaScript engine, a Digital Rights Management
engine, and other complex components critical to the ap-
plication’s function. It may be extremely difficult to find
a sandbox with the right combination of techniques to ef-
fectively encapsulate Reader without introducing significant
complexity in applying the sandbox itself. Even when break-
ing up these components for sandboxing purposes, the archi-
tect must apply a sandbox where the combination of sand-
boxing techniques is powerful enough to mitigate the threats
faced by the component while also applying the techniques
in a manner that is acceptable given the unique characteris-
tics and requirements of each sandboxed computation. Ad-
ditionally, the sandboxed components must be composed in
a way where the composition is still secure [36, 49]. If the
combination is not secure, it may be possible for an attacker
to bypass the sandbox, e.g. by hopping to an unsandboxed
component. The complexity may make the sandbox itself a
target, creating an avenue for the attacker to compromise
the sandbox directly.

In this paper we propose a sandboxing technique referred
to as in-nimbo sandboxing to address some of the shortcom-
ings of traditional sandboxing techniques. In-nimbo sand-
boxing leverages low value computing environments to al-
low defenders greater control over their attack surface, thus
channeling attackers to an attack surface an architect can
more confidently defend. The low value environment can be
located separately from the target system, so an exploit of
the sandboxed component (and any additional sandboxes in



the low value environment) has less opportunity to compro-
mise the system we are defending.

Our technique is further motivated in section 2. We dis-
cuss an in-nimbo sandbox prototype we built and deployed
for Adobe Reader and its performance in section 3. Sec-
tion 4 compares our in-nimbo sandbox with applying a local
sandbox to Reader. We look at thought experiments for ap-
plying in-nimbo sandboxing in section 5 before concluding
in section 6.

2. IN-NIMBO SANDBOXING
In this section we motivate the need for in-nimbo sand-

boxing by looking closer at general weaknesses in traditional
sandboxes and discuss characteristics of a more suitable en-
vironment for executing potentially vulnerable or malicious
computations. We then discuss a general model for in-nimbo
sandboxing that approximates our ideal environment.

2.1 Why In-Nimbo Sandboxing?
Most mainstream sandboxing techniques are in-situ, mean-

ing they impose security policies using only Trusted Com-
puting Bases (TCBs) within the system being defended. In-
situ sandboxes are typically retrofitted onto existing soft-
ware architectures [41, 42, 43, 52, 48, 55, 6] and may be
scoped to protect only certain components: those that are
believed to be both high-risk and easily isolatable [47, 2].
Existing in-situ sandboxing approaches decrease the risk
that a vulnerability will be successfully exploited, because
they force the attacker to chain multiple vulnerabilities to-
gether [46, 18] or bypass the sandbox. Unfortunately, in
practice these techniques still leave a significant attack sur-
face, leading to a number of attacks that succeed in defeating
the sandbox. For example, a weakness in Adobe Reader X’s
sandbox has been leveraged to bypass Data Execution Pre-
vention and Address Space Layout Randomization (ASLR)
due to an oversight in the design of the sandbox [20]. Ex-
perience suggests that, while in-situ sandboxing techniques
can increase the cost of a successful attack, this cost is likely
to be accepted by attackers when economic incentives align
in favor of perpetrating the attack.1 The inherent limitation
of in-situ techniques is that once the sandbox has been de-
feated, the attacker is also “in-situ” in the high-value target
environment, where he can immediately proceed to achieve
his goals.

In order to avoid the inherent limitations of in-situ sand-
boxing approaches, we propose that improved security may
be obtained by isolating vulnerable or malicious computa-
tions to ephemeral computing environments away from the
defended system. Our key insight is that if a vulnerable
computation is compromised, the attacker is left in a low-
value environment. To achieve his goals, he must still escape
the environment, and must do so before the ephemeral en-
vironment disappears. The defender controls the means by
which the attacker may escape, shaping the overall attack
surface to make it more defensible, thereby significantly in-
creasing the cost of attacks compared to in-situ approaches
while simultaneously reducing the consequences of successful
attacks.

1Google Chrome went unexploited at CanSecWest’s
Pwn2Own contest for three years. Then in 2012, Google
put up bounties of $60,000, $40,000, and $20,000 in cash for
successful exploits against Chrome. Chrome was success-
fully exploited three times [25].

We use the term ephemeral computing environment to re-
fer to an ideal environment whose existence is short, iso-
lated (i.e. low coupling with the defended environment),
and non-persistent, thus making it fitting for executing even
malicious computations. A number of environments may
approach the ideal of an ephemeral computing environment,
for example, Polaris starts Windows XP applications using
an application-specific user account that cannot access most
of the system’s resources [53]. Occasionally deleting the ap-
plication’s account would further limit the scope of a breach.
Terra comes even closer by running application specific vir-
tual machines on separate, tamper resistant hardware [24].
Terra requires custom hardware, complicated virtual ma-
chine and attestation architectures, and doesn’t outsource
risk to third parties. In this paper we focus on cloud environ-
ments. Cloud computing closely approximates ephemeral
environments, as a virtual computing resource in the cloud
is isolated from other resources through the combination of
virtualization and the use of separate infrastructure for stor-
age, processing, and communication. It may exist just long
enough to perform a computation before all results are dis-
carded at the cloud. We call this approach in-nimbo sand-
boxing.

Executing computations in the cloud gives defenders the
ability to customize the computing environment in which the
computation takes place, making it more difficult to attack.
Since cloud environments are ephemeral, it also becomes
more difficult for attackers to achieve persistence in their
attacks. Even if persistence is achieved, the cloud comput-
ing environment will be minimized with only the data and
programs necessary to carry out the required computation,
and so will likely be of low value to the attacker.2 In order
to escape to the high-value client environment, the attacker
must compromise the channel between the client and the
cloud. However, the defender has the flexibility to shape
the channel’s attack surface to make it more defensible.

To make the idea of in-nimbo sandboxing clear, consider
Adobe Reader X. Delegating untrusted computations to the
cloud is quite attractive for this application, as Reader in
general has been a target for attackers over several years.
As described more in section 3, we have built and exper-
imentally deployed in an industrial field trial an in-nimbo
sandbox for Reader that sends PDFs opened by the user
to a virtual machine running in a cloud. An agent on the
virtual machine opens the PDF in Reader. Users interact
with the instance of Reader that is displaying their PDF in
the cloud via the Remote Desktop Protocol (RDP). When
the user is done with the document, it is saved back to the
user’s machine and the virtual machine running in the cloud
is torn down. This example illustrates how a defender can
significantly reshape and minimize the attack surface.

2.2 Complementary Prior Work
Martignoni et al. have applied cloud computing to sand-

box computations within the cloud in an approach that is
complementary to ours [37]. Their trust model reverses ours:
whereas our model uses a public, low-trust cloud to carry out
risky computations on behalf of a trusted client, they use a

2There may still be some value to the attacker in the
compromised cloud machines, but this is now the cloud
provider’s problem, which he is paid to manage. This ability
to outsource risk to the provider is a significant benefit of
in-nimbo sandboxing from the point of view of the client.



private, trusted cloud to carry out sensitive computations
that the client is is not trusted to perform. They utilize
Trusted Platform Modules to attest to the cloud that their
client-end terminal is unmodified. They must also isolate
the terminal from any malicious computations on the client.
Our technique assumes security precautions on the side of
the public cloud provider—an assumption we feel is realistic,
as cloud providers already have a need to assume this risk.

The scenarios supported by the two techniques are com-
plementary, allowing the application of the two techniques
to different components of the same system. For example,
Martignoni’s sandbox may be used for performing particu-
larly sensitive operations such as online banking, while our
technique is useful in the same system for executing un-
trusted computations from the Internet. These choices re-
flect the varying trust relationships that are often present in
software systems.

2.3 General Model
There are good reasons to reduce the TCB required to

execute applications and entire operating systems [38, 40,
39, 50]. The idea is to completely isolate unrelated com-
putations from each other, and to use a TCB that is small
enough to be verified, thus reducing and localizing the attack
surface to a small, throughly vetted subset of the system’s
code.

In-nimbo sandboxing addresses this challenge by allowing
designers, even when working in legacy environments, flex-
ibility to design TCB(s) to suit their specific context, thus
channeling the attacker to a designer-chosen attack surface.
This is significantly more flexible as it allows designers to
achieve the benefits of a minimal TCB in current commod-
ity hardware/software systems, largely unconstrained by the
particular engineering decisions of those systems. When ap-
plying in-situ sandboxes, an architect is limited to apply-
ing the sandboxing techniques that are supported by the
instruction set, operating system, application type, etc., of
the system she is trying to defend. These challenges can be
particularly difficult to address when vendor software must
be sandboxed. However, in-nimbo sandboxes can limit the
majority of the attack surface to the communication channel
between the client and the cloud. The designer can design
a communication channel they are adequately prepared to
defend.

In general, in-nimbo sandboxes contain the following:

• A specialized transduction mechanism in the com-
puting environment we are trying to protect (the prin-
cipal computing environment) that intercepts invoca-
tions of untrusted computations and transfers them to
the high value TCB Architecture (see below) on the
same system. The transduction mechanism also re-
ceives results from the high value TCB architecture
and manages their integration into the rest of the sys-
tem.

• A high value TCB architecture that sends the un-
trusted computation and any necessary state to an
ephemeral computing asset, separate from the princi-
pal computing asset. The high value TCB architecture
receives the results of the computation and state from
the cloud, verifies both, and transfers them back to
the transduction mechanism. We use the term TCB
architecture to reflect the fact that our TCB(s) may

Figure 1: A general model of an in-nimbo sandbox-
ing showing the transduction mechanism and the
TCB architecture model. The circles with dashed
borders represent one or more TCBs that contain
the primary TCBs in each environment. The pri-
mary TCB in the high value environment (TCBHV1)
is responsible for sending requests and state to the
low value environment’s primary TCB (TCBLV1).
TCBLV1 performs any necessary computations and
returns state and results to the TCBHV1, which
must verify the results. The transduction mecha-
nism moves computations and results into and out
of the high value TCB architecture respectively.

be nested in or otherwise cooperate with another TCB
(e.g., another sandbox). The nested TCBs can thus
compensate for each other’s faults and oversights and
add redundancy. An attacker must counter each TCB
in the architecture to compromise the overall system.
In the case of the high value TCB architecture, this
could allow an attacker to compromise the system we
are trying to defend.

• The cloud executes untrusted computations in a low
value TCB architecture and sends results and state
back to the high value TCB architecture.

The components and their data flows are depicted in figure
1. By picking these components and the contents of the data
flows, the defenders effectively channel an antagonist to an
attack surface the defenders are confident they can protect.
An attacker must bypass or break every TCB in both TCB
architectures or bypass the transduction mechanism to suc-
cessfully compromise the high value environment.

3. CASE STUDY
In-nimbo sandboxing can be applied to sandboxing entire

applications or just selected components/computations. In
this section we look at the design of an in-nimbo sandbox
for Adobe Reader that we prototyped and experimentally
deployed at a large aerospace company. We then discuss the
basis comparing our sandbox with an in-situ sandbox for
Adobe Reader. In the last section, we discuss other uses for
in-nimbo sandboxes.



3.1 Why an In-Nimbo Sandbox for Adobe Reader?
Adobe Reader, hereafter referred to simply as Reader, has

been subject to numerous attacks since roughly 2008. To
make matters worse, its source code was recently stolen [17].
These attacks are unsurprising since Reader has historically
been an obvious path of least resistance for actors seeking
to execute targeted attacks [27, 10]:

• It has enjoyed a wide installed base in academia, in-
dustry, and government.

• Its purpose is to parse and render potentially extremely
complex inputs (PDF files) from potentially unknown
sources, where the inputs represent active content cre-
ated in complex and fully capable programming lan-
guages such as JavaScript. Version 1.7 of the PDF
Reference [7] is 1,310 pages, while the corresponding
ISO standard [30] weighs in at 756 pages in length not
counting supplements.3 To complicate matters, there
are numerous variations on the standard meant to ac-
commodate the needs of niches such as archiving [29],
graphic exchange [28], and several others. This com-
plexity explodes when we consider all of the standards
(e.g., font, cryptography, image, active content, movie,
audio, and form standards) on which PDF is depen-
dent.

• PDFs are essential and ubiquitous in many places where
layouts must be preserved across platforms and envi-
ronments.

• PDF viewers, including Reader, tend to be written in
unmanaged, weakly typed languages (primarily C/C++)
that result in applications that are intractable to verify
for security attributes.

These points combine to create a target for attack that is
likely continue to offer vulnerabilities and is likely available
on a multitude of machines worth compromising.

One common suggestion from the security community is
to deal with this issue by using alternative PDF viewers [8,
15, 32], which may not suffer from the same vulnerabili-
ties. But in fact many of these share code, because Adobe
licenses its PDF parser/renderer [14]. The advice nonethe-
less has some merit because even if an alternative viewer
contains the exact same vulnerability as Reader, an exploit
PDF that targets Reader won’t necessarily work “out of the
box” on an alternative. Many organizations, however, have
grown dependent on PDF’s more exotic features, such as fly-
through 3D models, forms that can be filled out and then
digitally signed by a user using hardware tokens, or embed-
ded multimedia in a wide range of formats. At the time of
this writing (late-2013), many of these types of features are
not supported by many of the alternative viewers.

Let us consider, therefore, an organization with needs
that require use of Reader, which has a significant, complex
attack surface to defend. We examined the vulnerability
streams (essentially RSS feeds of vulnerability reports) pro-
vided by NIST’s National Vulnerability Database. We only
used streams that contained a full years worth of data. The

3Adobe’s PDF Reference looks at the file format using
Reader’s implementation as the point of reference, while the
standard just looks at the format on its own without con-
sidering a concrete implementation.

Figure 2: The distribution of vulnerabilities discov-
ered in Reader where data was available for the en-
tire year.

census results in figure 2 show an increasing number of vul-
nerabilities per year since 2008,4 with a possible downward
trend starting in 2011. There is great diversity in where
the vulnerabilities reside in the code, as shown in figure 3.
(Sometimes a single vulnerability entry describes multiple
vulnerabilities,5 thus our results undercount how many vul-
nerabilities have actually been reported.) The vulnerable
component distribution in figure 3 was determined by cod-
ing all entries by hand that were identified as belonging to
Reader and where the coded Common Weakness Enumera-
tion (CWE) implicitly identified a component or a compo-
nent was explicitly named. As a result, our results likely
understate the diversity of vulnerabilities in Reader.

Adobe attempted to address these issues in mid-2010 by
sandboxing a subset of Adobe Reader X, and this could be
a cause of the decline shown in figure 2. (It is not clear if
the apparent slight decrease in reported Reader vulnerabili-
ties is attributable to better application security practices at
Adobe, the application of a sandbox, more bundled reports,
or some other cause.) As mentioned in section 2, cracks in
this sandbox have now been publicly exposed. While the
number of vulnerabilities appears to have decreased start-
ing in 2011, many of the vulnerabilities did became more
difficult to exploit due to the sandbox.

Others have attempted to detect malicious PDFs [9, 22,
33, 54, 35, 45, 51, 21, 5] with modest success even in the
best cases. A systematic analysis [34] substantiates the in-
adequacy of many techniques for detecting malicious PDFs.
We believe that even if detection methods advance, they will
never be adequate against advanced attackers. The sheer

4The number of vulnerabilities was determined by counting
how many vulnerability entries contained a cpe-lang:fact-
ref field with a name attribute containing the text
adobe:reader, adobe:acrobat, or adobe:acrobat_reader.
5When a vendor tracks multiple vulnerabilities separately
internally but discloses them in one bulletin with too few
details to separate them aside from proprietary vulnerability
identifiers, NIST tends to report all of the issues under one
Common Vulnerability Enumeration identifier.



Figure 3: The distribution of vulnerabilities in
Reader amongst identifiable components. This dis-
tribution is intended to show that problems in
Reader are so diverse there is no clear place to con-
centrate defensive efforts outside of sandboxing.

complexity involved in detecting every possible attack in a
format as massive as PDF is prohibitive. Additionally, sev-
eral of Reader’s components that have been vulnerable take
inputs that involve fully capable programming languages
such as JavaScript.

Additional comparison between in-nimbo sandboxing for
PDF’s and other defensive techniques appears in the ap-
pendix. The appendix characterizes several other defensive
techniques, defines the criteria used to compare them, and
compares the approaches in a criteria matrix.

In-nimbo sandboxing allows Reader to be executed in a
low value environment, thus bypassing the complexity con-
cerns detailed in this section in dealing with the richness of
the PDF standard. This analysis led us to design and build
an in-nimbo sandbox for Adobe Reader.

3.2 Design
To demonstrate the ability of an in-nimbo sandbox to sup-

port rich features, we set out with the goal of designing and
building a sandbox for Reader that can support a user click-
ing links in a PDF, filling out and saving forms, interact-
ing with multiple PDFs in the same session, printing PDFs,
copying and pasting data to and from a PDF, and interact-
ing with an embedded 3D model. We neglect features such
as signing PDF documents with a smart card and several
other non-trivial features Adobe advertises (though these
features are likely supported via the RDP implementation
we used). As an additional convenience, we decided that any
Reader settings changed by the user should persist across
their sandbox sessions. These design choices ensure the
user’s interactions with in-nimbo Reader are substantially
similar to their typical interactions with in-situ Reader. In
fact, aside from a few missing but less commonly used fea-
tures, the user’s interaction only differs in the appearance of
the window chroming.

Figure 4 shows a high-level structural model of our pro-
totype in-nimbo sandbox for Adobe Reader. The transduc-
tion mechanism consists of a file association between the
PDF file extension and nimbo client.py. This small script

Figure 4: An in-nimbo sandbox for Adobe Reader.

and its infrastructure is the primary TCB in the high value
environment (24 lines of code). When a PDF file is opened
nimbo client.py transfers the file to nimbo server.py running
in a cloud virtual machine instance. If a sandboxed session
does not yet exist, a new session is created. Otherwise, the
new PDF is opened as a new tab in the already open instance
of Reader.

The user interacts with PDFs opened in the sandboxed
version of Reader over an encrypted RDP connection. When
Reader, the RDP session, or the RDP client is closed, all of
the PDFs in the sandbox are sent back to nimbo client.py.
The PDFs must be returned to the high value client en-
vironment because the user may have performed an oper-
ation in the sandbox that changed the PDF, such as fill-
ing out and saving a form. After the PDFs are returned,
nimbo server.py restores the home directory of the in-nimbo
user account that runs Reader to its original state. The
cloud environment can always start virtual machines from a
clean template, but alternatively resetting the home direc-
tory can enable a virtual machine to be re-used, e.g., due to
high congestion. The account that runs Reader has limited
access to the rest of the system.

When a user clicks a web link in a PDF, that link is sent
to the nimbo client.py and opened on the workstation. If
the user does not want links to be opened on their worksta-
tion due to the risk of loading a potentially malicious site,
they could instead have links opened in an in-nimbo version
of their favorite browser. In this way, in-nimbo sandboxes
can be composed. Sandbox composition is useful in this
case because it prevents any one sandbox from becoming
too complicated, and, in particular, having an overly rich
attack surface.

3.3 Performance
Our prototype sandbox’s performance evaluation is lim-

ited by two factors: transfer rates and inefficiencies in the
cloud virtual machine set-up for the field trial. But even
with inefficiencies in our virtual machine set-up, user per-
ception of performance is comparable with Reader’s perfor-



mance locally. Transfer rates dominate the time between
when a user opens a PDF and when the user can interact
with the PDF, but this rate is typically limited by the con-
nection’s upload rate at the workstation. As a result, the
upload time statistics presented in this section are not in-
trinsic to in-nimbo sandboxing and may vary with different
connections. The statistics were gathered in our field trial
using an in-nimbo sandbox that was deployed as the com-
pany would typically deploy cloud applications. The mea-
surements as a whole provide evidence that the approach
performs acceptably for typical users.

The Python scripts use the same efficient file transfer
schemes used by FTP clients. The server prototype in the
cloud implements several optimizations, including queuing
virtual machines with Reader already running and waiting
for a user to connect. However, the infrastructure software
running on the cloud virtual machines is not optimized for
our use case. For example, establishing a connection with
RDP would be faster if the connection was initialized ahead
of time (i.e. subsequent connections via RDP to the virtual
machine are much faster than the first connection). This is
a side-effect of our choice to use Linux, X server, and xrdp.
The issue does not exist on Windows with the RDP server
Microsoft provides. It is also possible that xrdp can be mod-
ified to remove the issue. Table 1 summarizes results from
our industrial collaborator who used an internal cloud and
a Microsoft Windows client.

We measured performance with our collaborator by open-
ing a 1 megabyte (MB) PDF ten times. We decided to use
a 1 MB PDF after inspecting a corpus of about 200 PDFs
characteristic of the use cases of the users and averaging the
sizes of its contents. The corpus was collected by an engineer
over three years and included the types of PDFs an average
engineer encounters throughout their day: brochures, tech-
nical reports, manuals, etc. Most PDFs in the corpus were
on the order of a few hundred kilobytes, but a small number
of the PDFs were tens of MB in size.

For our measurements the high-value environment was
1,800 miles away from the datacenter hosting our cloud.
While we parallelize many of the operations required to get
to the point where the user can interact with the PDF, the
largest unit of work that cannot be comfortably parallelized
is transferring the PDF itself. In our tests, the user could
interact with our 1 MB PDF within 2.1 seconds, which com-
pares favorably to the 1.5 seconds it takes to interact with a
PDF run in Reader locally instead of in-nimbo. The Reader
start-up difference is due to the fact that the virtual machine
is much lighter than the workstation. The virtual machine
doesn’t need to run anti-virus, firewalls, intrusion preven-
tion systems, productivity software, and other applications
that slow down the workstation.

Though our sandbox increases the startup time, some-
times by several seconds in the case of large PDFs due to the
transfer time, we observed no performance issues on stan-
dard broadband connections in the United States when in-
teracting with the PDF. The sandbox also performed well
when running malicious PDFs that were collected when they
were used in attempted attacks targeted at our collabora-
tor’s employees. The malware did not escape the sandbox,
nor did it persist across sessions. Our results suggest that
our technique is currently best applied to longer running, in-
teractive computations unless the running time for the entire
initialization process is negligible. The aerospace company

PDF Size 1 MB
Average upload time 2.1 +/- 0.3 seconds*
Average Adobe Reader start time in-nimbo 0.5 seconds
Average time to establish RDP channel 1.5 seconds
Average time until user can interact 2.1 seconds
Distance from client to cloud 1,800 miles
Average Adobe Reader start time in-situ 1.5 seconds

Table 1: Performance metrics for an in-nimbo sand-
box using a cloud internal to an enterprise and a Mi-
crosoft Windows client. Figures based on 10 runs.
The upload time is the primary bottleneck.
*Confidence level: 95%

we worked with is currently evaluating whether or not to
transition the sandbox into production for day-to-day use
by high-value targets within the company (e.g. senior exec-
utives).

3.4 Limitations
The sandbox prototype does not support the most re-

cent features of PDF because we used the Linux version
of Reader, which is stuck at version 9. This limitation is
an accidental consequence of our expedient implementation
choices and is not intrinsic to in-nimbo sandboxing. It is pos-
sible, for example, to instead run Windows with the latest
version of Reader in the cloud virtual machine, but this set-
up would not substantially influence our performance results
given the dominance of the transfer rate. (Furthermore, it is
possible to run newer Windows versions of Reader in Linux.
Adobe Reader X currently has a Gold rating in the WINE
AppDB for the latest version of WINE [1]. The AppDB
claims that a Gold rating means the application works flaw-
lessly after applying special, application specific configura-
tion to WINE.)

Our malware test of the sandbox is limited by the fact that
we didn’t have access to malicious PDFs directly targeting
Linux or malware that would attempt to break out of our
sandbox.

4. IN-NIMBO ADOBE READER VS. IN-SITU
ADOBE READER X

In this section we make a structured comparison between
our in-nimbo sandbox for Reader with an in-situ Adobe
Reader. First, we summarize the framework we’ll use for
the comparison, and then we apply the framework. The
purpose of the framework is to support a systematic ex-
ploration of our hypothesis that in-nimbo sandboxing leads
to attack surfaces that (1) are smaller and more defensible
and (2) offer reduced consequences when successful attacks
do occur. The framework is necessarily multi-factorial and
qualitative because quantification of attack surfaces and the
potential extent of consequences remains elusive.

4.1 Structuring the Comparison
To compare sandboxes we consider what happens when

the sandbox holds, is bypassed, or fails. A sandbox is by-
passed when an attacker can accomplish his goals by jump-
ing from a sandboxed component to an unsandboxed com-
ponent. A sandbox fails when an attacker can accomplish
his goals from the encapsulated component by directly at-
tacking the sandbox. The key distinction between a sandbox



bypass and a failure is that any malicious actions in the case
of a bypass occur in a component that may have never been
constrained to prevent any resulting damage. In a failure
scenario, the malicious actions appear to originate from the
sandbox itself or the encapsulated component, which creates
more detectable noise than the case of a bypass. A bypass
can occur when an insufficient security policy is imposed,
but a failure requires a software vulnerability. These dimen-
sions help us reason about the consequences of a sandbox
break, thus allowing us to argue where in the consequences
spectrum a particular sandbox falls within a standard risk
matrix. To place the sandbox in a risk matrix’s likelihood
spectrum (i.e. the probability of a successful attack given
the sandbox), we consider how “verifiable” the sandbox is.
Our risk matrix only contains categories (e.g. low, medium,
or high) that are meaningful to the comparison at hand. Fi-
nally, we rank the outcomes that were enumerated within
the argument by their potential hazards, which helps high-
light the difference between risk categories.

4.2 Comparing In-Nimbo Adobe Reader to In-
Situ Adobe Reader

Adobe Reader X’s sandbox applies features of Microsoft
Windows to limit the damage that an exploit can do. The
Reader application is separated into a low privilege (sand-
boxed) principal responsible for parsing and rendering PDFs
and a user principal responsible for implementing higher
privilege services such as writing to the file system. The
sandboxed principal is constrained using limited security
identifiers, restricted job objects, and a low integrity level.
The higher privilege principal is a more stringently vetted
proxy to privileged operations. The sandboxed principal can
interact with the user principal over a shared-memory chan-
nel. The user principal enforces a whitelist-based security
policy on any interactions from the sandboxed principal that
the system administrator can enhance. Under ideal circum-
stances the sandboxed principal is still capable of reading
secured objects (e.g., files and registry entries),6 accessing
the network, and reading and writing to the clipboard with-
out help from the user principle.

The consequences of an attack on Reader, even when the
sandbox holds, are high. In its default state, a PDF-based
exploit could still exfiltrate targeted files over the network
without any resistance from the sandbox. If the sandbox
is successfully bypassed, the attacker can leverage informa-
tion leakages to also bypass mitigations such as ASLR as
mentioned in section 2. Such bypasses, which are publicly
documented, are likely to be serious enough to allow a suc-
cessful attack to install malware on the targeted machine. If
other bypass techniques exist, they could allow an attacker
to perform any computations the user principal can perform.
These outcomes are ranked from most to least damaging in
figure 5. Overall, the consequences generally fall into one of
the following categories:

• The integrity of the PDF and viewer are compromised

• The confidentiality of the PDF is compromised

• The availability of reader is compromised

6Windows Integrity Levels can prevent read up, which stops
a process from reading objects with a higher integrity level
than the process. Adobe did not exercise this capability
when sandboxing Adobe Reader X.

In-Situ Reader X

Install malware on the defended workstation
Perform any computation the user principal can perform
Exfiltrate workstation data on the network
Read files on the workstation filesystem

In-Nimbo Reader

Spy on opened PDFs in the cloud
Abuse cloud resources for other computations

Figure 5: Likely sandbox “consequence outcomes”
ranked from most damaging at the top to least dam-
aging at the bottom. Each sandbox’s outcomes are
independent of the other sandbox’s.

• The security (confidentiality, integrity, availability) of
the cloud infrastructure is compromised

• The security of the high value environment is compro-
mised

The Reader sandbox is moderately verifiable. It is writ-
ten in tens of thousand of lines of C that are heavily based
on the open-source sandbox created for Google Chrome.
The design and source code were manually evaluated by ex-
perts from several independent organizations who also im-
plemented a testing regime. According to Adobe, source
code analysis increased their confidence in the sandbox as its
code was written. The operating system features on which
it depends are complex; however, they were implemented
by a large software vendor that is known to make use of
an extensive Secure Development Lifecycle for developing
software [44].

Figure 6 summarizes our qualitatively defined risk for Reader
X’s sandbox against Reader running in our in-nimbo sand-
box. The in-nimbo sandbox has a lower consequence (from
the standpoint of the user) because exploits that are success-
ful against Reader may only abuse the cloud instance Reader
runs in. The operator of the cloud instance may re-image
the instance and take action to prevent further abuse. How-
ever, to abuse the cloud instance the attacker would have
to both successfully exploit Reader and bypass or break ad-
ditional sandboxing techniques we apply in the cloud. The
exploit must either not crash Reader, or its payload must
survive the filesystem restoration and account log-off that
would occur if Reader crashed due to the exploit (see 3.1 for
details).

The attacker could potentially bypass the sandbox by trick-
ing our mechanism into opening the PDF in a different lo-
cally installed application capable of rendering PDFs. For
example, the attacker may disguise the PDF file as an HTML
file, causing it to be opened in the browser if the trans-
duction mechanism is only based on file associations. The
browser might have an add-on installed that inspects the
document, determines it is a PDF regardless of extension,
and then renders the PDF. While this attack would elimi-
nate the benefit of the sandbox, it is not likely to be suc-
cessful if the user verifies there is not a local PDF viewer
installed/enabled (an important part of configuration). The
transduction mechanism can also simply use a richer means
of determining whether or not a file is a PDF.

The sandbox could fail in a way that compromises the user
by either an exploitable vulnerability in our 273 line Python-



based TCB (and its infrastructure), the Java RDP client we
use, or a kernel mode vulnerability exploitable from either.
Such a failure would require first successfully compromising
the cloud instance as discussed earlier and then finding an
interesting vulnerability in our small, typesafe components.
In other words, a failure of the sandbox requires that the
TCBs in both the client and the cloud fail.

Another potential point of concern is that the cloud in-
stance’s hypervisor could be compromised, thus compromis-
ing other virtual machines managed by that hypervisor or
even the entire cloud. We do not consider this issue in our
analysis because our sandbox is a use of the cloud, not an
implementation of a cloud. One of the key selling points
behind using a cloud environment is that the provider man-
ages the infrastructure; they take on the risk and manage-
ment expenses. The ability to outsource risk that cannot be
eliminated to a party that is willing to assume the risk is a
key advantage of our approach. Additionally, our technique
does not add a new threat to clouds in the sense that anyone
can rent access to any public cloud for a small sum of money
and attempt to compromise the hypervisor. Finally, we are
primarily sandboxing computations because we don’t trust
them. In the case of the Reader sandbox, a compromise
could cause sensitive PDFs to be stolen, which would still
be better than the compromise of an entire workstation full
of sensitive information.

In short, the in-nimbo sandbox is easier to verify and re-
quires more work for an attacker to achieve enough access
to compromise the client. Adobe Reader X’s sandbox is
harder to verify and allows the workstation it is running
on to be compromised even if the sandbox holds. Due to
the well known characteristics of each sandbox, we consider
this evaluation to be reasonable evidence of the validity of
our hypotheses that in-nimbo sandboxing leads to smaller,
more defensible attack surfaces and reduced consequences
in the event of successful attacks. While we only evalu-
ated one sandbox in addition to our in-nimbo sandbox and
for only one application, the results of the evaluation are
largely influenced by issues that are fundamental to in-situ
sandboxing when compared to in-nimbo sandboxing.

C
o
n
s
e
q
u
e
n
c
e High In-Situ Reader X

Low In-Nimbo Reader
Easy Moderate
Likelihood (Verifiability)

Figure 6: A grid summarizing our evaluation of
Reader X and our In-Nimbo sandbox for Reader.

5. IN-NIMBO THOUGHT EXPERIMENTS
In this section we consider the potential of applying the

in-nimbo sandboxing technique for a subset of HTML5 and
for protecting proprietary data. There are other examples
(not elaborated here) that would be similar to our sandbox
for Reader, such as an in-nimbo sandbox for Microsoft Word
or Outlook.

5.1 Selective Sandboxing
HTML5 specifies a canvas element [13] that provides scripts

with a raster-based surface for dynamically generating graph-
ics. By default, browsers must serialize the image to a PNG
for presentation to the user (other raster formats may be

Figure 7: The model for an in-nimbo sandbox for
HTML5 canvases.

specified). For an animated surface, the serialized image rep-
resents the currently visible frame. Unfortunately, early im-
plementations of such rich browser features have continually
been prone to vulnerabilities. CVE-2010-3019 documents a
heap-based buffer overflow in Opera 10’s implementation of
HTML5 canvas transformations [3]. A stack-based overflow
was also recently discovered in Mozilla Firefox’s HTML5
canvas implementation[4]. As a result, a risk-focused user
may desire that HTML5 canvas computations be sandboxed.

Figure 7 shows the model of an HTML5 canvas in-nimbo
sandbox. In this case, the transduction mechanism is a
proxy running between a browser and the Internet. The
transduction mechanism intercepts and inspects HTML pages
for canvas declarations. When a canvas declaration is de-
tected, the proxy collects all referenced JavaScript code and
sends the page and scripts to the high value TCB architec-
ture (the client). The client sends the collected HTML and
JavaScript to the cloud instance, which utilizes an instru-
mented browser to render any drawing on the canvas. The
canvas is replaced with the image file the browser gener-
ates (per the HTML5 standard) when the rendering script
finishes. When a loop in the rendering script is detected
(i.e. an animation is present), the canvas declaration is re-
placed with an image tag pointing to a 3 second animated
GIF composed of all of the frames the script rendered in
that time period. All JavaScript that drew on the canvas
is removed, and the cloud returns the re-written JavaScript,
HTML, and PNG to the client. The client verifies the im-
age file and checks that no unexpected code/markup changes
have been made before sending the results back to the proxy.
The proxy passes the modified results to the browser.

This sandbox would effectively confine exploits on HTML5
canvas implementations to our low value computing environ-
ment. Furthermore, it would reduce the verification problem
from verifying the full HTML5 canvas implementation and
its dependencies to that of verifying raster image formats
supported by the canvas tag and ensuring that no code has
been added to the intercepted files (i.e., code has only been
removed and/or canvas tags have been replaced with image
tags). While the sandbox does not support animated can-
vases longer than 3 seconds or whose visual representation is
dependent on real-time user input, a user who cannot accept
such limitations can use a browser that is fully sandboxed
in-nimbo such as Reader was in the previous section. It
is also possible that an alternative implementation of this



sandbox could support longer animations and user input.

5.2 Protecting Proprietary Algorithms
Modern audio players allow users to manage libraries of

tens of thousands of songs and automatically perform experience-
enhancing operations such as fetching album covers from
the Internet. More advanced players also attempt to iden-
tify songs and automatically add or fix any missing or cor-
rupt metadata, a process known as auto-tagging. Unfortu-
nately, the act of robustly parsing tags to identify an al-
bum and artist to fetch a cover is potentially error prone
and complicated. CVE-2011-2949 and CVE-2010-2937 doc-
ument samples of ID3 parsing vulnerabilities in two popular
media players [16, 11]. Furthermore, an audio player vendor
may consider all steps of the waveform analysis they use to
identify untagged audio files to be proprietary. To address
these concerns, the vendor may wish to design their appli-
cation to make use of an in-nimbo sandbox to perform these
operations.

Figure 8 shows the model of a possible in-nimbo sandbox
for fetching album covers and performing auto-tagging. The
transduction mechanism is the audio player itself. When the
player detects an audio file that is new it sends the file to the
high value TCB architecture (the client). The client sends
the audio file to the cloud instance, which performs the task
of automatically adding any missing tags to the audio file
and fetching the correct album cover. The cloud sends the
tagged audio file and album cover to the client, where it will
be verified that only the audio files tags have changed, that
they comply with the correct tagging standard, and that the
album cover is of the expected format and well formed. The
client will then send the verified audio file and album cover
to the audio player, which will place both into their correct
places in the library.

Figure 8: The model for an in-nimbo sandbox for an
auto-tagging audio player.

Assuming that all managed audio files make their way
through the in-nimbo sandbox at least once, this sandbox ef-
fectively mitigates the risk of robustly parsing tags while also
not exposing the inner-workings of the proprietary waveform
algorithm. Potential limitations are curtailed by intention-
ally designing the application to utilize an in-nimbo sand-
box.

6. CONCLUSIONS AND FUTURE WORK
In this paper we argued that we can improve system se-

curity (confidentiality, integrity, availability) by moving un-
trusted computations away from environments we want to
defend. We did so by first introducing one approach for
achieving that idea, a category of sandboxing techniques we
refer to as in-nimbo sandboxing. In-nimbo sandboxes lever-
age cloud computing environments to perform potentially
vulnerable or malicious computations away from the envi-
ronment that is being defended. Cloud computing environ-
ments have the benefit of being approximately ephemeral,
thus malicious outcomes do not persist across sandboxing
sessions. We believe this class of sandboxing techniques is
valuable in a number of cases where classic, in-situ sand-
boxes do not yet adequately isolate a computation.

We argued that in-situ sandboxing does not adequately
reduce risk for Adobe Reader, thus motivating us to build
an in-nimbo sandbox for Reader. We then discussed the
design of an in-nimbo sandbox for Reader and presented
a structural argument based on five evaluation criteria that
suggests that it is more secure and that, with respect to per-
formance, has a user experience latency subjectively similar
to that of Reader when run locally. After arguing that our
sandbox is more secure than an in-situ sandbox for Reader,
we looked at how in-nimbo sandboxes might be built for a
couple of other applications that represent different in-nimbo
use cases.

Our argument for why our sandbox is better is structured
but necessarily qualitative. We believe that many security
dimensions cannot now be feasibly quantified. We nonethe-
less suggest that structured criteria-based reasoning building
on familiar security-focused risk calculus can lead to solid
conclusions. Indeed, we feel the approach is an important
intermediate step towards the ideal of quantified and proof-
based approaches.

7. ACKNOWLEDGEMENT
This material is based upon work supported by the Army

Research Office under Award No. W911NF-09-1-0273 and
by the Air Force Research Laboratory under Award No.
FA87501220139.

8. REFERENCES
[1] AppDB Adobe Reader. http://goo.gl/Fx9pd.

[2] Chromium sandbox.
http://www.chromium.org/developers/design-
documents/sandbox/.

[3] National vulnerability database (NVD) national vulnerability
database (CVE-2010-3019).
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-
3019.

[4] National vulnerability database (NVD) national vulnerability
database (CVE-2013-0768).
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-
0768.

[5] PDF x-RAY. https://github.com/9b/pdfxray public.

[6] What is protected view? - word - office.com.
http://office.microsoft.com/en-us/word-help/what-is-protected-
view-HA010355931.aspx.

[7] PDF Reference, sixth edition ed. Adobe Systems Incorporated,
Nov. 2006.

[8] Two new vulnerabilities in Adobe Acrobat Reader.
http://www.f-secure.com/weblog/archives/00001671.html, Apr.
2009.

[9] Anatomy of a malicious PDF file. http://goo.gl/VlLmU, Feb.
2010.



[10] Military targets.
http://www.f-secure.com/weblog/archives/00002203.html, July
2011.

[11] National vulnerability database (NVD) national vulnerability
database (CVE-2011-2949).
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-
2949, Oct.
2011.

[12] Understanding and working in protected mode internet
explorer. http://msdn.microsoft.com/en-
us/library/bb250462(v=vs.85).aspx, Feb.
2011.

[13] 4.8.11 the canvas element - HTML5.
http://www.w3.org/TR/html5/the-canvas-element.html#the-
canvas-element, Mar.
2012.

[14] Adobe PDF library SDK | adobe developer connection.
http://www.adobe.com/devnet/pdf/library.html, Aug. 2012.

[15] Google warns of using adobe reader - particularly on linux.
http://www.h-online.com/security/news/item/Google-warns-
of-using-Adobe-Reader-particularly-on-Linux-1668153.html,
Aug. 2012.

[16] National vulnerability database (NVD) national vulnerability
database (CVE-2010-2937).
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-
2937, Jan.
2012.

[17] Arkin, Brad. Illegal access to Adobe source code.
http://blogs.adobe.com/asset/2013/10/illegal-access-to-adobe-
source-code.html, Oct.
2013.

[18] Buchanan, K., Evans, C., Reis, C., and Sepez, T. Chromium
blog: A tale of two pwnies (Part 2).
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-
2.html, June
2012.

[19] Clarkson, M. R., and Schneider, F. B. Hyperproperties.
Journal of Computer Security 18, 6 (2010), 1157–1210.

[20] Delugre, G. Bypassing ASLR and DEP on Adobe Reader X -
Sogeti ESEC Lab. http://esec-lab.sogeti.com/post/Bypassing-
ASLR-and-DEP-on-Adobe-Reader-X, June
2012.

[21] Esparza, J. peepdf - PDF analysis and creation/modification
tool. http://code.google.com/p/peepdf/.

[22] Fratantonio, Y., Kruegel, C., and Vigna, G. Shellzer: a tool
for the dynamic analysis of malicious shellcode. In Proceedings
of the 14th international conference on Recent Advances in
Intrusion Detection (Berlin, Heidelberg, 2011), RAID’11,
Springer-Verlag, pp. 61–80.

[23] Friedl, S. Best practices for UNIX chroot() operations.
http://www.unixwiz.net/techtips/chroot-practices.html.

[24] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and
Boneh, D. Terra: A virtual machine-based platform for trusted
computing. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2003),
SOSP ’03, ACM, pp. 193–206.

[25] Goodin, D. At hacking contest, Google Chrome falls to third
zero-day attack (Updated).
http://arstechnica.com/business/news/2012/03/googles-
chrome-browser-on-friday.ars, Mar.
2012.

[26] Hamlen, K. W., Morrisett, G., and Schneider, F. B.
Computability classes for enforcement mechanisms. ACM
Transactions on Programming Languages and Systems
(TOPLAS) 28, 1 (2006), 175–205.

[27] Higgins, K. Spear-phishing attacks out of China targeted source
code, intellectual property. http://goo.gl/8RzyT, Jan. 2010.

[28] International Organization for Standardization, I. ISO
15929:2002 - International Organization for Standardization.
http://goo.gl/SUP1A.

[29] International Organization for Standardization, I. ISO
19005-2:2011 - International Organization for Standardization.
http://goo.gl/mtHWw.

[30] International Organization for Standardization, I. ISO
32000-1:2008 - International Organization for Standardization.

[31] Jana, S., Porter, D. E., and Shmatikov, V. TxBox: Building
secure, efficient sandboxes with system transactions. In 2011
IEEE Symposium on Security and Privacy (SP) (May 2011),
IEEE, pp. 329–344.

[32] Landesman, M. Free PDF readers: Alternatives to Adobe

Reader and Acrobat.
http://antivirus.about.com/od/securitytips/tp/Free-Pdf-
Readers-Alternatives-To-Adobe-Reader-Acrobat.htm.

[33] Laskov, P., and Srndic, N. Static detection of malicious
JavaScript-bearing PDF documents. In Proceedings of the 27th
Annual Computer Security Applications Conference (New
York, NY, USA, 2011), ACSAC ’11, ACM, pp. 373–382.

[34] Maiorca, D., Corona, I., and Giacinto, G. Looking at the bag
is not enough to find the bomb: An evasion of structural
methods for malicious PDF files detection. In Proceedings of
the 8th ACM SIGSAC Symposium on Information, Computer
and Communications Security (New York, NY, USA, 2013),
ASIA CCS ’13, ACM, pp. 119–130.

[35] Maiorca, D., Giacinto, G., and Corona, I. A pattern
recognition system for malicious PDF files detection. In
Proceedings of the 8th International Conference on Machine
Learning and Data Mining in Pattern Recognition (Berlin,
Heidelberg, 2012), MLDM’12, Springer-Verlag, pp. 510–524.

[36] Mantel, H. On the composition of secure systems. In
Proceedings of the IEEE Symposium on Security and Privacy,
2002 (2002), IEEE, pp. 88–101.

[37] Martignoni, L., Poosankam, P., Zaharia, M., Han, J.,
McCamant, S., Song, D., Paxson, V., Perrig, A., Shenker, S.,
and Stoica, I. Cloud Terminal: Secure access to sensitive
applications from untrusted systems. In Proceedings of the
2012 USENIX conference on Annual Technical Conference
(Berkeley, CA, USA, 2012), USENIX ATC’12, USENIX
Association, pp. 14–14.

[38] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V.,
and Perrig, A. TrustVisor: Efficient TCB reduction and
attestation. In IEEE Symposium on Security and Privacy
(SP), 2010 (2010), IEEE, pp. 143–158.

[39] McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., and
Seshadri, A. How low can you go?: Recommendations for
hardware-supported minimal TCB code execution. SIGOPS
Oper. Syst. Rev. 42, 2 (Mar. 2008), 14–25.

[40] McCune, J. M., Parno, B. J., Perrig, A., Reiter, M. K., and
Isozaki, H. Flicker: An execution infrastructure for TCB
minimization. SIGOPS Oper. Syst. Rev. 42, 4 (Apr. 2008),
315–328.

[41] McQuarrie, L., Mehra, A., Mishra, S., Randolph, K., and
Rogers, B. Inside Adobe Reader Protected Mode - part 1 -
design. http://blogs.adobe.com/asset/2010/10/inside-adobe-
reader-protected-mode-part-1-design.html, Oct.
2010.

[42] McQuarrie, L., Mehra, A., Mishra, S., Randolph, K., and
Rogers, B. Inside adobe reader protected mode - part 2 - the
sandbox process. http://blogs.adobe.com/asset/2010/10/inside-
adobe-reader-protected-mode-%E2%80%93-part-2-
%E2%80%93-the-sandbox-process.html, Oct.
2010.

[43] McQuarrie, L., Mehra, A., Mishra, S., Randolph, K., and
Rogers, B. Inside adobe reader protected mode - part 3 -
broker process, policies, and inter-process communication.
http://blogs.adobe.com/asset/2010/11/inside-adobe-reader-
protected-mode-part-3-broker-process-policies-and-inter-
process-communication.html, Nov.
2010.

[44] Michael Howard, and Steve Lipner. The Security
Development Lifecycle. Microsoft Press, May 2006.

[45] Nedim Srndic, and Pavel Laskov. Detection of malicious PDF
files based on hierarchical document structure. In Network and
Distributed System Security Symposium (2013).

[46] Obes, J., and Schuh, J. Chromium blog: A tale of two pwnies
(Part 1). http://blog.chromium.org/2012/05/tale-of-two-
pwnies-part-1.html, May
2012.

[47] Sabanal, P., and Yason, M. Playing in the Reader X sandbox.
Black Hat USA Briefings (July 2011).

[48] Schuh, J. Chromium blog: The road to safer, more stable, and
flashier flash. http://blog.chromium.org/2012/08/the-road-to-
safer-more-stable-and.html, Aug.
2012.

[49] Sewell, P., and Vitek, J. Secure composition of insecure
components. In Proceedings of the 12th IEEE Computer
Security Foundations Workshop, 1999. (1999), IEEE,
pp. 136–150.

[50] Singaravelu, L., Pu, C., Hartig, H., and Helmuth, C. Reducing
TCB complexity for security-sensitive applications: three case
studies. SIGOPS Oper. Syst. Rev. 40, 4 (Apr. 2006), 161–174.



[51] Smutz, C., and Stavrou, A. Malicious PDF detection using
metadata and structural features. In Proceedings of the 28th
Annual Computer Security Applications Conference (New
York, NY, USA, 2012), ACSAC ’12, ACM, pp. 239–248.

[52] Stender, S. Inside adobe reader protected mode - part 4 - the
challenge of sandboxing.
http://blogs.adobe.com/asset/2010/11/inside-adobe-reader-
protected-mode-part-4-the-challenge-of-sandboxing.html, Nov.
2010.

[53] Stiegler, M., Karp, A. H., Yee, K.-P., Close, T., and Miller,
M. S. Polaris: Virus-safe computing for windows XP. Commun.
ACM 49, 9 (Sept. 2006), 83–88.

[54] Tzermias, Z., Sykiotakis, G., Polychronakis, M., and
Markatos, E. P. Combining static and dynamic analysis for the
detection of malicious documents. In Proceedings of the Fourth
European Workshop on System Security (New York, NY,
USA, 2011), EUROSEC ’11, ACM, pp. 4:1–4:6.

[55] Uhley, P., and Gwalani, R. Inside flash player protected mode
for firefox. http://blogs.adobe.com/asset/2012/06/inside-flash-
player-protected-mode-for-firefox.html, June
2012.

[56] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L.
Efficient software-based fault isolation. SIGOPS Oper. Syst.
Rev. 27, 5 (Dec. 1993), 203–216.

[57] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R.,
Ormandy, T., Okasaka, S., Narula, N., and Fullagar, N.
Native client: a sandbox for portable, untrusted x86 native
code. Commun. ACM 53, 1 (Jan. 2010), 91–99.

APPENDIX
A. PDF DEFENSE CONCEPT RANKINGS

Alternative mitigations for PDF. Other possible mit-
igations, such as transforming a PDF to a more defensible
format, are important to consider. As noted, these must
contend with the challenges of supporting some of the exotic
features mentioned in section 3.1 if they are to be usable by
the widest possible audience. Table 2 summarizes the main
criteria that we believe a more optimal defense concept for
PDF must manifest. Table 3 shows a criteria matrix with
some evaluation points to assist in comparing format trans-
formation to an in-nimbo sandbox. We compared more than
two approaches for defending PDF, but this is sufficient to
illustrate the criteria-based approach.

Table 2: A summary of the criteria a more optimal
PDF defense might manifest.

Criteria Description

Simple File
Transduction

The PDF must be able to cross between a
native and either transformed or
sandboxed contexts. For example, in local
sandboxing a PDF must be intercepted
and placed in the sandbox’s file system.
There must be a simple and efficient
mechanism for performing this operation.

Native State
Persistence

Modern readers may persist state in the
form of the last page viewed, digital
signatures on subsets of the file, and form
content. This state should be maintained
as it would be if the PDF was interacted
with in a traditionally installed fully
featured reader.

Advanced
PDF Feature
Support

PDFs can be used to interchange Flash
content, movies, audio, and 3D models to
name few examples of advanced content.
Additionally, segments of a PDF can be
digitally signed, locked for printing, etc.
Maintaining support for many of these
features (not necessarily all) is
paramount.

Low
Breakout
Risk

There should be little chance that an
exploit succeeds in compromising a target
workstation.

High
Breakout
Recovery

If an exploit breaks the defense concept,
recovery should be trivial.

Low
Performance
Overhead

The defense concept should not
unacceptably harm performance.

Low
Adoption
Overhead

Defense concepts should be easy for
individuals and enterprises to effectively
place into operation.

Table 3: A criteria matrix that compares Format
Transformation and In-Nimbo Sandboxing in de-
fending PDF to an unsandboxed version of Reader.

Format Trans. In-Nimbo Sandbox
Simple File Transduction Minimal Change Degraded
Native State Persistence Much Degraded Improved
Adv. PDF Support Much Degraded Minimal Change
Low Breakout Risk Improved Much Improved
High Breakout Recovery Minimal Change Improved
Printing Support Minimal Change Minimal Change
Low Performance Ovrhd Minimal Change Minimal Change
Low Adoption Ovrhd Minimal Change Minimal Change


