User-Centered Design of Permissions,
Typestate, and Ownership in the
Obsidian Blockchain Language

Michael Coblenz

Jonathan Aldrich

Joshua Sunshine

Brad A. Myers

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15217, USA
mcoblenz@cs.cmu.edu
jonathan.aldrich@cs.cmu.edu
sunshine@cs.cmu.edu
bam@cs.cmu.edu

About the authors: Michael Coblenz is a fourth-year PhD student

in the Computer Science Department at Carnegie Mellon University.

After working as a software engineer at Apple for eight years, he
returned to academia to research new methods for creating and
evaluating programming languages to make software engineers
more effective. He is advised by Jonathan Aldrich, a Professor in
the Institute for Software Research, and Brad Myers, a Professor
at the Human-Computer Interaction Institute. Joshua Sunshine is a
Systems Scientist at the Institute for Software Research.

Copyright © 2018 Michael Coblenz, Jonathan Aldrich, Joshua Sunshine, and Brad A.
Myers. This work is licensed under the Creative Commons Attribution 2.0 Generic
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Abstract

Blockchains have been proposed to support transactions
on distributed, shared state, but hackers have exploited se-
curity vulnerabilities in existing programs. In this paper, we
describe how we are applying user-centered design in the
creation of Obsidian, a new language that uses typestate
and linearity to support stronger safety guarantees than
current approaches for programming blockchain systems.
We show how an iterative, user-centered design process
can be used to elicit design feedback and show how we in-
corporated that feedback into the language. We found that
formative user studies, even with a small number of partic-
ipants, can lead to useful insights in language design. The
study results motivated important language changes, such
as adding explicit ownership transfer syntax and changing
the structure of state initialization in state transitions.

Introduction

Blockchains have been proposed to address a variety of
security and reliability objectives for computing systems.
By recording all transactions in a tamper-resistant ledger,
blockchains attempt to facilitate secure, trusted compu-
tation on a network of untrusted peers. Programs, called
smart contracts [17], can be deployed in the ledger; once
deployed, they can maintain state. For example, a smart
contract might represent a bank account and store a quan-
tity of virtual currency. Clients could conduct transactions

with bank accounts by invoking the appropriate interfaces
on the corresponding smart contracts.

Proponents have suggested that blockchains be used for a
plethora of applications, such as finance, healthcare [14],
supply chain management [5], and solar energy production
[6]. Unfortunately, prominent blockchain applications have
included security vulnerabilities, through which over $80
million worth of virtual currency was stolen [4, 3]. Because
platforms require that contracts are immutable, bugs cannot
be fixed easily. Furthermore, the application domain for
blockchain is typically correctness-critical: bugs can have
serious financial (consider banking) or safety (consider

the food supply chain or medical records) consequences.
If organizations are to adopt blockchain environments for
business-critical applications, there needs to be a more
reliable way of writing smart contracts.

Programming languages are interfaces that programmers
use to implement software. The HCI community has a long
history of developing tools for software engineers and pro-
grammers, building IDEs and studying development prac-
tices [9], creating debuggers [8], and designing program-
ming languages for novices [13]. However, human-centered
design has not been adopted by the programming language

design community (with a small number of exceptions) [16].

By observing that programmers are people too [10] and
adopting a user-centered approach in the design of pro-
gramming languages, we hope to obtain languages that are
more usable: ones in which it is easier for programmers to
achieve their goals.

In the context of blockchain software development, we seek
a language that is less error-prone: a language that facili-
tates development of software that achieves users’ objec-
tives while avoiding serious bugs or security vulnerabilities.
However, it would not achieve our goals if we created a

language that only a few experts in software verification or
programming languages could use, since a much broader
audience will be writing blockchain applications. Instead,
we seek a language that strikes a balance between ease of
use and safety so that a broad base of programmers can
use it effectively.

Human-centered programming language design
The goal of using human-centered design for programming
languages is particularly challenging because the results of
a laboratory study of a language design inevitably depend
on the tasks given and the skills and experiences of the
participants. It would seem likely that the language that
would evaluate best is the one that a participant already
knows! Furthermore, if it can be shown that language A is
better than language B for some tasks and programmers,
we must ask:

1. If there were several differences between A and B,
which were responsible for the difference?

2. Do the results generalize to real-world tasks, which
may take much longer than the small tasks in the
lab, and pertain to much larger codebases than the
participants can understand in a short lab session?

3. Do the results generalize to real-world programmers,
given that the experiment was done with one popula-
tion (perhaps undergraduates) and not, for example,
practicing software engineers?

Finally, how will we evaluate non-trivial changes to program-
ming languages, which might require significant training or
experience to use effectively?

We are using several techniques to address these diffi-
culties. First, rather than attempt to teach participants an

entire language in a brief time, we select specific features
of the language that we wish to evaluate, and back-port
those to a language that is commonly known, such as Java.
We take advantage of the orthogonality design criterion for
programming languages [12, 15] to argue that this is likely
to produce evidence that is relevant to the language we are
designing. Second, we use friangulation to obtain evidence
of usability and utility. Rather than relying solely on labo-
ratory studies, we use a collection of additional methods,
such as case studies in which we apply our language to
real systems, and interviews with experts, in which we can
leverage their experience to inform the design. The labora-
tory studies are limited to aspects of the language that we
can teach effectively in a short amount of time, but this lim-
itation forces us to design a language that is easy to learn
quickly.

Through user studies, we seek to show that users who

use our language can write programs effectively (in a com-
parable or shorter amount of time as those using other
languages), and their programs are more likely (or are guar-
anteed) to have particular correctness properties.

One example of our approach can be found in the devel-
opment of our Glacier system, which provides immutability
Java [2]. We showed how to design immutability restrictions
for Java that people can use effectively to prevent bugs that
they would otherwise be likely to create.

Design of Obsidian

Many techniques promote program correctness, but our
focus is on programming language design so that we can
prevent bugs as early as possible. We are developing Ob-
sidian, a domain-specific language for blockchains that
provides strong compile-time features to prevent bugs while
enabling the kinds of applications that proponents of block-

chain systems have advocated. Obsidian is a transactional,
typestate-oriented language that supports linear resources
for safe transactions in programs that have high-level state
and track resources that should not be accidentally lost.

It does not suffice to endow the language with sophisticated
features if they cannot or will not be used in practice. Our
focus is on usable features: ones that we can show that
people can use effectively. Although techniques for develop-
ing programming languages in a user-centered way are not
yet mature, one of our research goals is to identify, refine,
evaluate and, when necessary, create such techniques. We
have adapted methods from the human-computer interac-
tion literature to make it more likely that Obsidian will be a
practical, effective language for programmers to use. We
show techniques that can be used to help refine existing
ideas from the PL community to increase their adoptability.

Typestate and Permissions

Our analysis of proposed blockchain applications and ex-
isting smart contracts showed that a large portion maintain
high-level state. The available operations depend on the
current state. For example, a Bond contract might be ei-
ther Offered or Purchased. A Offered bond includes a
buy transaction, but a Purchased bond does not. Aldrich
et al. investigated use of typestate [1] to provide static (i.e.
compile-time) guarantees that operations are only invoked
when they are safe. For example, the Bond .0ffered type
guarantees that the bond it references is in the 0Offered
state and therefore buy is available. Attempting to invoke
buy on a Bond that is not statically known to be of type
Bond.0ffered will cause the compiler to emit an error.

If there are multiple references (aliases) to a given object
with mutable typestate, they cannot all have typestate guar-
antees. Instead, we use permissions to specify which ref-

erences provide which static guarantees and allow which
operations.

Is there a permission system that users will understand and
use effectively? If so, what can we learn from users about
how to design it? We conducted the first studies (of which
we are aware) in which people other than the designers
were asked to use a typestate system.

In order to study permissions, we extracted the permission
system from Obsidian and re-cast it in Java as a set of an-
notations. Rather than implementing a permission system
in Java, we conducted a Wizard-of-Oz study [7] where par-
ticipants received documentation on an extension to Java
and the experimenter provided simulated compiler error
messages. The training materials explained the Java an-
notations: @Resource (on classes); and @0wned, @Shared
(for default permissions on objects), and @ReadOnlyState
(on references). Our goal was not to gather quantitative
information about the frequency of usability problems; in-
stead, we assume that any problem we see occurring with
multiple participants is worth fixing if possible.

We sought both to evaluate our proposed design and to
elicit specific ways in which we could improve our design.
For some questions, we used the natural programming
technique [11], in which we asked participants to give us
design ideas in as unbiased a manner as possible.

User Studies

In order to achieve our goals of helping people write smart
contracts effectively, we wanted to make design decisions
in a human-centered manner. We used formative user stud-
ies to inform our initial design rather than waiting until the
end to evaluate a finished design. Our studies took place

in a laboratory, where we invited participants to complete
programming-related tasks. We recruited six participants,

all of whom had experience with Java, on campus. Partici-
pants were assigned to a portion of the study according to
the investigator doing the recruitment. For practical reasons
of participant recruitment, sessions per participant were lim-
ited in length to between one and two hours. Due to space
constraints, we describe here only a small fragment of the
study.

Limitations of the user study include the limited set of par-
ticipants, short duration and artificial tasks, extraction of
features to a different language, and influence of documen-
tation. However, the purpose of the study was to find usabil-
ity problems that may occur with real users, not to compare
the language in a conclusive way to another approach.

The study included five parts; we summarize only one here
due to space constraints. Since our goal was to identify

as many usability problems as possible and not to obtain
quantitative results, we revised the instructions after each
participant to maximize effectiveness and make the best
use of limited participant time.

We were interested in whether people could program effec-
tively with ownership, and whether there were any changes
we could make to the language to make using ownership
easier for programmers. We gave participants a tutorial on
ownership and told them we had chosen (no annotation,
O@ReadOnly) (P14) or (€0wned, no annotation) (later par-
ticipants) to denote ownership. We asked them to modify
some provided code to fix a bug in which a Prescription
could be deposited in more than one Pharmacy, resulting
in allowing too many prescription refills. The intent was

for participants to require that Prescriptions deposited
in a Pharmacy be owned objects and that the Pharmacy
take ownership; thus, a deposited Prescription could not
subsequently be deposited in a different Pharmacy.

Acknowledgments: This
material is based upon work
supported by NSF grant
CNS-1734138, NSF grant
CNS-1423054, by NSA lablet
contract H98230-14-C-0140,
by the Software Engineering
Institute, and by AFRL and
DARPA under agreement
#FA8750-16-2-0042. Any
opinions, findings, and con-
clusions or recommendations
expressed in this material are
those of the authors and do
not necessarily reflect the
views of the sponsors.

We were surprised that many of the participants found this
task very difficult. We expanded the tutorial to include a
practice section for later participants. In general, partici-
pants were not prepared to use a type system to address
a bug that they thought of in a dynamic way. Several of
the participants wanted to fix the problem by introducing
a global registry of prescriptions rather than storing them
per-pharmacy, or by making prescriptions mutable so the
number of refills used could be stored there. We asked
them explicitly to use the language feature instead. P14
commented “| haven’t seen. . .types that complex in an
actual language .. . enforced at compile time.”

P14 and P17 described thinking about the problem in a
dynamic way rather than a static way, which was a prob-
lem when using a static tool. For example, P17 wrote if
(@0Owned prescription), attempting to indicate a dy-
namic check of ownership. P18 had trouble guessing the
compiler’s behavior, expecting a sophisticated interproce-
dural analysis rather than typechecking. In a case where
an owned object was being consumed twice, he expected
the compiler to give an error on the second spend invoca-
tion rather than on the invocation of a method that took an
owned argument and invoked the second spend.

Using ownership requires determining which variables
should be annotated @0wned, a problem that three par-
ticipants had difficulty with. In one case, a lookup method
took an object to search for, but P18 specified that it should
take an owned reference. Then he was stuck after invoking
it: “How can | get the annotation back?” Likewise P18 was
confused by accessors: should they return an owned ref-
erence? In P20’s case, making a class that was contained
in a collection @0wned unnecessarily was a costly mistake
because then he had a problem iterating through the collec-
tion. He made the loop index @0wned, which would require

removing each item from the collection when iterating over
it in code that was not supposed to modify the container at
all.

This suggests that ownership alone, as part of the type
system rather than as part of the dynamic semantics, can
pose substantial usability problems. We are evaluating
integrating ownership with typestate for a unified, simpler
approach that might be more understandable. We are also
evaluating adding syntax for static assertions regarding
typestate and ownership to make it clearer what type each
variable has at a given program point.

The results here revealed concerns about the design of the
typestate system. First, typestate inference may be impor-
tant to reduce the annotation burden. Second, users may
have difficulty adding typestate specifications on variables
when appropriate. With a real compiler, this would result in
a lot of error messages when users attempt to invoke meth-
ods that are not guaranteed to be available; again, type-
state inference may help. Finally, guaranteeing typestate
requires understanding and using ownership, so priority
should be on helping people use ownership effectively.

Understanding the limitations of the type system and com-
piler may be an obstacle for some people. Thinking about
using static features rather than dynamic tests proved un-
natural for some. Users will need training to reason about
what typestate can do, but tools could mitigate the problem
by providing sophisticated static analyses rather than tak-
ing a traditional typechecking approach, and by providing
detailed, explanatory error messages.

Conclusions

Obsidian represents a promising approach toward a safer,
more usable way of programming for blockchains. Though
the computational environment for code running in block-

Language Modifications
We modified the language as
a result of the user studies.
The example in Fig. 1 shows
a version after the changes:

» Transactions (the
externally-invokable
APIs) are lexically out-
side states, but the IDE
automatically inserts
declarations in states
(lines 4-5, 8)

» Destination states can
be configured before
transitions: S::x =

rl; ->S(15)

» Transitions can return
resources: r1 = ->S
(28)

» Explicit owned syntax
for ownership transfer
at assignment/invoca-
tion (15, 34)

» Keyword for dropping
ownership: disown
(20)

» Compiler infers type-
state via a control flow
analysis when possible
(36)

Figure 1: Obsidian Language Example

contract Wallet {
state HasMoney {
owned Money m;
transaction forgetMoneyl ();
transaction forgetMoney2 ();
}
state NoMoney {
transaction getMoney (owned Money m);
3
Wallet () ends in NoMoney {
->NoMoney;
}
transaction getMoney (owned Money m)
available in NoMoney ends in HasMoney
HasMoney::m = owned m;
->HasMoney;
}
transaction forgetMomneyl ()
available in HasMoney ends in NoMoney
disown m;
// transition returns no resources
// because they have been disowned
->NoMoney;
}
transaction forgetMoney2 ()
available in HasMoney ends in NoMoney
// resources returned from transition
owned Money oldMoney = ->NoMoney;
disown oldMoney;
}
}
contract Test {
transaction putAndGetMoney ()
available in NoMomney {
owned Money m = ...
Wallet w = new Wallet();
w.putMoney (owned m);

}

chain is mostly traditional (e.g. serial, shared-state), the
high-stakes and other aspects of the application domains
offer promising opportunities for a much better program-

ming language than is currently in use. Our user-centered
design approach is a novel way of designing programming
languages and has provided useful insight into how to make
sophisticated safety-related features more usable and effec-
tive for programmers.

REFERENCES

1.

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and
Zachary Sparks. Typestate-oriented Programming. In
Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems
Languages and Applications (OOPSLA '09).
1015-1022. DOI:
http://dx.doi.org/10.1145/1639950.1640073

Michael Coblenz, Whitney Nelson, Jonathan Aldrich,
Brad Myers, and Joshua Sunshine. 2017. Glacier:
Transitive Class Immutability for Java. In Proceedings
of the 39th International Conference on Software
Engineering (ICSE ’17).

Luke Graham. 2017. $32 million worth of digital
currency ether stolen by hackers. (2017). Retrieved
November 2, 2017 from http://cnb.cx/2DVcWDu

. Emin Gin Sirer. 2016. Thoughts on The DAO Hack.

(2016). http://hackingdistributed.com/2016/06/17/
thoughts-on-the-dao-hack/

IBM. 2017. Blockchain for supply chain. (2017).
Retrieved October 31, 2017 from
https://www.ibm.com/blockchain/supply-chain/

MIT Digital Currency Initiative. 2017. Blockchain
Applications to Solar Panel Energy: Landscape

http://dx.doi.org/10.1145/1639950.1640073
http://cnb.cx/2DVcWDu
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
https://www.ibm.com/blockchain/supply-chain/

10.

11.

Analysis. (2017). Retrieved October 31, 2017 from
http://dci.mit.edu/assets/papers/15.998_solar.pdf

. J. F. Kelley. 1983. An Empirical Methodology for Writing

User-friendly Natural Language Computer Applications.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '83). ACM, New
York, NY, USA, 193-196. DOI:
http://dx.doi.org/10.1145/800045.801609

Andrew J Ko and Brad A Myers. 2004. Designing the
Whyline: a Debugging Interface for Asking Questions
about Program Behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 151-158.

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and
Htet Htet Aung. 2006. An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant
Information During Software Maintenance Tasks. IEEE
Trans. Softw. Eng. 32, 12 (Dec. 2006), 971-987. DOI:
http://dx.doi.org/10.1109/TSE.2006.116

B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon. 2016.
Programmers Are Users Too: Human-Centered
Methods for Improving Programming Tools. Computer
49, 7 (July 2016), 44-52. DOI:
http://dx.doi.org/10.1109/MC.2016.200

Brad A. Myers, John F. Pane, and Andy Ko. 2004.
Natural Programming Languages and Environments.
Commun. ACM 47 (2004), 47-52. Issue 9.

12.

13.

14.

15.

16.

17.

Terrence W. Pratt and Marvin V. Zelkowitz. 1996.
Programming Languages: Design and Implementation.
Pearson.

Mitchel Resnick, John Maloney, Andrés
Monroy-Hernandez, Natalie Rusk, Evelyn Eastmond,

Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and others. 2009. Scratch:

programming for all. Commun. ACM 52, 11 (2009),
60-67.

Harvard Business Review. 2017. The Potential for
Blockchain to Transform Electronic Health Records.
(2017). nttps:
//hbr.org/2017/03/the-potential-for-blockchain-
to-transform-electronic-health-records.

Robert W. Sebesta. 2006. Concepts of Programming
Languages, Seventh Edition. Addison Wesley.

Andreas Stefik and Stefan Hanenberg. 2014. The
Programming Language Wars: Questions and
Responsibilities for the Programming Language
Community. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New
Paradigms, and Reflections on Programming &
Software (Onward! 2014). ACM, New York, NY, USA,
283-299. D0OI:
http://dx.doi.org/10.1145/2661136.2661156

Nick Szabo. 1997. Formalizing and Securing
Relationships on Public Networks. First Monday 2, 9
(1997). DOI :http://dx.doi.org/10.5210/fm.v2i9.548

http://dci.mit.edu/assets/papers/15.998_solar.pdf
http://dx.doi.org/10.1145/800045.801609
http://dx.doi.org/10.1109/TSE.2006.116
http://dx.doi.org/10.1109/MC.2016.200
https://hbr.org/2017/03/the-potential-for-blockchain-to-transform-electronic-health-records
https://hbr.org/2017/03/the-potential-for-blockchain-to-transform-electronic-health-records
https://hbr.org/2017/03/the-potential-for-blockchain-to-transform-electronic-health-records
http://dx.doi.org/10.1145/2661136.2661156
http://dx.doi.org/10.5210/fm.v2i9.548

	Introduction
	Human-centered programming language design
	Design of Obsidian
	Typestate and Permissions
	User Studies
	Conclusions
	REFERENCES

