
Type-Directed, Whitespace-Delimited Parsing for
Embedded DSLs

Cyrus Omar, Benjamin Chung, Darya Kurilova, Alex Potanin1 and Jonathan Aldrich
Carnegie Mellon University

{comar, bwchung, darya, aldrich}@cs.cmu.edu, and alex@ecs.vuw.ac.nz1

ABSTRACT
Domain-specific languages improve ease-of-use, expressiveness and
verifiability, but defining and using different DSLs within a single
application remains difficult. We introduce an approach for embed-
ded DSLs where 1) whitespace delimits DSL-governed blocks, and
2) the parsing and type checking phases occur in tandem so that
the expected type of the block determines which domain-specific
parser governs that block. We argue that this approach occupies
a sweet spot, providing high expressiveness and ease-of-use while
maintaining safe composability. We introduce the design, provide
examples and describe an ongoing implementation of this strategy
in the Wyvern programming language. We also discuss how a more
conventional keyword-directed strategy for parsing of DSLs can
arise as a special case of this type-directed strategy.

1. INTRODUCTION
Domain-specific languages (DSLs) [9] allow developers to work

with specialized abstractions in a natural manner, and allow for
specialized verification and compilation strategies that can improve
verifiability and performance. However, for DSLs to reach their full
potential, it must be simple to define a new DSL, invoke it when
needed, and to use multiple DSLs within a host general-purpose
language (GPL), such that pieces of DSL code can interoperate to
form a complete application. These intuitions are captured by the
following core design criteria that govern our work:

• Composability: It should be possible to use multiple DSLs
and a GPL within a single program unit. Within the file-
based paradigm used by most contemporary languages, this
means including multiple DSLs within a single file. More-
over, it should be possible to embed code written in one
DSL within another DSL when appropriate, without requir-
ing them to have specific knowledge of each other. This
should be possible without interference between DSLs used
in any combination: DSLs should be safely composable.

• Interoperability: It should be possible to pass around and op-
erate on values that were defined in foreign DSLs in a reason-
ably natural manner (that is, without requiring large amounts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GlobalDSL ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2043-6 ...$15.00.

of “glue code”). Additional requirements, such as the ability
to do so with the safety guarantees provided in the foreign
DSL, may also be relevant in many settings.

In addition to these fundamental criteria, we believe that to be
most useful, a system supporting DSLs should satisfy the following
related design criteria:

• Flexibility: Support a variety of notations and new language
mechanisms, with minimal bias;

• Modularity: Support defining DSLs as combinations of
reusable components distributed directly within libraries;

• Identifiability: Make it easy for programmers to identify
which code is written in which DSL and what it means;

• Simplicity: Keep the complexity and cost of both defining
and invoking a DSL as low as possible.

We are developing a comprehensive language design, Wyvern,
that we believe can satisfy these design criteria well, and that
specifically considers language-internal extensibility from the start.
In Wyvern, DSL developers define the run-time semantics of DSL
constructs via translation into a common host language, as in many
other DSL frameworks. The novelty of the proposed extensibility
mechanism lies in the ways in which we delimit and determine the
scope of DSL code:

• Wyvern is a whitespace-delimited language. Source code
that is governed by a DSL, rather than the GPL, occurs in
whitespace-delimited blocks and must be indented further
than the GPL line introducing it. A decrease in indentation
relative to the baseline of the DSL block signals its end. This
scheme delimits the scope of each DSL in a clear manner,
both to the programmer and the top-level parser, supporting
the principle of identifiability. It also allows Wyvern to avoid
restrictions on a DSL’s use of delimiters internally. Because
the GPL grammar is not extended in a global manner, it also
guarantees that syntactic conflicts cannot arise at link-time.

• Within this basic syntactic framework, we then propose a
novel type-directed dispatch mechanism: the expected type
of an expression, rather than an explicit keyword, determines
which DSL grammar should parse the delimited block that
generates that expression. That is, grammars are associated
with types. We will show that the more common keyword-
directed strategy arises as a special case of this strategy.

This mechanism allows us to satisfy many of the criteria above,
including safe composability, while still being quite expressive, as
we will show with examples in the next section. We will continue
by describing our approach in more detail (§3), discuss ongoing
research directions (§4), and conclude with related work (§5).

1 val dashboardArchitecture : Architecture = ~
2 external component twitter : Feed
3 location www.twitter.com
4 external component client : Browser
5 connects to servlet
6 component servlet : DashServlet
7 connects to productDB, twitter
8 location intranet.nameless.com
9 component productDB : Database

10 location db.nameless.com
11 policy mainPolicy = ~
12 must salt servlet.login.password
13 connect * -> servlet with HTTPS
14 connect servlet -> productDB with TLS

Figure 1: Wyvern DSL: Architecture Specification

1 val newProds = productDB.query(~)
2 select twHandle
3 where introduced - today < 3 months
4 val prodTwt = new Feed(newProds)
5 return prodTwt.query(~)
6 select *
7 group by followed
8 where count > 1000

Figure 2: Wyvern DSL: Queries

2. MOTIVATING EXAMPLES
We start with a few examples to illustrate the expressiveness of

our approach and the breadth of DSLs we plan for it to support.
The examples are presented in the proposed syntax for Wyvern, a
new language being developed by our group that is targeted toward
building secure web and mobile applications. We will informally
describe each of these examples here, and further explain how such
code is parsed in Section 3.

The first example, shown in Figure 1, describes the over-
all architecture of a “hot product dashboard” application. The
variable dashboardArchitecture is explicitly ascribed type
Architecture. Rather than explicitly providing a value of this
type, we instead use a DSL that makes specifying the component
architecture of the application more concise and readable. This
DSL code appears in the subsequent whitespace-delimited block
and is introduced by a tilde (~). The example architecture declares
several components, some of which are declared external to in-
dicate that they are used by this application but are not part of it
directly. Component types are declared after a colon and attributes
like connectivity location, are declared after the type (formatted in
an indented block for readability). The policy keyword (line 11)
introduces a security policy, which constrains the communication
protocols that can be used and enforces the secure handling of pass-
words. A separate type, Policy, is associated with such policies.
Although we could instantiate this type explicitly using a Wyvern
expression, we use a DSL for defining policies instead, again within
a whitespace-delimited block introduced by a tilde.

Figure 2 shows how a DSL for database queries can be used from
within ordinary Wyvern code. The example shows code for com-
puting a feed that is derived from tweets about a company’s new
products. In this example, the use of a querying DSL is triggered
by the use of methods named query expecting an argument of type
DBQuery (line 1) or FeedQuery (line 5) respectively. These types
define related but distinct syntax for queries, determined by the ex-
pected type of expression where the tilde appears (tildes need not

1 serve(page, loc) where
2 val page = ~
3 html:
4 head:
5 title: Hot Products
6 style: {myStylesheet}
7 body:
8 div id="search":
9 {SearchBox("products")}
10 div id="products":
11 {FeedBox(servlet.hotProds())}
12 val loc = ~
13 products.nameless.com

Figure 3: Wyvern DSLs: Presentation and URLs

appear only at the ends of lines). Queries are again delimited by
indentation. This mechanism is similar to what can be expressed
in languages with built-in query syntax like LINQ [2], but in this
case, it is entirely user-defined, rather than built into the language.

Finally, Figure 3 shows a DSL for presenting the hot product
application to a web browser, served at a particular URL. Here,
two DSLs are used within a single function call. To allow this
without introducing ambiguity, the user can use a where clause,
similar to that found in Haskell [11]. The presentation DSL is based
on HTML and associated with a type, HTMLElement. It uses an
indentation-sensitive syntax and allows integration of Wyvern code
of the appropriate type using curly braces. The second DSL simply
canonicalizes URL literals into Wyvern values of type URL.

3. APPROACH
The examples above demonstrate the core mechanism used in

Wyvern: each expression or declaration can contain at most one
tilde (~). The line following the term containing the tilde must
begin an indented block. This block will be parsed according to a
grammar associated with the expected type of the expression where
the tilde occurred. In Figure 1, this type was determined by an ex-
plicit type annotation. In Figures 2 and 3, it was determined implic-
itly by the argument types of the function being called. Although a
single tilde per expression may initially seem limiting, we can see
in Figure 3 that the use of a where clause allows for the use of
multiple DSLs within a single expression.

Figure 4 shows how users equip types with domain-specific
grammars, here for the Architecture example in Figure 1. The
grammar associated with Architecture is defined at the top level
by a specially-named production, grammar, and it also defines
two sub-productions for component and policy specifications. Each
component specification includes a name, a type and an optional list
of attributes. The name is specified using the ID production, which
is a globally-available production that matches valid Wyvern (i.e.
the GPL’s) identifiers. Similarly, the TYPE production matches
Wyvern types. These productions cannot be extended directly, but
can be used within DSLs as needed and thus conflicts are detected
when the library is compiled, rather than deferred to link-time.

One component attribute in the Architecture DSL is location.
On line 4.6, we see the use of a production defined in another type,
URL. This means that only URL literals are valid at that position,
but not any Wyvern expression of type URL. To instead ask for any
Wyvern expression of a particular type, we use the notation used in
the policy production on line 4.8. Here, a named policy is defined
as an identifier followed by an equals sign and a Wyvern expression
of type Policy. This is denoted by the form EXP : T, where T
is a type in scope of the grammar definition. Unlike in the URL

1 type Architecture
2 grammar ::= (component|policy)+
3 component ::= "external"? "component"
4 ID ":" TYPE
5 ((componentAttr)*)?
6 componentAttr ::= "location " URL.grammar
7 | "connects to" (ID ",")* ID
8 policy ::= "policy" ID "=" (EXP : Policy)

Figure 4: Type-Associated Grammar

example above, if there is a DSL associated with this type, it can
only be used within a whitespace-delimited block introduced by a
tilde. This key distinction can be seen in Figure 1. Again, it can be
modularly verified that this grammar does not contain conflicts, as-
suming that the core Wyvern grammar does not change. We expect
it to become stable relatively early in its development, with most
new features introduced via the embedded DSL mechanism.

Parsing and Typechecking.
Wyvern source code is parsed in two phases. The first phase uses

a standard declarative whitespace-delimited parser (e.g. [3]) where
all whitespace-delimited blocks are left as unparsed “DSL liter-
als”. The second phase occurs in tandem with typechecking. When
a tilde is encountered, the compiler determines the expected type
where the tilde appeared (based on function signatures, or explicit
type annotations) and parses the subsequent whitespace-delimited
block according to the grammar associated with that type. The
baseline indentation is stripped from this block, so it appears to the
parser as if the DSL begins on the leftmost column of the block.
Any Wyvern expressions that occur internally to a DSL (such as
the policy specification in Figure 1 or curly-brace-delimited ex-
pressions in Figure 3) are also parsed and typechecked at this time.
After parsing a DSL block, it must be verified and translated to
Wyvern code. The mechanism for doing this is similar, at a high
level, to that for defining the grammar itself, but the details of these
subsequent steps are beyond the scope of this paper.

Procedural Parsing.
The grammar definition in Figure 4 is declarative and relies on

a parser generator included as part of Wyvern. It may be desirable
in some cases, such as when a grammar cannot easily be expressed
within our declarative framework, or when an existing parser can be
called into, to allow a parsing algorithms to be encoded directly. An
important use case is for interoperability layers between Wyvern
and other full-scale programming languages, particularly ones for
which parsing is known to be difficult (e.g. C, Haskell, Python).

It can be observed that a declarative grammar inside a class defi-
nition can be seen as inducing a class method (that is, an operation
defined on the class itself, which can be invoked by the compiler or
run-time system – a concept borrowed from Smalltalk [10]) called
parse, that transforms a string to some AST representation. This
lower-level interface is exposed directly to programmers who wish
to specify parsing in a procedural manner.

4. DISCUSSION AND FUTURE WORK

Keyword-Directed Invocation.
In most DSL frameworks, a switch to a DSL is indicated by a

keyword or function call naming the DSL to be used. Wyvern elim-
inates this overhead in many cases by determining the DSL based
on the expected type of an expression. This lightweight mechanism

is particularly useful for small DSLs, like the one associated with
URL. Keyword-directed invocation of a DSL is simply a special
case of this approach. In particular, a keyword macro can be de-
fined as a function with a single argument of a type specific to that
keyword. The type contains the implementation of the domain-
specific syntax associated with that keyword. In the most general
sense, it may simply allow the entire EXP grammar, manipulating
it in later phases of compilation.

As an example, consider control flow operators like if. This can
be defined as a polymorphic method of the bool type with signa-
ture (unit → α,unit → α) → α. That is, it takes the two
branches as functions and chooses which to invoke based on the
value of the boolean, using perhaps a more primitive control flow
operator, like case analysis, or even a Church encoding of booleans
as functions. In Wyvern, the branches could be packaged together
into a type, IfBranches, with an associated grammar that ac-
cepts the two branches as unwrapped expressions. Thus, if could
be defined entirely in a library and used as follows:

1 <guard>.if(~)
2 then
3 <any EXP>
4 else
5 <any EXP>

For methods like if where constructing the argument explicitly
will almost never be done, it may be useful to mark the method
in a way that allows Wyvern to assume it is being called with a
DSL argument immediately following its use. This would eliminate
the need for the (~) portion, supporting even more conventional
notation. We have not considered this possibility in detail.

Explicit Delimiters.
Throughout this paper, DSLs have been delimited by whitespace.

This allows arbitrary syntax within DSLs, since no delimiters need
to be reserved to indicate the end of the DSL and thus there is no
need for escaping internal uses of these delimiters. In cases where
DSL expressions are expected to be reasonably short, such as the
URL example, or where delimiters are more natural than whites-
pace, such as for array or dictionary literals, it may be desirable to
support other forms of delimited “DSL literals”.

One possible strategy for this is to reserve a number of common
delimiter forms, such as quotation marks and forms of braces, as
equivalent DSL literal forms. The traditional meaning of these de-
limiters, such as quotation marks for strings and square brackets
for lists, would then simply be convention in Wyvern. That is, the
following expressions, as well as several similar ones, would be
precisely equivalent (the programmer could choose the most con-
venient form, given the enclosed term):

f("http://github.com/wyvernlang")
f([http://github.com/wyvernlang])

Alternatively, types could specify the set of permitted delimiters
so that conventions can be enforced by the compiler, improving
identifiability. We have not yet explored either of these possibilities
in detail, nor explored options that allow arbitrary type-specified
delimiters (a naive strategy for which would require that the first
phase of parsing also be type-directed, which we wish to avoid).

Interaction with Subtyping.
The mechanism described here does not consider the case where

multiple subtypes of a base type define a grammar. This can be
resolved in several ways. We could require that only the declared
type’s grammar is used (if a subtype’s grammar is desired, an ex-
plicit type annotation on the tilde can be used). Alternatively, we

could attempt to parse against all relevant subtypes, only requiring
explicit disambiguation when ambiguities arise. Wyvern does not
currently support subtyping, so we leave this as future work.

5. RELATED WORK
The most well-known mechanism for extending languages is

macros, as exemplified by hygienic macros in Scheme. Macros in
Scheme and other Lisp-style languages are written in the language
itself and benefit from its simple syntax – parentheses universally
serve as expression delimiters (although proposals for whitespace
as a substitute for parentheses have been made [14]). Our work
is inspired by this flexibility, but aims to support richer syntax as
well as static types. Wyvern’s use of types to trigger parsing avoids
the overhead of needing to invoke macros explicitly by name and
makes it easier to compose DSLs declaratively.

Some language extensibility projects provide metaprogramming
facilities at levels of abstraction above parsing. For instance, OJ
(previously, OpenJava) [18] provides a macro system based on a
meta-object protocol, and Backstage Java [16], Template Haskell
[17] and others employ compile-time meta-programming. Each of
these systems provide macro-style rewriting of source code, but
they provide at most limited extension of language parsing.

Other systems aim at providing forms of syntax extension that
change the base language, as opposed to our whitespace-delimited
approach. For example, Camlp4 [7] is a preprocessor for OCaml
that offers the developer the ability to extend the concrete syntax
of the language via the use of parsers and extensible grammars.
SugarJ [8] takes a library-centric approach which supports syntactic
extension of the Java language by adding libraries. In Wyvern, the
core language (particularly the EXP sort) is not extended directly,
so conflicts cannot arise at link-time.

Scoping DSLs to expressions of a single type comes at the ex-
pense of some flexibility, but we believe that many uses of DSLs
are of this form already. A previous approach has considered type-
based disambiguation of parse forests for supporting quotation and
anti-quotation of arbitrary object languages [4]. Our work is sim-
ilar in spirit, but does not rely on generation of parse forests and
associates grammars with types, rather than types with grammar
productions. We believe that this is a more simple and flexible
methodology. The remaining approaches to syntax extension, such
as XJ [5] are keyword-directed in some form. We believe that a
type-directed approach is more seamless and general, sacrificing a
small amount of identifiability in some cases.

Researchers have also developed DSL frameworks and language
workbenches, including MPS [1], Spoofax [12], Ensō [6] and oth-
ers [13, 19] that provide support for generating new programming
languages and tooling in a modular manner. Compared to these ap-
proaches, Wyvern focuses on extensibility internal to the language,
rather than taking an approach where each DSL is external relative
to the host language, improving interoperability and composability.

Finally, recent work on Active Code Completion is related to this
work in that it associates code completion palettes with types [15].
Such palettes could be used for defining a DSL syntax for types.
However, that syntax is immediately translated to Java syntax at
edit-time while this work integrates with the core parsing facilities
of the language.

Acknowledgements
We thank the anonymous reviewers for helpful comments, and ac-
knowledge the support of the Department of Defense and the Air
Force Research Laboratory. CO is supported by the NSF Graduate
Research Fellowship.

6. REFERENCES
[1] JetBrains MPS – Meta Programming System.

http://www.jetbrains.com/mps/.
[2] LINQ (Language-Integrated Query).

http://msdn.microsoft.com/en-us/library/
vstudio/bb397926.aspx.

[3] M. D. Adams. Principled parsing for indentation-sensitive
languages. In Principles of Programming Languages, 2013.

[4] M. Bravenboer, R. Vermaas, J. Vinju, and E. Visser.
Generalized type-based disambiguation of meta programs
with concrete object syntax. In Generative Programming and
Component Engineering, 2005.

[5] T. Clark, P. Sammut, and J. S. Willans. Beyond annotations:
A proposal for extensible java (XJ). In Source Code Analysis
and Manipulation, 2008.

[6] W. R. Cook, A. Loh, and T. van der Storm. Ensō: A
self-describing DSL workbench.
http://enso-lang.org/.

[7] D. de Rauglaudre. Camlp4 - Reference Manual, 2003.
[8] S. Erdweg, L. C. Kats, T. Rendel, C. Kästner, K. Ostermann,

and E. Visser. SugarJ: library-based language extensibility.
In Object-Oriented Programming Systems, Languages, and
Applications, 2011.

[9] M. Fowler and R. Parsons. Domain-Specific Languages.
Addison-Wesley, 2010.

[10] A. Goldberg and D. Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley, 1983.

[11] S. L. P. Jones. Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003.

[12] L. C. L. Kats and E. Visser. The Spoofax Language
Workbench. Rules for Declarative Specification of
Languages and IDEs. In Object-Oriented Programming
Systems, Languages, and Applications, 2010.

[13] H. Krahn, B. Rumpe, and S. Völkel. Monticore: Modular
development of textual domain specific languages. In
Objects, Components, Models and Patterns, 2008.

[14] E. Möller. SRFI-49: Indentation-sensitive syntax. http:
//srfi.schemers.org/srfi-49/srfi-49.html,
2005.

[15] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers. Active
code completion. In International Conference on Software
Engineering, 2012.

[16] Z. Palmer and S. F. Smith. Backstage Java: Making a
Difference in Metaprogramming. In Object-Oriented
Programming Systems, Languages, and Applications, 2011.

[17] T. Sheard and S. P. Jones. Template meta-programming for
Haskell. In ACM SIGPLAN workshop on Haskell, 2002.

[18] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano.
OpenJava: A Class-based Macro System for Java. In
Reflection and Software Engineering, 2000.

[19] M. G. J. van den Brand. Pregmatic: A Generator for
Incremental Programming Environments. PhD thesis,
Katholieke Universiteit Nijmegen, 1992.

