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Abstract 

Although object-oriented programming techniques support modular decomposition of data types well, there are 

a number of programming concerns that cannot be cleanly modularized using conventional language mechanisms.  

This paper classifies these concerns into several categories, and describes examples and a prototypical challenge 

problem from each category.  It then describes several recent techniques designed to improve program modularity in 

the face of these concerns.  The strengths and weaknesses of each technique are evaluated with respect to the 

challenge problems.  The paper concludes with a discussion of future research directions. 

1. Object-Oriented Modularity 

A module, as used in this paper, is a programming environment mechanism for decomposing a large software 

program into smaller pieces, which the environment can automatically compose into a complete program later. 

Modules yield a number of programming benefits [P72].  The most important benefit is the intellectual leverage 

gained by separating the different concerns (programming issues) within a large program into smaller modules.  

Effective separation of concerns makes a program easier to understand, change, and debug.  A second benefit comes 

from information hiding, which reduces dependencies between modules, supporting program evolution and 

independent development of different parts of a program.  Other benefits of modules include separate compilation, 

incremental development, easier unit testing, improved re-use, and intellectual property protection. 

Object-oriented programming separates data representation concerns very well using the concept of an abstract 

data type.  Since data representations are very likely to change over the course of program evolution, object-oriented 

systems separate a particular data representation choice from other parts of a program by putting it together with 

related code in a source file and hiding the representation choice behind an interface.  When the data representation 



changes, these mechanisms often limit the effect of that change to the particular object involved.  Object-oriented 

inheritance also enables a related group of objects to reuse a data representation scheme. 

Although object-oriented programming effectively separates data representation concerns, there are other kinds 

of concerns that are difficult to separate into modules using conventional object-oriented language technology.  In 

the next section, we describe and classify a number of challenging modularity problems.  Section 3 describes several 

techniques designed to address these concerns, and section 4 evaluates the techniques against selected challenge 

problems.  Section 5 discusses future research directions in modularity, and section 6 concludes. 

2. Modularity Challenges 

This section classifies programming concerns (that is, the problem domain for modularity) into a number of 

categories.  For each category, we provide a brief description, relate it to other categories, give a number of example 

modularity problems, and choose a representative challenge problem that captures the essence of the category. 

2.1. Data Representation 

Data representation concerns deal with how program data should be organized; this paper assumes the reader is 

familiar with this concern.  Existing object-oriented languages, especially those with parameterized types, 

modularize many data representation concerns well.  Parnas [P72] proposed the KWIC index system as a challenge 

problem to evaluate different modularizations of a data-centric program. 

2.2. Functional Concerns 

A functional concern is a piece of functionality, such as a requirement or use case, provided for a client, such as 

the user, another program, or another component.  While a single object is the unit of modularity in mainstream 

object-oriented languages, the implementation of a functional concern may cross object boundaries or may only be 

part of an object’s implementation.  Thus, it is difficult to isolate the functional concern’s code in a single module. 

A challenge problem for modularizing functional concerns is separating operations on a program representation 

[TOHS99].  In typical program representations, there are many different kinds of nodes like assignment and function 

call nodes, and operations like typechecking, various optimization passes, and code generation can be applied to the 

different nodes.  A good modularization would separate the typechecking operations for each node into one module, 



the code generation operations in another module, etc, effectively separating the functional concerns implemented 

by the different operations.  Tools might even support both an object-oriented view and a functional view (Figure 1). 

Other example problems include the various actions of a bottle deposit machine like depositing and printing a 

receipt [AR92], composable pieces of data structure functionality such as searching and allocation [SB98], user 

interaction concerns such as directory listings and error messages in an FTP server [LM99], adding an operation to a 

shape hierarchy [FF98], functional testing of a use case scenario, and many others. 

2.3. Program Organization 

Program organization concerns address the large-scale structure of the program: how do modules, each 

composed of many objects, interact on a high level?  Large-scale program structure (as opposed to small-scale 

functional and data representation concerns) is an important concern for program understanding and modular 

analysis, yet most languages do not support modular structure beyond the size of a single object, obscuring their 

high-level structure [MN97].  Work on software architecture description languages [MT00] does address this 

concern, but is not tightly integrated with conventional programming languages.  For lack of space, this paper does 

not survey the area.  Effective support for program organization includes specifying relationships between program 

components separate from the components’ code, and clarifying the relationship between components using optional 

restrictions on the kinds of inter-component communication. 

A challenge problem, inspired by an urban simulation program [NBW00], is to specify a blackboard software 

architecture [GS94] as in Figure 2, with an explicit connection diagram showing how a set of simulation modules 

interacts with a shared data store.  The system should enforce the application constraint that the modules do not 

directly communicate, but only make modifications to the shared data.  It should be easy to make changes like 
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Figure 1.  Object-oriented and Functional 
Decompositions of a Program Representation 
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setting up another data store in the same program with a different set of simulation modules.  Ideally, a tool would 

also be provided to graphically visualize and edit the program structure. 

Other program organization problems include the other common architectural styles in Garlan & Shaw’s catalog 

[GS94], including pipe & filter, event-driven, and layered architectures.  The abstraction and vertical extension 

techniques in role models [AR92] can be thought of as encapsulating program organization concerns at design time. 

2.4. Global Properties 

Global properties are non-local invariants over program data and execution.  Code to enforce global properties 

is often awkward, error-prone, and difficult to change, because custom code must be added at every point where the 

property could be violated.  Techniques for enforcing global properties include customized language constructs, 

static type systems, dynamic constraint solvers, inference systems like Prolog, and model checking. 

Examples of global properties include aliasing properties that prevent a private object reference from escaping a 

particular module [NVP98], various security properties, global variables or constants, and synchronization between 

threads in a multithreaded system. 

Constraints over program variables are very useful in specifying flexible graphical user interfaces [B93] and 

enforcing constraints is a good challenge problem for modularizing global property concerns.  The programmer 

should be able to declaratively specify linear constraints and inequalities between ordinary floating-point program 

variables.  When the value of one variable changes over the course of program execution, violating a constraint, an 

off-the-shelf constraint solver like Cassowary [BB98] is invoked to find variable values that maintain the 

constraints, ideally leaving the triggering variable’s new value unchanged.  The user should be able to design custom 

constraints (such as that two windows cannot overlap in a windowing system) and specify the solver to be invoked 

when variables involved in a constraint are changed. 

2.5. Repetitive Code 

Certain concerns almost invariably lead to ubiquitous repetitive code throughout a system.  Examples include 

checking the invariants of a data structure or system of objects, logging application behavior [LM99], serializing 

object structures into a file, tracing executions of a large number of methods [K00][OT00], or handling common 

errors consistently throughout a large code base [LL00].  Repetitive code also arises, in a less pervasive way, when 

several similar but not identical modules or collaboration patterns exist in a single application.  Mezini and 



Lieberherr cite a pricing collaboration example that 

may arise several times in slightly different forms 

within a single application, or in a family of related 

applications [ML98].  Repetitive code can be a 

symptom of not modularizing global properties or 

functional concerns like error handling, but it is worth 

separate consideration because it can independently 

arise, and because it causes particularly severe program maintenance problems. 

A satisfactory solution to the challenge problem, invariant checking, would allow the programmer to specify an 

invariant in one place and automatically apply it to a large set of methods through some pattern-matching technique.  

For example, it should be possible to add an invariant to all public methods of a class without enumerating the 

methods, in case more methods are added later.  It should be very easy to remove the invariant once testing is 

complete, or to change the invariant as changes are made to the code.  Finally, the invariant should be inherited by 

subclasses by default, even if they override the methods where the invariant is checked. 

2.6. Performance Concerns 

Performance concerns arise when restructuring for optimization results in a less modular design.  Restructuring 

often ties different concerns too closely together, making understanding & change difficult.  Examples of 

restructuring that interferes with good modularity include caching computation results, specialization, loop fusing, 

etc.  Performance problems can also involve a system of interacting objects; if program organization concerns have 

not been addressed, it can be very difficult to find bottlenecks in a monolithic program.  

The problem space is very diverse, so it is difficult to capture the whole range with a single example.  The 

chosen challenge problem is improving the performance of the expensive recursive fibonacci function, shown in 

Figure 3.  A clean design would leave the recursive function definition as is, and separately apply a reusable caching 

library to store previously computed results, improving the function’s runtime to O(n).  

2.7. Declarative Specifications 

Some concerns have proven especially difficult to modularize because the concern is best specified in a 

declarative or graphical way.  Examples include graphical user interface design, constraints, and object initialization 

 

 

 

 

 

Figure 3.  Fibonacci Performance Challenge Problem 

// challenge: by adding a separate 
// module to the program, cache 
// return values to make this 
// function run in O(n) time. 
public static long fib(long n) { 
    if (n <= 1) 
        return 1; 
    else 
        return fib(n-1)+fib(n-2); 
} 



and traversal [ML98].  Imperative specifications of 

these concerns tend to be unclear, repetitive, and 

awkward.  While it may be impossible to express every 

concern in a single language, a language feature 

supporting custom declarative syntax extensions could 

express many idioms easily. 

A challenge problem for this area is providing a clean specification for a parser.  Because textual file formats 

are most clearly specified in the declarative BNF syntax, the cleanest way to write a parser is to annotate a BNF 

description of the language with actions to take when a particular construct is parsed.  Figure 4 shows the grammar 

and parse actions for a simple calculator.  A good solution would integrate naturally with an extensible host 

language, be recognizably close to BNF, support good performance, and avoid repetition. 

2.8. Context Dependent Behavior 

Experience has shown that selecting code implicitly depending on the current execution context leads to more 

modular designs than a tree of if statements.  While object-oriented programming supports selecting code 

according to one context—the receiver of a message—many other contexts are possible, including the classes of 

arguments to a multi-method, argument values and structure [EKC98], the current exception handler, or a closure. 

A challenge problem from the security domain is to select code based on the caller of a sensitive method.  To 

solve this problem, a system should allow methods to be selected based on the calling scope [AT98], including the 

caller’s class, the particular calling object, or an object several levels up the call chain.  For some callers, the 

invoked method would function normally; for others, there might be restricted functionality or an exception might 

be thrown. 

2.9. Discussion 

The classification above is intended to highlight patterns in a wide range of modularity problems, to help 

language designers focus on related classes of modularity problems instead of single problem instances.  Although 

many of the problems cited in the separations of concern literature can be classified in this system, it is not 

necessarily exhaustive.  Many modularity problems fall into more than one of the above categories; for example, 

many global properties are best specified in a declarative way.  A problem like concurrency may include program 

 

 

 

 

Figure 4.  YACC-like BNF grammar  
and actions for a simple calculator 

Exp ::= Exp + Term { $$ = $1 + $2 } 
Exp ::= Term { $$ = $1 } 
 
Term ::= Term * Fac { $$ = $1 * $2 } 
Term ::= Fac { $$ = $1 } 
 
Fac ::= num { $$ = $1 } 



organization concerns such as the number of threads 

and how they interact, global property concerns 

involving synchronization constraints on groups of 

objects, repetitive locking code, behavior may depends 

on the thread context, and system-wide performance 

issues.  Techniques that focus on a particular class of 

modularity problems should improve modularity in the relevant aspects of a multi-faceted problem like concurrency. 

Our classification deals with the modularity problem domain, not the solution domain, so one kind of solution 

may not solve every problem in a given category.  For example, global properties can be enforced in dramatically 

different ways: statically with type systems, dynamically with constraint solvers, or outside the language with static 

verification tools. 

3. Advanced Module Systems 

This section describes several programming systems with unique features that support modular programming, 

and evaluates how well they support different classes of concerns. 

3.1. Design Patterns 

Design patterns [GHJV95] are programming idioms that solve particular problems in object-oriented software 

design.  Although they are typically less elegant than a language-supported solution, design pattern solutions can be 

used in any object-oriented language.  For example, the Visitor pattern [GHJV95] allows functionally related 

methods to be grouped together in a single class, and makes it easy to extend the functionality of a group of classes.  

Figure 5 shows the Visitor code for typechecking an abstract syntax tree (AST), part of the functional concern 

challenge problem.  Typechecking methods are encapsulated inside the Typeck visitor.  To typecheck a method, 

the programmer passes a Typeck object to the accept method of the Meth object.  This method calls 

visitMeth on the visitor, which typechecks the method node and calls accept recursively on the statements in 

the method.  Other visitors can implement various optimization and code generation passes in an extensible way. 

                                                           

1 Our examples are abbreviated for clarity and space; many (but not all) came from actual implementations. 

class Meth extends Node { 
  accept(Visitor v) 
    { v.visitMeth(this) } 
} 
 
class Typeck extends Visitor { 
  visitMeth(Meth n) { ... } 
  visitStmt(Stmt n) { ... } 
  visitFnCall(FnCall n) { ... } 
} 

Figure 5.  Visitor Pattern for Typechecking1 



Unfortunately, the Visitor pattern gives up the data structure extensibility strength of object-oriented languages.  

Krishnamurthi et al. designed the Extensible Visitor pattern [KFF98] using Factory Methods to overcome this 

drawback, and suggested a syntactic sugar language mechanism to simplify the cumbersome implementation details.  

Other patterns such as Facade and Mediator help with program organization, but they cannot fully solve this 

challenge because they provide no guarantees, they are not explicit in the implementation, and they tend to be most 

appropriate at smaller scales.  Other pattern-like idioms such as using get/set methods for object fields help with 

global properties and context-sensitive behavior concerns. 

3.2. Role Models 

Andersen and Reenskaug [AR92] introduced the role model design technique as a way to express a single 

functional concern in an object-oriented system, and later compose it with role models implementing a different 

concern.  In their system, a role is a particular responsibility that contributes to a role model’s behavior, and is 

usually implemented by a single object.  A role model is made up of two or more roles, and role models can be 

composed to form larger role models.  Their design technique includes an abstraction mechanism for collapsing a 

group of roles into a single role to provide a higher-level view of the system, offering some design-time support for 

program organization.  An intuitive graphical notation is very helpful for understanding the design of the system. 

Figure 6 shows a role model for typechecking a function call node.  Each role in the role model is depicted with 

an oval, and lines connecting roles represent relationships.  An oval means that a role knows about a collaborating 

role, and a filled oval is annotated with a method interface for the other role.  In this role model, the method role 

calls typecheck on the function call role.  The function call looks up the designated method in the compiler’s tables, 

gets the type signature of the method, checks the types of the actual parameters, and then determines if the actual 

types are subsumed by the formal types. 
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VanHilst and Notkin [VN96] describe an implementation technique for role models using C++ templates.  A 

role is implemented as a class, including all the relevant variables and methods.  Roles are composed by inheritance, 

and to make roles reusable, the superclass of a role is specified in a template argument, providing a form of mixin 

class [BC90].  Since the actual objects it interacts with are usually subclasses of the interacting roles, the class is 

templated by the final types of the other classes.  The actual composition of roles is done in a sequence of template 

class instantiations separate from the role definitions. 

Smaragdakis and Batory [SB98] describe mixin layers, a variant of this implementation technique.  Their 

solution groups roles into role models container classes.  In Figure 7, the Typecheck role model class is templated 

by a role model superclass.  Each role within the class such as Meth extends the corresponding role in the role 

model’s superclass.  Some ugly casts are required due to C++’s type system; for example, stmt was inherited from 

Super::Meth and so its static type is Super::Stmt rather than Stmt.  Role model classes are composed using 

template instantiation, typically using a typedef statement to reduce template verbosity. 

The mixin layer technique is more structured than VanHilst and Notkin’s, and can use simpler instantiations.  

However, it makes even more elaborate use of templates and other complex C++ features, potentially reducing 

understandability, it is tough to refer to the final composed classes from within a role, and it is difficult to integrate 

role models that involve different but overlapping sets of classes.  In both implementations it can be challenging to 

understand how the pieces compose together, suggesting that language and tool support may be needed. 

template <class Super> 
class Typecheck : public Super { 
public: 
  class Stmt : public Super::Stmt {..} 
  class Meth : public Super::Meth { 
  public: 
    Meth(Stmt *s) : Super::Meth(s) { } 
    void typeck() { 
      ((Stmt *)stmt)->typeck(); 
    } 
};}; 
 
typedef Typecheck < Base > Rep; 
 
Rep::Meth*m=new Rep::Meth(stmt); 
m->typeck(); 

Figure 7.  Mixin Layer Implementation of 
Typechecking 



3.3. Cecil 

Cecil [C92] is a high-level object-oriented language designed to support rapid prototyping of extensible 

systems.  Currently, there is no module system implemented in Cecil that supports encapsulation and information 

hiding.  However, the features of the language support separation of many kinds of concerns very well.  Cecil allows 

methods to be defined anywhere, so programmers can group methods by functionality rather than by object, if 

appropriate.  Figure 8 shows how object (class) declarations can be grouped into the nodes.cecil file, while all 

the typechecking methods of these nodes can be naturally grouped into the typecheck.cecil file.  Assignments 

to fields are implemented as calls to automatically generated get/set methods, which makes it very easy to intercept 

these assignments to support the global property challenge problem.  Cecil also provides support for many kinds of 

context-sensitive behavior through multi-methods, predicate dispatching, and closures. 

nodes.cecil 
object meth isa node; 
object stmt isa node; 
object fncall isa node; 
 

typecheck.cecil 
method typeck(n@:meth) { 
  statements.do(&(s:stmt) { 
    s.typeck(); 
}} 
method typeck(n@:stmt) { ... } 
method typeck(n@:fncall) { ... } 
 
 
 
 

Figure 8.  Cecil Implementation of Typechecking 



3.4. ML 

ML [MTHM97] is a functional programming language with a powerful module system that represents the high-

water mark of conventional modularity.  Since it is functional in style, it supports decomposition of functional 

concerns well but may lack some of the benefits of object-orientation.  A parameterized module (functor) in ML can 

be instantiated into a module instance (structure) many times by applying it to a structure with the appropriate 

interface.  The Fox Project [B95] implemented a TCP/IP stack in ML to demonstrate that ML’s module system 

supports both good modular design and performance concerns like sharing the same data structure between modules 

without exposing it to module clients.  ML supports our functional challenge problem well. 

As shown in Figure 9, the explicit composition of modules can improve program organization in the simulation 

challenge problem.  The BBoard signature defines the interface for the central bulletin board, which is defined in a 

separate structure definition.  MODULE1 is parameterized over an unknown structure implementing the BBoard 

signature.  Before MODULE1 can be used, it must be instantiated (as MyModule1) with a particular implementation 

of the bulletin board.  Datatypes and functions defined in the modules can then be instantiated and invoked.  The 

explicit module composition statements make the structure of the program clearer, and show dependencies and 

communication patterns between components.  However, it is still possible for modules to communicate through a 

“backdoor” by using the interface of MODULE2 (for example) within the definition of MODULE1, so better software 

architecture support is still needed. 

signature BBOARD = sig ... 
 
functor MODULE1 
  (structure B : BBOARD) 
  :> MODULE 
  where type Board.t = B.t = ... 
 
structure MyBoard :> BBOARD = ... 
 
structure MyModule1 = MODULE1 
    (structure B = MyBoard) 
 
val mb = MyBoard.create ... 
val mm1 = MyModule1.create mb 
 
mm1.sim(...) 

Figure 9.  ML Blackboard Architecture Modules 



3.5. Units 

MzScheme’s Units [FF98] module system supports 

modular extension of functional concerns in the context 

of an object-oriented extension to Scheme.  A unit is a 

parameterized module that includes a set of formal 

placeholders for imported classes, a series of 

definitions, and a set of exported classes.  The actual 

imports for a unit are specified in a separate linking 

expression.  MzScheme supports mixins [BC90], where 

classes defined in a unit may inherit from imported 

classes, despite the fact that these imports are undefined 

until the unit is linked with other units.  The mixin construct allows a superclass to be extended without relying on 

the exact details of the superclass, while the separate linking language allows a mixin to be applied to many different 

superclasses to produce different resulting classes, and also allows an import to be replaced with an updated or 

enhanced class without modifying the importing module. 

Like ML, MzScheme provides full support for our functional challenge problem and partial support for our 

program organization problem.  Figure 10 shows the typechecking problem implemented with Units.  The 

Typechecking module imports existing Meth, Stmt, and FnCall classes, defines subclasses that include 

typeck methods, and exports the subclasses.  A compound unit links two ordinary units together by connecting 

their imports and exports; for example, the Message class from the Base module (abbreviated B) is passed to the 

Typechecking module as the Meth import.  The compound unit can then export a subset of the linked objects, 

possibly under new names.  Their module system is partly implemented with Scheme’s macro facility [KCR98], 

which also supports declarative specifications that can be programmatically transformed into executable code by 

user-defined meta-programs.  Macros can also be applied to our performance challenge problem. 

(define Typechecking 
 (unit (import Meth Stmt FnCall) 
    (export TMeth TStmt TFnCall) 
   (define Tmeth 
     (class* Meth () (stmt) 
       (public [typeck 
         (lambda () 
           (send stmt typeck))) 
...)))) 
 
(define Base+Typechecking 
 (compound-unit 
  (import) 
  (link [B (Base)] 
        [T (Typechecking 
              (B Message) 
              (B Stmt) 
              (B FnCall))]) 
  (export (T (TMeth Meth)) 
         (T (TStmt Stmt)) 
         (T (TFnCall FnCall))))) 

Figure 10.  Units Implementation of Typechecking 



3.6. Adaptive Components 

Adaptive Plug and Play Components [ML98] focus 

on the need to modularize functional collaborations in a 

reusable way.  In adaptive programming, object 

traversals are specified by a list of the classes to visit, 

and actions to be performed before the traversal, during 

each object visit, and when returning a traversal result.  

These traversal strategies reduce the dependency of a 

collaboration on a concrete class structure.  The class 

structure that a component uses is declared in terms of 

formal placeholder classes, methods and fields in a 

separate, abstract interface, further reducing the dependency on concrete classes.  Collaborative behavior is specified 

in terms of these placeholders, so it can be reused in a large number of actual contexts.  Components are composed 

separately, and mixin functionality allows a component to modify an unspecified super-component.  Thus, adaptive 

components are very effective at packaging re-usable slices of behavior, and applying them to diverse places in the 

class hierarchy of a program.  The Demeter/Java [DRG00] tool also supports custom language extensions for 

initializing object data. 

A Typechecking APPC is shown in Figure 11.  The classes involved in the typechecking collaboration are 

described abstractly in the Interface Class Graph section of the APPC.  First, a structural specification declares a 

stmts field of Method that references one or more objects of type Stmt.  An interface declares the methods of 

Stmt that are used in this APPC.  The collaboration’s methods are specified in the Behavior Definition section.  

The main-entry describes typeck, the primary function in the APPC.  In this case, typeck implements a 

traversal strategy, visiting each Stmt reachable from this Method.  The system automatically infers how to 

implement the traversal from the structural interface and the actual class structure at run time.  The APPC is linked 

into the Compiler application with the ::+ operator.  The linking specifies the actual names of the classes 

involved and their members. 

APPC Typechecking { 
 
 Interface Class Graph: 
  Method = <stmts> Stmt 
  Stmt { /* interface */ } 
 
 Behavior Definition: 
  Method { 
   main-entry void typeck() { 
    from Method to Stmt { 
     init { ... } 
     at Stmt { ... } } } 
} 
 
Compiler::+ { void typeck() =  
 Typechecking with { 
   Method = ConcreteMethod; 
   Stmt = Assign { typeck = ck}; 
}} 

Figure 11.  Adaptive Components Implementation of 
Typechecking 



3.7. Hyperspaces 

Hyperspaces [TOHS99] were developed at IBM to 

enable better separation of concerns.  The Hyper/J tool 

[OT00] implements Hyperspaces for Java.  Code for 

different concerns is written in separate standard Java 

source files, which are then compiled by any Java 

compiler and composed by Hyper/J to form a final 

program.  A hyperspace file lists the Java classes to be 

composed, and a concern mapping file describes which 

packages, classes and methods belong to each concern.  

Composition is specified by a hypermodule file, which 

describes which concerns should be integrated, and the 

mapping between corresponding elements of each 

concern.  Integration relationships can include merging (execute both methods in a specified order, with another 

method integrating the return values), overriding, renaming, and bracketing with before/after methods.  Pattern 

matching allows one method to be integrated into a large set of others. 

Figure 12 shows a Hyper/J implementation of class invariants.  The core functionality of the DataStruct 

class is defined in an ordinary Java file, and the invariant is defined in a Java file of the same name but in a different 

package (renaming facilities are specified but not fully implemented).  A concern mapping file partitions the classes 

into the functional (Func) concerns Kernel and Invariant.  The hypermodule file specifies relationships 

between the classes; by default, classes and methods are merged by name, so the two DataStruct classes will be 

merged into one.  The bracket specification instructs the Hyper/J compiler to insert calls to the pre method 

before each operation (the wildcard * operator) in "DataStruct", and to insert post calls after. 

Hyper/J has excellent support for separating functional concerns and repetitive code, including features present 

in no other system.  It can even conceptually (if not physically) separate methods in legacy code without changing or 

even using the source code.  Hyper/J can only be applied at boundaries between methods, making it hard to support 

global properties that depend on variable values that may change within a method.  Although Hyper/J doesn’t 

support first-class software architecture, it does offer more program-organization capability than the other systems 

kernel.DataStruct.java 
class DataStruct { /* main impl */ } 
 

invariant.DataStruct.java 
class DataStruct { 
  public void pre(String meth) { 
    assert(x+y<=100,"entering "+meth); 
} ... } 
 

invariant.cm (concern mapping file) 
package invariant : Func.invar; 
package kernel : Func.kernel; 
 

invariant.hm (hypermodule file) 
relationships: 
  mergeByName; 
  bracket "*" with (  
    before Func.invar.DataStruct.pre( 
             $OperationName), 
    after Func.invar.DataStruct.post( 
             $OperationName), 
    "DataStruct"); 

Figure 12.  Hyper/J Implementation 
of Repetitive Invariants 



considered because its concern integration features can 

be used to connect modules.  Dealing with all the 

specification files, adding extra declarations so the 

individual concerns can be compiled, and visualizing 

the way concerns integrate were difficult in this system.  

Improved tool support or a more advanced base 

language could go a long way to making Hyperspaces 

practical. 

3.8. Composition Filters 

Composition Filters [AT98] provides message filters that can intercept, transform, and redirect any incoming 

message to custom handling code.  Their declarative specification is more powerful, reusable, and convenient than 

mechanisms like Smalltalk’s doesNotUnderstand message or Java’s runtime-generated message filters.  Filters 

can take actions such as signal an error, dispatch to a custom method (similar to doesNotUnderstand), 

encapsulate a transaction, or wait until a condition is true.  A Boolean condition method controls whether a filter 

takes action for a particular message or passes that message on to the next filter in a compositional sequence.  Filters 

have been used to restrict access to certain methods based on the caller, implement a synchronization protocol, or to 

implement object database-like functionality.  Filters can forward messages to a component object, providing some 

support for separation of functional concerns with role models, etc.  Composition filters are well suited to separating 

many kinds of concerns, including our repetitive code, performance, and context-sensitive behavior challenges. 

The Sensitive class in Figure 13 defines a single message filter that protects the special method from 

access by unprivileged callers.  The Error filter rejects all messages except those specified in the filter definition.  

Message receptions for which the privil state is true are allowed to dispatch to the special method, but any 

message is allowed to dispatch to the ordinary method.  The privil state is a side-effect free predicate that 

checks to verify that the sender (a language keyword) is a subclass of Privileged. 

class Sensitive 
  filters 
    f1 : Error = { 
      privil => {self.special}, 
      true => {self.ordinary} }; 
  states 
    privil 
      return sender.subtypeOf( 
                    Privileged); 
  methods 
    special() { ... } 
    ordinary() { ... } ... 
end; 

Figure 13.  Calling Context Sensitivity with 
Composition Filters 



3.9. AspectJ 

AspectJ [K00] is an aspect-oriented programming [KLM+97] extension of Java that supports crosscutting 

concerns.  AspectJ supports functional concerns well; the aspect construct can encapsulate member functions or 

data that are related in functionality, even though they might be part of different classes or nested within different 

functions.  A declarative pattern-matching facility allows repetitive code to be specified in a modular way, and 

generic aspects can be written that are reused by inheritance and specialization.  Context-specific information like 

the method name and arguments allows generic code to be customized, and control-flow aspects allow information 

to be recorded implicitly in a caller and later affect a callee.  Not all AspectJ solutions are perfectly clean, but they 

are decent in view of the limitations of the Java host language. 

AspectJ provides an elegant solution to our performance challenge problem, caching the results of an expensive 

computation (Figure 14).  The abstract Caching aspect defines the caching protocol.  A pointcut declaration 

will be overridden by sub-aspects to define which functions are to be affected by the Caching aspect.  The 

around method is invoked first whenever one of the specified functions is called.  It examines the parameters of 

the method (using the thisJoinPoint aspect mechanism) to see if they are currently in the cache; if so, the 

around method returns immediately without invoking the actual callee.  Otherwise, the callee is invoked with 

thisJoinPoint.runNext() and the result is cached before returning from the around method.  The 

CacheFib aspect extends Caching by overriding the functions pointcut to refer to all executions of functions 

named fib.  The ofeachJVM() declaration specifies that there is one instance of the CacheFib aspect per 

abstract aspect Caching { 
  abstract pointcut functions(); 
  around() returns Object 
           : functions() { 
    args = thisJoinPoint.params; 
    ... thisJoinPoint.runNext(); 
  } 
  Hashtable valueCache = ...; 
} 
 
aspect CacheFib extends Caching 
                of eachJVM() { 
  pointcut functions() : 
      executions(* fib(..)); 
} 

Figure 14.  A Caching Aspect in AspectJ 

aspect Constraint { 
  pointcut varChanged(int val) : 
    sets(int MyClass.x)[val] 
    || sets(int MyClass.y)[val]; 
 
  after(int newVal) :  
    varChanged(newVal) { 
 Solver.invoke(newVal, 
               thisJoinPoint.field()); 
  } 
} 
 
 
 
 

Figure 15.  Constraint Satisfaction in AspectJ 



JVM, which is sufficient since fib is a static function.  The aspect could also be instantiated for each object of a 

particular type in order to keep a separate cache for each object. 

Figure 15 shows a constraint aspect that invokes a constraint solver whenever the value of a constrained 

variable is changed.  This functionality is specified but not yet implemented in AspectJ. 

3.10. Other systems 

Numerous other systems have focused on better separation of concerns.  GenVoca [BVT+94] and Intentional 

Programming [S95] are meta-programming environments that support domain specific languages through syntax 

tree manipulation.  They support declarative specifications and a number of other concerns very well, although the 

code manipulations may be challenging to specify and hard to understand.  In order to limit the scope of this paper, 

we do not describe these metaprogramming systems in detail.  Languages like BETA [M93] and Objective C have 

unique features that help to structure certain types of code.  The System Modeling Language [LS83] and its 

successor Pebble [LB88] were early linking languages for parameterized modules similar to those in ML.  Jigsaw 

[BL92] is a theoretical framework for modularity that defines a number of module operators, such as merging 

modules, modifying modules, instantiating a module, and renaming a module’s members; although impractical as a 

language, it is a good standard for evaluating a module system’s orthogonality.  Contracts [H92] are another way to 

express interactions among groups of objects.  A contract specifies a framework of objects, including invariants over 

their data, that can be specialized to produce variants of an algorithm.  Open Implementation [K96] is a design 

methodology for modules that can adapt to the needs of different clients by exposing a secondary interface that 

allows clients to specify an appropriate implementation strategy. 

4. Evaluation 

Table 1 summarizes how well each module system solved our challenge problems.  A black circle in the table 

means that the system provides an elegant solution to the problem.  A half-circle indicates that there is a partial 

solution, but it is awkward, it does not solve all the issues in the challenge problem, or the supporting mechanism is 

specified but not implemented.  In this section, we discuss the solutions to each problem and discuss remaining 

issues in separating the different classes of concerns. 



4.1. Problem Solutions 

Many different systems solved the functional challenge problem well, due to the importance of the problem and 

the length of time is has been around.  Among object-oriented systems, Cecil solves this problem most cleanly, since 

ordinary methods can be added to objects from any source file, not just where the object is declared.  Adaptive 

Components provide what is possibly the most reusable and evolvable solution, as an operation like typechecking 

can be easily specified without relying on the exact structure of the abstract syntax tree.  ML and MzScheme Units 

provide excellent solutions that include strong encapsulation of the functional code.  Other systems also provided 

very good solutions, although sometimes with a bit of inconvenient syntax. 

The most powerful module system, Units, provides the best solution to the program organization problem, by 

specifying different modules in the blackboard architecture in modules with explicit imports and exports that make it 

clear where communication occurs.  These modules are linked together in a separate specification that helps to 

clarify the whole application’s structure.  Full support for this problem comes only from the Software Architecture 

Description Language domain [MT00], which this paper does not survey. 

Cecil provides the best solution to our global properties challenge problem, because the universal get/set 

methods for object fields make it easy to intercept variable mutations that may violate constraints.  AspectJ has a 

mechanism that provides an excellent solution, but it is not yet implemented. 

AspectJ, Hyper/J, and Composition Filters all provide clean ways to intercept method dispatch for a large set of 

methods and add code to be executed before a method.  This ability is essential to good solutions to the repetitive 

code and performance challenge problems. 

System Functional 
Concerns 

Program 
Organization 

Global 
Properties 

Repetitive 
Code 

Performance 
Concerns 

Declarative 
Specification 

Context 
Behavior 

Design Patterns        

Mixin Layers        

Cecil        

ML        

MzScheme Units        
Adaptive 

Components        

Hyper/J        

Composition Filters        

AspectJ        

Table 1.  Support for challenge problems among module systems ( full� partial none� 



Of all the systems surveyed, only MzScheme, through its macro capability, supports fully flexible user-defined 

declarative specifications.  Demeter/Java provides declarative specifications for object data, but there’s no easy way 

to embed code, e.g., for parser actions.  Composition filters provide the cleanest way to choose behavior based on 

the calling object, by testing the sender keyword in a message filter.  AspectJ provides control-flow aspects, 

which is an object associated with all control flow from the entry to a procedure, through arbitrary levels of called 

procedures until the procedure returns.  These aspects can enhance the behavior of methods the control flow touches 

in a very flexible way. 

4.2. Remaining Problems 

One or more of the module systems we considered solved all but one of our challenge problems; do they offer 

any remaining challenges? 

Although individual systems may solve particular problems well, integrating the features of those systems into a 

coherent whole is a non-trivial task.  For example, integrating parameterized modules and mixins with a strong type 

system is an open problem [FF98], and multi-methods almost certainly pose further difficulties.  Software 

architecture description languages have yet to be tightly integrated with conventional programming languages.  

Existing systems that support pattern matching to eliminate repetitive code, such as AspectJ, Hyper/J, and 

Composition Filters, provide no static encapsulation mechanism, and it is an open problem how this should be done. 

More importantly, this paper’s challenge problems were chosen to be at the edge of the attainable in order to 

effectively distinguish between the different systems.  Considerably more difficult problems remain in each 

category.  Functional concerns that influence the middle of a method’s code, rather than the beginning or end, are 

tough to factor out with current systems.  Actual solutions to the constraint problem are still nowhere near as clean 

as in constraint-imperative languages [L97], and problems like synchronization, security, or aliasing properties are 

even more challenging.  It would be very premature to claim that any system does away with repetitive code 

completely, and performance concerns like loop fusing defy the most powerful compiler and self-modifying code 

systems.  Very few languages have the wide range of context-dependant behavior that Cecil provides. 

Finally, the systems themselves are experimental, and more language design is needed to smooth off the rough 

edges.  Early versions of AspectJ were like a grab bag without a clear rationale for including or excluding features.  

The language has become more structured, orthogonal, and comprehensive in its scope, but its design continues to 



develop and is not as clean or orthogonal as it might be because its host language, Java, lacks features like closures 

and generic types.  Both AspectJ and Hyper/J need better tool support to deal with the complexity of crosscutting 

concerns.  Composition Filters has a complex and unusual object model; practical experience is needed to determine 

if it is effective. 

5. Future Work 

There are several avenues of future work that we could effectively pursue: further evaluation of the different 

systems, tool support for crosscutting modules, and the design of a module system for Cecil. 

5.1. Other evaluation metrics 

Our challenge problems effectively evaluate the expressiveness and breadth of features in the systems with 

respect to important classes of programming concerns.  At a small scale, they evaluate other metrics such as ease of 

tool use, clarity and verbosity of the language, reuse, and adding features without modifying existing code.  

However, many of these metrics are best evaluated on a full program that includes sub-problems from diverse 

concern classes.  The specification of such a program, and its implementation in the various systems, would be a 

good way to evaluate ease of change, code reuse, evolution of code without changing the source, challenges in 

integrating different features, information hiding, verbosity, ease of static analysis, and tool support. 

5.2. Tool Support 

Interesting future work remains in tool support for separation of concerns.  Visualization tools are important for 

understanding program organization, and also for seeing how crosscutting concerns compose and interact.  A 

graphical module linking language would isolate program organization concerns more effectively, making large 

programs far easier to understand and change.  Finally, efficient and separate compilation of crosscutting concerns is 

a major unexplored research area. 

5.3. Modules for Cecil 

Because of our experience with Cecil, a key area where we can make a research contribution is designing 

support for separation of concerns in the context of a high-level, orthogonal object-oriented language.  A module 

system for Cecil would preserve the language’s support for multi-methods, open objects and static types, building on 



existing research [MC99] to allow separate compilation.  It would support first-class, parameterized, hierarchical 

modules with a separate linking language powerful enough to express software architecture.  Modules would 

express different interfaces to clients, extenders, and perhaps “privileged clients.”  The language would support 

separation of concerns through mixins, before/after/around methods, pattern matching, and other facilities.  XML 

could be used for documentation purposes as in the new C# language [HW00], as well as to provide an extensible 

language syntax or even to form the module linking language. 

We expect to encounter a number of open problems in module design work for Cecil: 

• How can parameterized modules be combined with multimethods? 

• How can static parameterized types coexist with parameterized modules and mixin inheritance? 

• How can a system that supports separation of crosscutting concerns also provide effective 

encapsulation?  What is the appropriate scope of crosscutting code? 

• When one crosscutting module affects many others, how can this be specified?  A functional, 

applicative style (as in ML) seems inappropriate. 

• When crosscutting concerns interact, how can the programmer detect possible conflicts, and specify an 

ordering or priority to resolve the conflicts? 

• How to express functionality such as: control-flow aspects in AspectJ, separating the class name from 

new statements, merging class hierarchies in Hyper/J, restricting objects from escaping a module, and 

supporting declarative specifications? 

• How can modules containing crosscutting concerns be separately and efficiently compiled? 

6. Conclusion 

This paper proposed a number of challenge problems for effective separation of concerns in object-oriented 

systems.  It includes a categorization of important concerns that are difficult to modularize, encompassing many of 

the examples from the separation of concerns literature.  The paper evaluated the strengths and weaknesses of a 

number of different systems using the challenge problems as guides.  One direction of future work involves defining 

a benchmark program that unifies problems from all the different concern categories into a single application, in 

order to find out how the different concerns might interact.  Another direction is to look at ways to extend Cecil and 



its associated tools with better support for separation of the different categories of concerns.  The orthogonal high-

level object-oriented features and advanced type system of Cecil should be a benefit in designing such a system. 

References 

[AR92] Egil P. Anderson and Trygve Reenskaug. System design by composing structures of interacting objects. In 
Proceedings of the 1992 European Conference on Object-Oriented Programming, pages 133--152, 1992. 

[AT98] M. Aksit and B. Tekinerdogan. Solving the Modeling Problems of Object-Oriented Languages by 
Composing Multiple Aspects Using Composition Filters. ECOOP’98 AOP workshop position paper, 1998.  

[B93] Bjorn Freeman-Benson, "Converting an Existing User Interface to Use Constraints", Proc. ACM Symposium 
on User Interface Software and Technology, Atlanta, Georgia, November 1993. 

[B95] Jeremy Buhler.  The Fox Project.  ACM Crossroads 2.1, September 1995. 

[BB98] Greg J. Badros and Alan Borning, "The Cassowary Linear Arithmetic Constraint Solving Algorithm: 
Interface and Implementation", University of Washington tech report 98-06-04, 1998. 

[BC90] Gilad Bracha and William Cook.  Mixin-based Inheritance. Proc. Conference on Object-Oriented 
Programming Systems, Languages, and Applications, 1990. 

[BL92] Gilad Bracha and Gary Lindstrom. Modularity meets Inheritance. Proc. International Conference on 
Computer Languages, pages 282--290, San Francisco, April 1992. 

[BVT+94] D. Batory, S. Vivek, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin. The GenVoca model of software-
system generators. IEEE Software, 11(5):89--94, September 1994. 

[C92] Craig Chambers. Object-Oriented Multi-Methods in Cecil.  Proc. European Conference on Object-Oriented 
Programming, 1992. 

[DRG00] The Demeter Research Group.  Online Material on Adaptive Programming and Demeter/Java. 
http://www.ccs.neu.edu/research/demeter/, 2000. 

[EKC98] Michael D. Ernst, Craig Kaplan, and Craig Chambers. Predicate Dispatching: A Unified Theory of 
Dispatch. Proc. 12th European Conference on Object-Oriented Programming, Brussels, Belgium, 1998. 

[FF98] Findler and Flatt. Modular Object-Oriented Programming with Units and Mixins. Proc. International 
Conference on Functional Programming, 1998. 

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, Massachusetts, 1995. 

[GS94] David Garlan and Mary Shaw. An Introduction to Software Architecture. Carnegie Mellon University 
technical report CMU-CS-94-166, 1994. 

[H92] Ian M. Holland. Specifying Reusable Components Using Contracts. Proc. 6th European Conference on 
Object-Oriented Programming, 1992. 

[HW00] Anders Hejlsberg and Scott Wiltamuth.  C# Language Reference.  Available at 
http://msdn.microsoft.com/library/prelim/csref/vcoriCReference.htm, 2000. 

[K00] Gregor Kiczales. AspectJ™: aspect-oriented programming using Java™ technology. JavaOne, June 2000. 

[K96] G. Kiczales. Beyond the black box: open implementation. IEEE Software 13.1 pp 8-11, January 1996. 

[KCR98] Richard Kelsey, William Clinger, and Jonathan Rees.  Revised report on the algorithmic language 
Scheme.  ACM SIGPLAN Notices 33(9), September 1998. 

[KFF98] Shriram Krishnamurti, Matthias Felleisen, and Daniel P. Friedman. Synthesizing object-oriented and 
functional design to promote re-use. Proc. European Conference on Object-Oriented Programming, 1998. 



[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. Proc. 11th European Conference on Object-Oriented Programming, 1997. 

[L97] Gus Lopez.  The Design and Implementation of Kaleidoscope, A Constraint Imperative Programming 
Language.  Ph.D. dissertation, University of Washington tech report 97-04-08, April 1997. 

[LB88] Butler Lampson and Rod Burstall.  Pebble, a kernel language for modules and abstract data types. 
Information and Computation, 76(2/3):278--346, Feb/Mar 1988. 

[LL00] Martin Lippert and Cristina Videira Lopes. A Study on Exception Detection and Handling Using Aspect-
Oriented Programming. Proc. 22nd International Conference on Software Engineering, 2000. 

[LM99] Albert Lai and Gail Murphy.  The structure of features in Java code: An exploratory investigation.  Position 
paper for the OOPSLA ’99 workshop on multi-dimensional separation of concerns, 1999. 

[LS83] Butler Lampson and Eric Schmidt.  Practical use of a polymorphic applicative language. Proc. 10th ACM 
Symposium on Principles of Programming Languages, Austin, 1983. 

[M93] Ole Lehrmann Madsen.  An overview of BETA.  Book chapter, 
http://www.daimi.au.dk/~beta/Papers/BetaOverview/betaoverview.abstract.html, 1993. 

[MC99] Todd Millstein and Craig Chambers. Modular Statically Typed Multimethods. Proc. 13th European 
Conference on Object-Oriented Programming, Lisbon, Portugal, June 1999. 

[ML98] M. Mezini, and K. Lieberherr. Adaptive plug-and-play components for evolutionary software development.  
Proc. Conference on Object-Oriented Programming Systems, Languages, and Applications, October 1998. 

[MN97] Gail C. Murphy and David Notkin. Reengineering with Reflexion Models: A Case Study. Computer 30, 8, 
pp. 29-36, August 1997. 

[MT00] Nenad Medvidovic and Richard Taylor. A Classification and Comparison Framework for Software 
Architecture Description Languages.  IEEE Trans. on Software Engineering, 2000. 

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML 
(Revised). MIT Press, 1997. 

[NBW00] Michael Noth, Alan Borning, and Paul Waddell. An Extensible, Modular Architecture for Simulating 
Urban Development, Transportation, and Environmental Impacts. http://www.urbansim.org/Papers/.  
Submitted for publication, August 2000. 

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias protection. Proc. 12th European Conference on 
Object-Oriented Programming, Brussels, Belgium, 1998. 

[OT00] H. Ossher and P. Tarr. "Multi-Dimensional Separation of Concerns and The Hyperspace Approach. Proc. 
Symposium on Software Architectures and Component Technology: The State of the Art in Software 
Development. Kluwer, 2000. 

[P72] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules. Communications of the 
ACM, 15(12): 1053-1058, ACM Press, 1972. 

[SB98] Y. Smaragdakis and D. Batory. Implementing Layered Designs with Mixin-Layers. Proc. European 
Conference on Object-Oriented Programming, 1998. 

[S95] Charles Simonyi. The Death of Computer Languages, The Birth of Intentional Programming. Microsoft 
Research Technical Report MSR-TR-95-52, September 1995. 

[TOHS99] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. N Degrees of Separation: Multi-Dimensional 
Separation of Concerns. Proc. 21st International Conference on Software Engineering, May 1999. 

[VN96] Michael VanHilst and David Notkin. Using role components to implement collaboration-based designs. 
Proc. Conference on Object-Oriented Programming Systems, Languages, and Applications, 1996. Proc. 
Conference on Object-Oriented Programming Systems, Languages, and Applications, 1998. 


