
Lightweight Object Specification with Typestates

Kevin Bierhoff
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

kevin.bierhoff @ cs.cmu.edu

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

jonathan.aldrich @ cs.cmu.edu

ABSTRACT
Previous work has proven typestates to be useful for mod-
eling protocols in object-oriented languages. We build on
this work by addressing substitutability of subtypes as well
as improving precision and conciseness of specifications. We
propose a specification technique for objects based on ab-
stract states that incorporates state refinement, method re-
finement, and orthogonal state dimensions. Union and inter-
section types form the underlying semantics of method spec-
ifications. The approach guarantees substitutability and
behavioral subtyping. We designed a dynamic analysis to
check existing object-oriented software for protocol confor-
mance and validated our approach by specifying two stan-
dard Java libraries. We provide preliminary evidence for the
usefulness of our approach.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.4 [Software Engineering]: Software/Program
Verification; D.2.2 [Software Engineering]: Design Tools
and Techniques; F.3.1 [Theory of Computation]: Speci-
fying and Verifying and Reasoning about Programs

General Terms
Design, Verification, Languages, Reliability

Keywords
Typestate, refinement, substitutability, behavioral subtyp-
ing, union and intersection types

1. INTRODUCTION
In object-oriented software systems, objects routinely

store data. The data can only be accessed and modified
through the methods defined in the objects’ interfaces. This
is the essence of information hiding [19]. The engineering of
object-oriented software includes specifying these interfaces,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05,September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

implementing them with classes, and verifying design and
implementation with formal methods and testing. Thus im-
proving interface specifications can greatly facilitate all these
engineering tasks.

An interface specification defines a type of object. At the
very least, an interface lists available methods. But fre-
quently the specification also defines a protocol of allowed
method call sequences. For instance, an input stream would
require that it can be read only before it is closed. A method
can be specified even more precisely with a contract between
the interface and its clients. A contract describes the “du-
ties” of both parties involved in a method call.

In particular in the presence of a protocol, implementation
invariants are frequently disjunctions of predicates. Which
predicate is true at a given point in the object’s lifetime is
often hard to tell. This can for example result in passing the
contents of a field that is currently null to a method, which
might accidentally violate that method’s contract.

Mainstream object-oriented languages offer only informal
documentation to capture protocols, contracts, and invari-
ants. Eiffel [18] was the first language to support pre- and
post-conditions for formalizing contracts. Contracts are ar-
bitrary boolean expressions that Eiffel checks at run time.
Careless pre- and post-conditions can cause side-effects or di-
rectly refer to fields in the implementation and thus violate
information hiding. Pre- and post-conditions can formalize
an individual method’s contract very precisely. However,
they capture protocols only implicitly. Therefore very pre-
cise conditions can obfuscate the underlying protocol rather
than making it clear. They also impose high specification
overhead.

Typestates [22] are an alternative to pre- and post-
conditions. Typestates were proposed to capture the in-
tuition that the set of operations that can be performed
on an object frequently not only depends on its fixed type
but also its changing state. For example, the input stream
from above can be open or closed (figure 1). Although con-
tracts based on typestates are less precise than pre-/post-
conditions, they capture protocols in a more lightweight and
direct way (figure 3).

The only existing object-oriented typestate system, Fugue
[7], demonstrated the usefulness of typestates for object-
oriented programming. We propose to employ typestates
more broadly for a lightweight technique of specifying ob-
ject behavior based on abstract states. We build on Fugue’s
approach and address challenges of object-oriented software
related to subtyping and inheritance with the following con-
tributions.

• In previous work, substitutability of subtypes for su-
pertypes can be violated. We propose hierarchical
state refinement into substates to resolve this prob-
lem. State refinement allows a subtype to define more
fine-grained states. For instance, a buffered stream
can refine open to indicate that its buffer can be filled
or empty.

• Objects frequently change state along multiple concep-
tual “axes”. Distinguishing all state combinations can
lead to state explosion problems. We avoid state explo-
sion using state dimensions which build on AND-states
from Statecharts [15]. State dimensions also help cap-
ture multiple “roles” an object plays in a system.

• In previous work, once a method is defined, subclasses
cannot change its specification. We introduce method
refinement in subtypes. Refined methods can accept
more inputs or yield more specific results. Methods
can also be specified more precisely based on more fine-
grained state refinements.

Thus our approach not only addresses technical challenges
but also captures important semantic extensions to existing
work. The approach guarantees behavioral subtyping [16]
even with method refinement. Code expecting a supertype
will therefore always work with an object of a subtype. This
eliminates common hierarchy violations in existing pre- and
post-condition systems [11].

Behavioral subtyping results from using union and inter-
section types [9] in method specifications. They can express
non-determinism and case-by-case behavior, increasing ex-
pressiveness and precision over specifications in Fugue. An
alternative approach by Butkevich et al. uses labelled transi-
tion systems to specify protocols with non-determinism that
can be checked statically for hierarchy violations [2].

Sound static checking of conformance between specifica-
tion and implementation would require aliasing restrictions
as in Fugue [7]. However, our goal is to explore the bene-
fits of typestate specifications without any aliasing restric-
tions, even on objects that change state. To this end we
designed and implemented a dynamic analysis to check Java
programs. It can be applied to programs which Fugue would
rule out. It also is a testbed to explore the usefulness of
more powerful specifications than we could currently stati-
cally check. It will therefore guide future efforts in develop-
ing static conformance checking for typestate specifications.

Our analysis is similar to traditional pre- and post-
condition systems [18, 10] in that it flags specification viola-
tions at run time. However, it provides better information
hiding than most of these systems by strictly separating ab-
stract typestates and underlying implementation invariants.

We performed case studies on the usefulness of our ap-
proach. In this paper we report on our experiences with
specifying parts of the standard Java I/O and SQL libraries.
We could capture interesting properties from informal doc-
umentation with moderately low overhead. We provide pre-
liminary evidence that the novel properties of our system
are useful in practice.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our typestate specification approach. A
more formal description follows in section 3. Section 4
presents our dynamic typestate analysis. We report on case
studies in section 5. Section 6 summarizes related work and
section 7 concludes.

interface InputStream extends Object {

[open, closed] refines alive;

void close();

boolean isClosed();

int read();

}

interface BufferedInputStream extends InputStream {

[empty, filled] refines open;

}

Figure 1: State refinement in the stream example

2. INTERFACE SPECIFICATION
The fundamental idea of our approach is to model ob-

ject behavior using abstract states that can change over the
lifetime of the object. The approach augments standard
interface specifications as in Java with state-based informa-
tion. The following subsections introduce state refinement,
method specifications, and state dimensions. Finally, we
discuss the expressiveness of our approach.

2.1 State Refinement
Subtypes are usually required to be substitutable for a su-

pertype. That guarantees that subtype objects can always
be treated as objects of the supertype. Fugue [7] violates this
principle because subtypes can define new states that exist
alongside the ones defined in the supertype. For instance,
an InputStream can be “open” or “closed”. A subtype like
BufferedInputStream defines an additional state for the case
where its buffer is “empty”. Consequently, a BufferedIn-
putStream can end up in a state unknown to its supertype.
In this situation Fugue has to prohibit any implicit or ex-
plicit upcasting of the object into the supertype. This has
the effect that a BufferedInputStream is only sometimes an
InputStream. Substitutability is violated.

On the other hand, it seems necessary to allow subtypes
to define their own states. The only way to allow this and
preserve substitutability is through state refinement which
defines a set of states s1, . . . , sn as special cases of an existing
state s. In a specification we write:

[s1, . . . , sn] refines s

The si are substates of s, written si ≤ s, and whenever
an object is in a state si, it is also in s. For the moment
we assume that s has not been refined yet. We define a
unique root state alive in the root type Object from which
the refinements build a tree of substates. Figure 1 shows
some state refinements for our streams.

2.2 Method Specification and Refinement
A classic approach to specifying methods is to define

pre- and post-conditions directly in terms of implementa-
tion variables [18]. Specification languages for objects such
as JML [3] can capture pre- and post-conditions more ab-
stractly with specification variables which are independent
from a concrete implementation. This better preserves in-
formation hiding. Nonetheless, it can be quite tedious to
write specifications in this way. And in both approaches the
actual protocol that needs to be enforced is implicit.

M ::= C | M ∧M
C ::= P → U
U ::= P | U ∨ U
P ::= (T, . . . , T)
T ::= S | T ∧ T | T ∨ T
S ::= s | n | op n | true | false | null
s ::= statename
n ::= integer

op ::= == | ! = | < | <= | > | >

Figure 2: Method specification language

Fugue [7] took the approach of specifying methods with a
single state transition of the receiver. It also allows defining
a state requirement for method arguments. However, argu-
ments cannot change state, and state transitions have to be
deterministic. We overcome these limitations by adapting
type refinements with union and intersection types [9] to
our setting. The basic notation is as follows:

• We refer to individual states by their name.

• We annotate a method with A → A′ to express that
the method requires the source state A and produces
the destination state A′. Thus, it implements a state
transition A → A′. For instance, the method close
will translate a stream from “open” to “closed”.

• Intersections can relate source and destination states
on a case-by-case basis. A method annotated with
A → A′ ∧ B → B′ will translate A to A′ and B to
B′. If both A and B are satisfied, both cases apply.
For example, isClosed returns true when the stream is
closed and false when it is open.

• Unions express non-determinism with A ∨ B. For in-
stance, a call to read can return a character or -1 to
signal the end of the file.

• Finally, we use a product notation (T1, . . . , Tn) to
group the states of receiver, arguments, and method
result together.

Unions of the form A → A′∨B → B′ are primarily useful
in a setting with first-class functions. Since most object-
oriented systems don’t have them, we exclude unions of state
transitions and state transitions within products. Intersec-
tions of state transitions essentially list the different cases of
behavior for a method. The developer can omit intersections
between cases in our concrete syntax.

Figure 2 gives the exact syntax we use for specifying meth-
ods.1 A method annotation is an intersection of cases. Each
case has an arrow as its outermost operator. The arrow’s
domain is a product defining the source states of receiver
and arguments (in their order in the signature). The range
can be a union of products that will have one more element
for the state of the method result. Each element of a prod-
uct can be an arbitrary combination of basic states defined

1In the tradition of Davies’ intersection types for ML [4] we
write “&” for intersection and “|” for union in actual state
annotations. We use ∧ and ∨ in formal definitions to avoid
confusion with the symbol | for separating grammar options.

interface InputStream extends Object {

[open, closed] refines alive;

(open) -> (closed)

void close();

(open) -> (open, false)

(closed)->(closed, true)

boolean isClosed();

(open) -> (open, -1 | (>= 0 & <= 255))

int read();

}

interface BufferedInputStream extends InputStream {

[empty, filled] refines open;

(filled) -> (open, >= 0 & <= 255)

int read();

}

Figure 3: Method specifications for stream example

for the respective object (receiver, argument, or result) us-
ing unions and intersections. We introduce special states
for integer values (n), integer ranges (op n) and boolean
constants. For arguments and method results we allow the
“pseudo-state” null. A “real” state (alive or any substate)
implies that the reference is valid, i.e. not null.

Figure 3 illustrates the specification of our streams (we
write each case in a new line). Maybe the most interesting
method in this example is read. We refine its specification
in BufferedInputStream to show that a read will always yield
a character if the buffer is filled. This is consistent with the
specification in InputStream but guarantees more precise be-
havior for a particular situation. In this case the possibility
to return −1 is ruled out. The next section will include
an example that illustrates the benefit of unions between
products.

Fugue does not allow methods to be respecified in a sub-
type. This rules out two important ways of changing method
behavior in a subtype: extending it to cover more cases (ef-
fectively relaxing its precondition) or requiring it to produce
a more specific outcome (tightening its postcondition) [16].

Fortunately, our notion of state refinement enables us to
allow both. A method can be annotated in a subtype again.
This refinement does not replace but intersect with the spec-
ification for the method that is inherited from the supertype.
As we will see in section 3, this does not only produce a sensi-
ble specification, but it also suffices to guarantee behavioral
subtyping.

In summary, our technique gives both theoretical and
practical leverage over existing work. We can express ar-
bitrary state transitions with non-determinism for receivers
and arguments. We can also refine specifications in sub-
types.

2.3 Orthogonal States
So far, our method has a state explosion problem. As

an example, consider the definition of a result set in the
standard Java SQL library (figure 4). A result set iterates
over the result of a database query row by row. Initially,

interface ResultSet extends Object {

default = [open, closed] refines alive;

position = [start, row, end] refines open;

direction = [forward, reverse] refines open;

(start | row) -> (row, true) | (end, false)

boolean next();

(open) -> (closed)

void close();

(open, 1000) -> (forward, 1000)

(open, 1001) -> (reverse, 1001)

void setFetchDirection(int direction);

}

Figure 4: State dimensions in a SQL result set

no row is selected. next moves to the next available row.
It returns false when no more rows are available. We may
identify three distinct states: “start”, “row”, and “end”.

At any given moment the client can change the fetch direc-
tion.2 Now our three states from above build a cross product
with the possible fetch directions: all six combinations make
sense. Obviously, it quickly becomes infeasible to enumerate
all combinations — not impossible, but tedious. Moreover,
the two dimensions of the result set’s behavior are largely
unrelated. Thus a compound state like “rowForward” makes
little sense.

To resolve this we allow any state to be refined at any
time. Refining an already-refined state defines a new state
dimension that is orthogonal to the state’s existing refine-
ments. Thus whenever a result set is open (figure 4), it will
be in one of the “position” and one of the “direction” states.
(For practical considerations each dimension is named.)

As an additional benefit, state dimensions enable us to
naturally cover multiple interface inheritance. The states
defined in each inherited interface simply define orthogonal
dimensions — unless they were introduced in a common
super-interface. (“alive” therefore remains the unique root
state.)

2.4 Expressiveness
State and method refinement make our specification lan-

guage strictly more expressive than Fugue’s. We can encode
any state space definable in Fugue with exactly one state re-
finement per type that includes a pseudo-state to represent
any additional states that are defined in subtypes. Fugue’s
restriction essentially means that subtypes have to refine
this pseudo-state. Our technique not only allows arbitrary
state refinements but also includes state dimensions for con-
ciseness.

Union and intersection types increase the expressiveness
of our method specifications in various ways as discussed in
section 2.2. A Fugue method specification can be encoded
with one method case without unions or intersections that is
not refined in subclasses. Unions, intersections, and refine-
ments let the developer express her intention more precisely.

We want to highlight here that our specifications can ex-
press non-determinism, both explicitly with unions as in

2The integer values are constants defined in the library.

σ ::= ∅ | {s = (d1, . . . , dk)} ∪ σ
d ::= [s1, . . . , sn]
s ::= statename

Figure 5: Grammar to define state spaces

next and implicitly with imprecise states as in setFetchDi-
rection (figure 4). In the latter example, “reverse” certainly
implies “open”, but nothing more. This is the desired se-
mantics. In fact, the method will sometimes translate the
result set from “end” to “start” or vice versa. The example
of next shows how the state of the returned boolean can be
used to determine the typestate of the ResultSet. This is
the reason we use the product notation in method specifi-
cations rather than give a separate state transition for each
argument and receiver.

Specifications often have to rely or choose to rely on non-
determinism. Subtypes can add precision as demonstrated
for the BufferedInputStream to complement the more fine-
grained states a subtype can have. Thus our technique pro-
vides incremental benefit: the more detail is put into a spec-
ification, the more precise it gets. The developer can choose
the appropriate level of abstraction for her specification pur-
poses.

3. FORMAL PROPERTIES
This section first formally defines state refinement

and proves substitutability. Then we introduce the
union/intersection type system we use for method specifi-
cations. We finally prove behavioral subtyping. The section
relies on type-theoretic foundations and notations (Pierce
gives a nice introduction in [20]).

3.1 Defining State Refinement
We assume a nominal type system for interfaces, meaning

that a name uniquely identifies an interface. Each interface
C in this paper defines a state space written σ(C). Figure 5
defines a grammar for state spaces.

A state space is a set of state definitions, exactly one for
each state in the state space. A state is defined with a prod-
uct containing zero or more refinement dimensions. (The
empty product is called unit and marks leaf states.) Each
dimension is defined as a variant (written with square brack-
ets). It lists the set of refining states in a dimension.

Definition 1 (State Spaces). σ is a state space if it
can be derived with the following rules.

{ρ = ()} space
P-Root

σ space s = (d1, . . . , dk) ∈ σ
d = [s1, . . . , sn] s1, . . . , sn 6∈ dom(σ)

σ ⊗ {s = (d1, . . . , dk, d),
s1 = (), . . . , sn = ()} space

P-Refine

The judgment σ space defines valid state spaces. First,
the unrefined root state ρ is a valid state space. Second, if
we have a valid state space that contains a definition for a
state s then we can refine s along a new dimension d into
[s1, . . . , sn] if these state names are not used in σ yet. The

Γ ` e ∈ A Γ ` e ∈ B
Γ ` e ∈ A ∧B

∧I
Γ ` e ∈ A ∧B

Γ ` e ∈ A
∧EL

Γ ` e ∈ A ∧B
Γ ` e ∈ B

∧ER

Γ ` e ∈ T T ≤ S

Γ ` e ∈ S
T-Sub

Γ ` e1 ∈ A → B Γ ` e2 ∈ A

Γ ` e1 e2 ∈ B
T-Apply

Γ ` ei ∈ Ai

Γ ` (e1, . . . , el) ∈ A1 × . . .×Al
T-Prod

A ≤ B1 A ≤ B2

A ≤ B1 ∧B2
∧R

A1 ≤ B

A1 ∧A2 ≤ B
∧L1

A2 ≤ B

A1 ∧A2 ≤ B
∧L2

A1 ≤ B A2 ≤ B

A1 ∨A2 ≤ B
∨L

A ≤ B1

A ≤ B1 ∨B2
∨R1

A ≤ B2

A ≤ B1 ∨B2
∨R2

B1 ≤ A1 A2 ≤ B2

A1 → A2 ≤ B1 → B2
S-Arrow

A1 ≤ B1 . . . Ak ≤ Bk (0 ≤ k ≤ l)

A1 × . . .×Al ≤ B1 × . . .×Ak
S-Prod

Figure 6: Typing and substate judgments for method specifications with unions and intersections

notation σ⊗S is borrowed from Z [1] and leaves σ untouched
except that definitions in S override competing ones in σ.

The state space of a type C is derived by applying P-
Refine zero or more times to the state space σ(B) of
C’s direct supertype B. The root object’s state space is
σ(Object) = {ρ = ()}.

Next we define the substate relation between individ-
ual states already introduced informally in section 2.1.
We write a single state refinement with rule P-Refine as
σ′ −−−−−−−−−−→s 7→ s1, . . . , sn σ.

Definition 2 (Substates). Let σ be a state space such
that σ space and s, t, u ∈ dom(σ). The substate relation
s ≤σ t between states is defined by the following rules

σ′ −−−−−−−−−−→s 7→ s1, . . . , sn σ

si ≤σ s (i ∈ 1, . . . , n)

s ≤σ s

s ≤σ u u ≤σ t

s ≤σ t

As alluded to a number of times, a major consequence of
our approach is that it preserves substitutability of subtypes.
This is in contrast to previous work.

Property 1 (Substitutability). If C is a subtype of
B then

∀s ∈ σ(C). ∃s′ ∈ σ(B). s ≤σ(C) s′

Proof. Immediate from the fact that C’s state space is a
refinement of B’s.

3.2 Specifying Methods
As mentioned in section 2, we base our method specifica-

tions on refinement types, in particular on datasort refine-
ments with union and intersection types [9]. Refinement
types add information to an underlying conventional type
system in order to increase its precision. Datasort refine-
ments build on uninterpreted atomic refinements of the un-
derlying types. Refinements are assumed to have a partial
ordering. Atomic refinements and partial order are given by

the states defined in a given state space σ and its substate
relation ≤σ. We will write ≤ where it is unambiguous.

Refinements refine expressions. We write e ∈ A to in-
dicate that A refines expression e or, equivalently, that e
typechecks with refinement A. From atomic refinements we
can build unions and intersections. In particular, an inter-
section refinement e ∈ A ∧B means e ∈ A and e ∈ B.

Figure 6 defines typing rules and the substate relation for
our setting. Our system follows [9]. The only exception is
that we can type arbitrary expressions with intersections.
We need this to type function applications more precisely.
We can omit typing rules for unions because we do not sup-
port them between arrows. We do need to cover both unions
and intersections in the substate relation. Finally note that
nested products and arrows or arrows within products do
not apply to our setting.

Given the method specification and the states of concrete
receiver and argument objects, we want to compute the ob-
jects’ destination states. Unfortunately the tridirectional
typechecking system in [9] is non-deterministic and requires
partial typing annotations. However, for the simplified situ-
ation of our dynamic analysis (cf. section 4), we developed a
deterministic algorithm to type function applications (figure
7, starting from rule T-Apply).

The analysis always “knows” what states each object is in.
It builds intersections of these states for all objects involved
in a method call and invokes the algorithm to compute their
expected destination states. With this simplification we can
prove soundness and completeness of our algorithm with re-
spect to figure 6. The theorem implies that we always gen-
erate the most precise possible type.

Theorem 1 (Soundness and Completeness). For
a given method body m and argument e = (r, a1, . . . , an),
where r is the receiver and ai are the method arguments,
let m ∈ A be m’s specification following the restrictions in
figure 2 and e ∈ B a valid refinement for e containing no
unions. Then
(1) If A ·B = C then Γ ` m e ∈ C according to figure 6.
(2) If C′ is a sort refinement such that Γ ` m e ∈ C′

according to figure 6, then A ·B = C such that C ≤ C′.

Proof. (1) By induction on the derivation of A ·B = C.
(2) By induction on the derivation of Γ ` m e ∈ C′.

Γ ` e1 ∈ A Γ ` e2 ∈ B A ·B = C

Γ ` e1 e2 ∈ C
T-Apply

C =
∧

i{Ci | Ai ·B = Ci} (∃i. Ai ·B = Ci)

(
∧

i∈1,2 Ai) ·B = C
A-Inter

B ≤ A

(A → C) ·B = C
A-Arrow

Figure 7: Algorithm to compute destination states

3.3 Behavioral Subtyping
Method refinement allows adding information to a method

specification in a subtype. Changing a method specifica-
tion in a subtype is potentially dangerous because the new
specification could contradict the supertype specification.
(Imagine a call to BufferedInputStream.read would close the
stream, see figure 3.)

Liskov and Wing formalized sensible pre- and post-
conditions for subtypes in their work on behavioral subtyp-
ing [16]. Whenever an object is used where a supertype is
expected, behavioral subtyping guarantees that it reacts to
method calls in a way that is compatible to the supertype’s
specification.

Behavioral subtyping requires the supertype’s pre-
condition to imply the subtype’s, and the subtype’s post-
condition to imply the supertype’s. The different impli-
cation directions result from functions being contravariant
in the domain and covariant in the range. The behavioral
subtyping requirements are therefore equivalent to substate
tests on method refinements.

Theorem 2 (Behavioral subtyping). If C is a sub-
type of B then for all methods m defined in B the follow-
ing holds: Let B.m ∈ S be the refinement for m in B and
C.m ∈ T the refinement for m in C. Then T ≤ S.

Proof. If C is a subtype of B and B.m ∈ S then C.m ∈
S∧T ′, where T ′ is the additional information given for m in
C. According to figure 6, T = S ∧ T ′ ≤ S always holds.

Findler calls it a “hierarchy violation” if an overriding
method violates behavioral subtyping. This happens if the
pre-condition is strengthened or the post-condition is weak-
ened. Butkevich et al. can detect hierarchy violations stat-
ically for their protocols [2]. Pre- and post-condition sys-
tems in general cannot detect hierarchy violations statically.
Moreover, if at runtime a predicate violation results from a
faulty specification, most systems flag a normal condition
violation [11].

The theorem above implies that any method specification
T in a subtype validates the behavioral subtyping condi-
tions. In other words, hierarchy violations are impossible
with our approach; we always guarantee behavioral subtyp-
ing. This pleasant result naturally falls out because of the
way we designed our specifications.

4. DYNAMIC STATE ANALYSIS
This section describes the dynamic analysis we developed

for enforcing the interface specification technique presented
in the preceding sections. We first describe the annotations
needed to analyze implementations. Then we introduce our

D ::= s := P
P ::= A | P && P | P || P | !P
A ::= f instate S | f substateof f | f op F | F
F ::= S | f
S ::= s | n | true | false | null
f ::= fieldname | super
s ::= statename
n ::= integer

op ::= == | ! = | < | <= | > | >

Figure 8: State invariant definition language

dynamic checking technique. We give an intuition of how to
detect unsatisfiable specifications and briefly discuss the dis-
covery of dangling resources. Finally, details of our analysis
implementation for Java are described.

Specifying State Invariants.Our interface specifications
define abstract states and state transitions for each method.
An interface is implemented with a class that defines fields
and method bodies. We map the interface’s abstract states
onto the fields of the implementing class by defining a
predicate for each state, called a state invariant in Fugue.
This idea extends the concept of class invariants in object-
oriented specification methods [8] in a principled way.

The language for defining a predicate is given in figure 8.
Each state is assigned a predicate which can be any boolean
combination of atomic predicates. Atomic predicates in-
clude state tests, state comparison, integer comparisons, and
boolean constants and fields.

Each class can define its own predicates for all states. This
is a major advantage of our approach because it allows pro-
grammers to freely reimplement and extend functionality
in subclasses. An object can be seen as a stack of frames.
Each frame corresponds to a class in the inheritance hierar-
chy and holds the object’s fields defined in that class. Using
each class’s predicates we can determine the state of each
frame in an object.

An extension to Fugue’s predicates is the special variable
super. Because of information hiding subclasses typically
cannot directly access fields in superclasses. super allows a
class to make its states dependent on the abstract state of
the immediate superclass. We do not impose any restric-
tions on what the state dependencies look like. This is an
important extension of Fugue’s predicate language — we
benefited from it a number of times in our case studies.

Nonetheless our predicates are somewhat limited com-
pared to traditional pre- and post-conditions like Find-
ler’s [10] because we do not allow method calls in them.
This choice has a number of advantages including potential
static checking and freedom from side-effects. Also, extend-
ing our predicates with method calls would be straightfor-
ward. Thus our approach can be seen as a framework for
more lightweight pre- and post-condition specifications.

Dynamic Predicate Checking.To test whether an object
is in a particular state, we evaluate the state’s predicate and
all predicates of superstates. Thus state refinements build a
hierarchy of predicates that allows the programmer to define
state invariants very concisely. The default predicate for
each state is true.

The analysis tracks sets of states for each object frame.
When the analysis first encounters an object frame it tests
all known states and “remembers” the set of applicable
states (whose predicates evaluated to true). Afterwards,
usually only a few states are retested at a time. For each
method execution we perform the following steps.

1. Before a method is executed, build a product e2 =
(o, a1, . . . , an) to represent the receiver object o and
argument objects a1, . . . , an involved in the method
call. Determine the refinement e ∈ A of the called
method.

2. Compute the refinement e e2 ∈ E with our apply algo-
rithm (figure 7) to get the expected post-condition E.
To test b ≤ s where b is an object in e2 and s a state,
simply look up whether b is remembered to be in s.3

3. If E cannot be computed, flag a pre-condition viola-
tion.

4. Execute the method body.

5. After method execution, build a product e′2 similar to
e2 that contains receiver, arguments, and the addi-
tional result object, if any.

6. For each object in e′2, collect all states it can be in ac-
cording to E. Test these possible states and remember
the ones that are applicable.4

7. Test e′2 ≤ E the same way as in step 3.

8. If the test yields false, flag a post-condition violation.

Unsatisfiable Specifications.We say that a method spec-
ification is unsatisfiable if for a valid pre-condition the ex-
pected post-condition cannot be true. This post-condition
will most likely contain an intersection of mutually exclusive
states like open∧ closed. This can in particular occur in the
presence of method refinement. If a method specification
S → T is refined with S′ → T ′, the resulting specification
is S → T ∧ S′ → T ′. Applying this e.g. to S ∧ S′ will yield
T ∧ T ′, and the specification is unsatisfiable if T and T ′

happen to be mutually exclusive.
Static implementation checking can discover this problem

because it is impossible to write a terminating implementa-
tion for an unsatisfiable specification. But even ignoring the
implementation we can check statically if a specification is
satisfiable. Because this check is not currently implemented,
we only give an intuition here.

For a given method, list all possible combinations of
receiver and argument states. This list is always finite.
Then exhaustively simulate the possible method calls based
on this list and compute the expected destination states.
Test whether all expected destination states are satisfiable,
i.e. are free of intersections of mutually exclusive states. This
procedure can be fully automated. The intersection with the
inherited specification for method refinements must be used
in order to cover the important case we discussed above.

3We in fact retest the predicates of remembered states. If
some state is no longer valid, we recompute all applicable
states and flag a warning.
4If none of the possible states are applicable for an object,
then typically the state invariants are not properly defined
and an error is flagged.

Detecting Dangling Resources.One of the most impor-
tant applications of Fugue was to find dangling resource bugs
such as files and SQL connections that were not properly
closed [6]. Just like Fugue, Butkevich et al. mark valid end
states and check that they are reached [2]. We suggest an
alternative approach that works better in the presence of
state refinements.

We refine our root state alive into two states collect and
bound, where the latter indicates that the object should not
become available for garbage collection. For instance, an
open stream is bound. collect implies in contrast that the
object can be collected safely, like a closed stream.

All three states alive, bound, and collect can be refined.
We consider it good practice to normally extend collect un-
less resources are going to be bound in the refining states.

The dynamic analysis can now check all objects that be-
come available for garbage collection for potential dangling
resources. Whenever an object is found in bound or one of
its substates, a warning is issued.

Implementation in Java.Our dynamic state analysis is
implemented for Java and can monitor method executions
in a running program with AspectJ. We use Java 5 annota-
tions (JSR-175) to put our state specifications directly into
Java source files. We will see examples of their usage in the
following section.

• @Refine refines a state using three fields parent, di-
mension, and states.

• @Case defines a method case with the grammar in fig-
ure 2.

• @Pred defines a state invariant with a string that is
parsed according to the grammar in figure 8.

• @States, @Cases, and @Predicates are aggregates to
overcome the JSR-175 limitation of one annotation of
a particular type per element.

AspectJ lets us intercept all method calls of interest and
perform the dynamic predicate checking algorithm described
above as an around advice. We do not produce custom
checking code for each state predicate but rather imple-
mented a generic strategy to evaluate predicates using Java’s
reflection mechanism. Atomic predicates essentially trigger
substate tests on fields. Boolean combinations of predicates
are evaluated in standard left-to-right order, omitting pred-
icates that cannot change the result.

5. CASE STUDIES
In section 3 we saw that our state-based specification tech-

nique has desirable theoretical properties. In this section
we report on case studies with the Java JDK 1.5 01. We
modeled the standard libraries for stream-based I/O and
for accessing SQL databases. We report in this order.

5.1 Modeling Java I/O
The Java I/O library (java.io) provides subclasses of In-

putStream to read byte streams from various sources. We
saw part of the stream interface in section 2.1. Subclasses of
OutputStream can be used to write byte streams. Streams
turned out to be a rich source of interesting observations.
We will mostly discuss pipes because of their relatively high
complexity.

Formalizing documentation.Java’s I/O package is very
well documented. Most methods, even private ones, include
extensive usage information. Here is part of the documenta-
tion for method int read(byte b[], int off, int len)

in InputStream.
Reads up to len bytes of data from the input stream into an

array of bytes... If len is zero, then no bytes are read and 0

is returned; otherwise, there is an attempt to read at least one

byte. If no byte is available because the stream is at end of file,

the value −1 is returned; otherwise, at least one byte is read and

stored into b.

To model this, we refined our open state into within and
eof (end of file).5 The method annotation looks as follows.
Notice that the first case guarantees at least one byte, as
required. The second case applies when len is 0.

@Cases({
@Case("(within, alive, >= 0, > 0)" +

"-> (within|eof, alive, >= 0, > 0, > 0)"),
@Case("(open, alive, >= 0, 0)" +

"-> (open, alive, >= 0, 0, 0)"),
@Case("(eof, alive, >= 0, > 0)" +

"-> (eof, alive, >=0, > 0, -1)") })

This demonstrates the usefulness of specifying a method
with multiple cases, which are a benefit of using intersection
types. Complex methods like read tend to behave differently
depending on the situation. Method cases proved ideal to
express this behavior precisely and succinctly.

Most methods in Java I/O have documentation like the
one above, validating our hypothesis that programmers have
to informally document contracts and protocols. We can
formalize these to a large extent — and in a succinct way:
We needed only 4 lines of annotations as opposed to 62 lines
of comments for this method.

State refinement.The state refinements in InputStream
(described above) demonstrate that refinements are an in-
tuitive way to specify the state space of a class. But ini-
tially they were motivated by subclasses needing additional
states. We did indeed use state refinements quite frequently
in subclasses, e.g. to distinguish interesting states of buffers
(section 2.2).

State dimensions.We included state dimensions for scal-
ability, i.e. to allow concise state spaces and short method
specifications. Java’s pipe implementation shows the va-
lidity of this hypothesis. Pipes are implemented with two
classes. A producer pushes data into a PipedOutputStream
(writer), which will forward it to a buffer in PipedInput-
Stream (reader), from where a consumer can poll the data.
An open reader has to distinguish between its buffer being
empty, having data available, and being full. It also has to
keep track of the writer being connected or closed: Only a
connected writer can put data into its reader’s buffer (the
exact protocol follows).

It turns out that most methods in a class only care about
one of the dimensions. Thus dimensions simplified the spec-
ification a great deal and prevented state explosion prob-
lems. For instance, PipedInputStream distinguishes 13 dis-
tinct states which can be combined in 52 possible combina-
tions.

5We omitted this refinement in section 2.1.

Usage protocols.The two sides of a pipe communicate
with a relatively complex protocol. As long as the pipe is
connected, the writer pushes data to the reader through a
(package-private) method receive. This method calls check-
StateForReceive that implements the very same state tests
that our dynamic analysis performs to verify that the pipe is
intact. When a writer is closed, it calls receivedLast to tran-
sition its reader from “writer connected” to “writer closed”
(discussed in the preceding section). The reader can still
provide data from its buffer. Conversely, closing the reader
breaks the pipe immediately by closing the writer as well.

State and method refinements allowed us to formalize the
pipe protocol almost completely.6 The specification is com-
patible with the much simpler protocol set forth in the base
classes. This shows in practice that our technique guaran-
tees substitutability and yet is flexible enough to express
interesting changes to protocols in subclasses.

Method specifications.We found several examples like the
one given in section 2.2 of method refinements to strengthen
the post-condition. We didn’t see cases of relaxed pre-
conditions. This might be more common in less carefully
designed libraries. Nonetheless the examples suggest that
method refinement is a useful technique to include.

Many arguments in Java I/O are immutable simple types.
But we did find an example where argument states change
through a method invocation. PipedOutputStream has a
method connect that takes a PipedInputStream and hooks
the receiver to the argument. That changes both objects’
states, which is not expressible in Fugue.

Predicate identification.Deriving predicates was mostly
straightforward. Comparing integer field values came in
handy a number of times while we never used the possibil-
ity to compare states of two objects. Consider the following
quite typical description in BufferedInputStream for the in-
teger field pos. (It refers to another integer count and the
actual buffer array buf.)

... This is the index of the next character to be read from the

buf array. This value is always in the range 0 through count. If

it is less than count, then buf[pos] is the next byte to be supplied

as input; if it is equal to count, then the next read or skip oper-

ation will require more bytes to be read from the contained input

stream.

BufferedInputStream inherits from FilterInputStream,
which is a proxy [13] for an underlying InputStream. The
filter’s states are entirely defined by that underlying stream.
But a buffered stream does not automatically reach eof
when the superclass does: the buffer can still have data.
In contrast to Fugue [7] we can express this invariant with
our “pseudo-field” super.

@Pred("eof := super instate eof && pos >= count")
@Pred("within := super instate within || " +

"(super instate eof && pos < count)")

Annotation overhead.Annotating the byte stream classes
of java.io took about one day. We could annotate all meth-
ods with at most three cases. Each case fit easily into one
line. The two base classes require 3 and 5 state refinements
(where 2 each are used to rename “collect” into “closed”

6The implementation additionally detects dead threads.

and “bound” into “open”). Subclasses add between 0 and
3 refinements. Input streams in general have more states
than output streams, but even the most complex class Pi-
pedInputStream only needs 13 declared leaf states and 11
predicates. Because of ubiquitous use of state dimensions,
the number of state combinations and thus of atomic invari-
ants is much larger with 52 possible combinations. Each of
these would require an individual predicate in Fugue, not
to mention the complexity of method specifications. This
validates the utility of state dimensions both for concise in-
terface specifications and state invariant definitions.

What we cannot express.An obvious shortcoming of our
current implementation for low-level libraries is its handling
of arrays. Arrays are treated as normal objects. A straight-
forward extension would be to consider the length of an
array as its (immutable) state. That would allow more
exact state predicates for PipedInputStream as well as re-
quirements on the length of buffers passed to read and write
methods.

We saw in the example of read that we sometimes want
to relate states of different arguments. We allow this for
predicates already. We are working on a compelling syntax
for method specifications. For read and write this could
ensure that the array is long enough to hold the number of
bytes requested by separate parameters. But these were the
only interesting applications of this feature we found.

Finally, our technique does not deal with exceptional con-
trol flow. This is definitely future work. For now, our anal-
ysis implementation expects an exception to be thrown if a
pre-condition is violated.

5.2 Modeling JDBC
JDBC is the Java standard for accessing relational

databases supporting SQL. It is specified in the package
java.sql. A database is accessed in three steps: A Driver-
Manager is asked for a Connection to the database. From
there a Statement can be acquired to execute SQL com-
mands. For each query a ResultSet is created that represents
the rows retrieved from the database.

DriverManager is a class. The other three types are speci-
fied with Java interfaces. Each database vendor implements
them to support its database. Most observations made
above for Java I/O also apply to JDBC. Again we could
capture important invariants from the documentation.

State dimensions were tremendously useful for modeling
JDBC, and we include here some observations about state-
ments and result sets. We took a glimpse at result sets in
section 2.3 (figure 4). Besides the ones already seen, there
are two more state dimensions we want to mention.

• Ability to scroll. Some result set instances can only
go linearly through the rows while others can “scroll”
to any row at any time. Scrolling can be sensitive or
insensitive to concurrent changes.

• Concurrent access can be read-only or updating.

The states in these dimensions are fixed upon the result
set’s creation. We model this by giving statements two
dimensions corresponding to the ones in ResultSet. The
Statement method to create a new result with the signa-
ture ResultSet executeQuery (String sqlQuery) has the
following cases (we omit @Case for space reasons).

(bound, alive) -> (noResultsAvailable, alive, start)
(rsLinear, alive) -> (rsLinear, alive, linear)
(rsInsensitive, alive)

-> (rsInsensitive, alive, insensitive)
(rsSensitive, alive) -> (rsSensitive, alive, sensitive)
(rsReadOnly, alive) -> (rsReadOnly, alive, readOnly)
(rsUpdatable, alive) -> (rsUpdatable, alive, updatable)

Imagine the specification of this method without state di-
mensions! Moreover, notice that method cases work very
well to specify behavior along multiple dimensions, as shown
in this example. Each state combination will “trigger” three
of the six cases listed above.

Except for this and another, similar method we again
could specify every method with 3 cases or less (each time
formalizing 10-20 lines of documentation text). The vast
majority of methods have only one (deterministic) case. The
specification is huge; e.g. ResultSet has about 2400 lines
mostly containing documentation. Due to the sheer size it
took about one and a half days to annotate the interfaces.

As a final remark, JDBC to some extent relies on alias-
ing. In particular, close is a cascading operation. Thus if a
client closes a database connection, all statements and result
sets belonging to it also have to be closed. To implement
this requirement, a connection could hold references to its
statements and call close on them when it is closed. Our
analysis handles this case just fine. But alternatively state-
ments could hold on to their connection. If the connection
is closed, the statements change their state without a call to
one of their methods. We call this a silent state transition.
Handling this case is one of our biggest goals for future work.

6. RELATED WORK
The contributions presented in this paper are founded on

research in object-oriented specification and programming
techniques as well as fundamental programming languages
research. Besides these sources we discuss other areas of
research related to ours.

Typestate was initially proposed for imperative languages
[22] and has led to powerful linear type systems like Vault
[5] that track resource usage. DeLine and Fähndrich devel-
oped Fugue [7] which tracks typestates for linear objects.
Fugue is the only existing attempt to incorporate typestate
into object-oriented languages. It allows subclasses to de-
fine additional states and their own state predicates. Fugue
contributes in many ways to this paper. In an alternative
approach, Butkevich et al. describe protocols as labelled
transition systems and can statically check for hierarchy vi-
olations [2]. They have no analogue to state refinement or
dimensions. Method arguments cannot influence protocols.

Eiffel [18] pioneered the idea of Design by Contract. Meth-
ods in Eiffel declare their pre- and post-conditions and check
them dynamically. JML is an approach to support this in
Java [3]. Behavioral subtyping was proposed by Liskov and
Wing to formalize rules for writing subclasses [16]. These
rules are based on pre- and post-condition predicates. With
these rules, Findler formalizes hierarchy violations [11, 10]
which cannot occur in our approach.

State-based specification methods such as Z [1] are suc-
cessfully used for specifying systems. Object-Z [8] adapts Z
to object-oriented systems. It can capture class invariants
and supports powerful pre- and post-conditions of methods.
Object-Z has no immediate mapping onto an implementa-
tion.

Statecharts [15] are used to visually specify reactive sys-
tems. We make their concepts of AND- and OR-states suit-
able for object-oriented languages and base our semantics
on union and intersection types.

Dunfield and Pfenning developed a decidable type system
for union and intersection type refinements [9]. We propose
states as basic units of refinement for objects and develop a
deterministic algorithm for typing function applications for
our dynamic analysis.

A large body of research is available on logic-based type
systems for effective computation. Effective type refine-
ments [17] use linear logic to form a theoretical model for
Vault (discussed above) and similar systems. Separation
logic [21] is based on Hoare logic.

Metal checks protocols in C programs [14] based on syn-
tax. It defines protocols with states and scales with the
number of protocols, just like our approach. ESC [12] verifies
properties of programs written in Java an other languages.

7. CONCLUSION
The pervasive use of mutable state in object-oriented soft-

ware brings about a number of challenges with specifying ob-
jects. We propose a novel specification technique based on
typestates. It preserves substitutability with state refine-
ment, guarantees precision and behavioral subtyping with
union and intersection types, and allows more concise spec-
ifications with state dimensions. We developed a dynamic
analysis based on state invariants to check specification con-
formance. Two case studies of annotating standard Java li-
braries provide evidence for the usefulness of our approach.
They each revealed potential for future work.

We see our dynamic analysis as a testbed that helps in ex-
ploring various research questions. In future work we plan to
extend our model of state spaces and our predicate checking
facilities. We also hope to gather empirical data about data
sharing policies used in practice. This will guide our effort
to devise a static checker for our approach to state-based
specifications.

Acknowledgements
We thank Joshua Dunfield, Elissa Newman, George Fair-
banks, Mary Shaw, and the anonymous reviewers for com-
ments on this material. This work was supported in
part by NASA cooperative agreements NCC-2-1298 and
NNA05CS30A, NSF grant CCR-0204047, and the Army
Research Office grant number DAAD19-02-1-0389 entitled
“Perpetually Available and Secure Information Systems”.

8. REFERENCES
[1] J.-R. Abrial. The Specification Language Z: Syntax

and Semantics. Programming Research Group, Oxford
University, 1980.

[2] S. Butkevich, M. Renedo, G. Baumgartner, and
M. Young. Compiler and tool support for debugging
object protocols. In SIGSOFT Symposium on the
Foundations of Software Engineering, 2000.

[3] Y. Cheon and G. T. Leavens. A runtime assertion
checker for the java modeling language (jml). In
International Conference on Software Engineering
Research and Practice, 2002.

[4] R. Davies and F. Pfenning. Intersection types and
computational effects. In ACM International

Conference on Functional Programming, pages
198–208, 2000.

[5] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In SIGPLAN
Conference on Programming Language Design and
Implementation, pages 59–69, 2001.

[6] R. DeLine and M. Fähndrich. The fugue protocol
checker: Is your software baroque? Technical Report
MSR-TR-2004-07, Microsoft Research, 2004.

[7] R. DeLine and M. Fähndrich. Typestates for objects.
In European Conference on Object-Oriented
Programming. Springer-Verlag, 2004.

[8] R. Duke, G. Rose, and G. Smith. Object-z: A
specification language advocated for the description of
standards. Computer Standards and Interfaces,
17:511–533, 1995.

[9] J. Dunfield and F. Pfenning. Tridirectional
typechecking. In ACM Symposium on Principles of
Programming Languages, 2004.

[10] R. B. Findler and M. Felleisen. Contract soundness for
object-oriented languages. In ACM Conference on
Object-Oriented Programming Languages, Systems,
and Applications, pages 1–15, 2001.

[11] R. B. Findler, M. Latendresse, and M. Felleisen.
Behavioral contracts and behavioral subtyping. In
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 229–236, 2001.

[12] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. Saxe, and R. Stata. Extended static
checking for java. In SIGPLAN Conference on
Programming Language Design and Implementation,
2002.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[14] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static
analyses. In SIGPLAN Conference on Programming
Language Design and Implementation, 2002.

[15] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Programming, 8:231–274, 1987.

[16] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming
Languages and Systems, 16(6):1811–1841, Nov. 1994.

[17] Y. Mandelbaum, D. Walker, and R. Harper. An
effective theory of type refinements. In SIGPLAN
International Conference on Functional Programming,
pages 213–225, 2003.

[18] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[19] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053–1058, December 1972.

[20] B. C. Pierce. Types and Programming Languages. MIT
Press, Cambridge, 2002.

[21] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In IEEE Symposium on
Logic in Computer Science, pages 55–74, 2002.

[22] R. E. Strom and S. Yemini. Typestate: A
programming language concept for enhancing software
reliability. IEEE Transactions on Software
Engineering, 12:157–171, 1986.

