
Object Propositions

Ligia Nistor+, Jonathan Aldrich+, Stephanie Balzer+, and Hannes Mehnert*

+School of Computer Science, Carnegie Mellon University
*IT University of Copenhagen

{lnistor,aldrich,balzers}@cs.cmu.edu, hame@itu.dk

Abstract. The presence of aliasing makes modular veri�cation of object-
oriented code di�cult. If multiple clients depend on the properties of an
object, one client may break a property that others depend on.
We have developed a modular veri�cation approach based on the novel
abstraction of object propositions, which combine predicates and infor-
mation about object aliasing. In our methodology, even if shared data is
modi�ed, we know that an object invariant speci�ed by a client holds.
Our permission system allows veri�cation using a mixture of linear and
nonlinear reasoning. We thus o�er an alternative to separation logic ver-
i�cation approaches. Object propositions can be more modular in some
cases than separation logic because they can more e�ectively hide the
exact aliasing relationships within a module. We validate the practical-
ity of our approach by verifying an instance of the composite pattern.
We implement our methodology in the intermediate veri�cation language
Boogie (of Microsoft Research), for the composite pattern example.

1 Introduction

We propose a method for modular veri�cation of object-oriented code in the
presence of aliasing, i.e., the existence of multiple references to the same object.
The seminal work of Parnas [21] describes the importance of modular program-
ming, where the information hiding criteria is used to divide the system into
modules.

We introduce the notion of an object proposition for the modular veri�cation
of object-oriented code in the presence of aliasing. Object propositions com-
bine abstract predicates on objects with aliasing information about the objects
(represented by fractional permissions). They are associated with object refer-
ences and declared by programmers as part of method pre- and post-conditions.
Through the use of object propositions, we are able to hide the shared data that
two objects have in common. The implementations of the two objects use frac-
tions to describe how to access the common data, but this common data need
not be exposed in their external interface. Our main contributions are:

� A veri�cation methodology that uni�es substructural logic-based reason-
ing with invariant-based reasoning. Linear permissions (object propositions
where the fraction is equal to 1) permit reasoning similar to separation logic,
while fractional permissions (object propositions where the fraction is less

than 1) introduce non-linear invariant-based reasoning. Unlike prior work [6],
fractions do not indicate immutability; instead, they allow mutations that
may introduce temporary inconsistency before restoring a speci�ed invariant.

� A proof of soundness in support of the system.
� Validation of the approach by specifying and proving partial correctness of

an instance of the composite pattern.
� An encoding in the intermediate veri�cation language Boogie [2] of our

methodology, for a simple example and for the composite pattern.

2 Overview

Our methodology uses abstract predicates [20] to characterize the state of an
object. We embed those predicates in a logical framework, and specify sharing
using fractions [6]. A fraction can be equal to 1 or it can be less than 1.

If in the system there is only one reference to an object, that reference has a
fraction of 1 to the object, and thus full modifying control over its �elds. If there
are multiple references to an object, each reference has a fraction less than 1 to
the object and each can modify the object as long as that modi�cation does not
break a prede�ned invariant (expressed as a predicate). In case that modi�cation
is not an atomic action (and instead is composed of several steps), the invariant
might be broken in the course of the modi�cation, but it must be restored at
the end of the modi�cation.

We introduce the novel object propositions. To express that the object q in
Figure 1 has full modifying control of a queue of integers greater or equal to 0
and less than or equal to 10, we use the object proposition q@1 Range(0, 10).
This states that there is a unique reference q pointing to a queue of integers in
the range [0,10].

We want our checking approach to be modular and to verify that implementa-
tions follow their design intent. In our approach, method pre- and post-conditions
are expressed using object propositions over the receiver and arguments of the
method. To verify the method, the abstract predicate in the object proposition
for the receiver object is interpreted as a concrete formula over the current values
of the receiver object's �elds. Following Fähndrich and DeLine [10], our veri�-
cation system maintains a key for each �eld of the receiver object, which is used
to track the current values of those �elds through the method. A key o.f → x
represents read/write access to �eld f of object o holding a value represented by
the concrete value x.

As an illustrative example, we consider two linked queues q and r that share
a common tail p, in Figure 1. In prior work on separation logic or dynamic
frames, the speci�cation of any method has to describe the entire footprint of the
method, i.e., all heap locations that are being touched through reading or writing
in the body of the method. That is, the shared data p has to be speci�ed in the
speci�cation of all methods that access the objects in the lists q and r. Using
our object propositions, we have to mention only a permission q@1 Range(0, 10)
in the speci�cation of a method accessing q. The fact that p is shared between

2

the two aliases is hidden by the abstract predicate Range(0, 10). In Section 4 we
discuss this example in more detail.

Fig. 1. Linked queues sharing the tail

class Link {

int val; Link next;

predicate Range(int x, int y) ≡ ∃v, o, k
val→ v ⊗ next→ o⊗ v ≥ x ⊗ v ≤ y

⊗ [o@k Range(x, y) ⊕ o == null]

void addModulo11(int x)

this@k Range(0, 10) (this@k Range(0, 10)
{val = (val + x)% 11;

if (next!=null) {next.addModulo11(x);} } }

Fig. 2. Link class and Range predicate

3 Current Approaches

The veri�cation of object-oriented code can be achieved using the classical
invariant-based technique [3]. When using this technique, all objects of the same
class have to satisfy the same invariant. The invariant has to hold in all visible
states of an object, but can be broken inside the method. Methods that can be
written for each class are restricted because now each method of a particular
class has to have the invariant of that class as a postcondition; the invariant of
an object cannot depend on another object's state, unless additional features
such as ownership [17] are added. Thus the classic technique for checking object
invariants ensures that objects remain well-formed, but it does not help with
reasoning about how they change over time (other than that they do not break
the invariant).

Separation logic approaches [20], [9], [7], etc. bypass the limitations of invariant-
based veri�cation techniques by requiring that each method describe its foot-
print. Separation logic allows us to reason about how objects' state changes
over time. On the downside, now the speci�cation of a method has to reveal the
structures of objects that it uses. Our methodology can be seen as an alternative
to separation logic veri�cation, that can be more modular for some examples.
By encoding our veri�cation in Boogie, we have proved that it is amenable to
automation.

On the other hand, permission-based work [4], [8], [6] gives another partial
solution for the veri�cation of object-oriented code in the presence of aliasing.
By using share and/or fractional permissions referring to the multiple aliases of
an object, it is possible for objects of the same class to have di�erent invariants.

Krishnaswami et al. [15] show how to modularly verify programs written us-
ing dynamically-generated bidirectional dependency information. Their solution
is application speci�c, as they need to �nd a version of the frame rule speci�cally
for their library. Our methodology is a general one that can potentially be used
for verifying any object-oriented program.

3

Nanevski et al. [18] developed Hoare Type Theory (HTT), which combines
a dependently typed, higher-order language with stateful computations. While
HTT o�ers a semantic framework for elaborating more practical external lan-
guages, our work targets Java-like languages and does not have the complexity
overhead of higher-order logic.

Summers and Drossopoulou [22] introduce Considerate Reasoning, an invariant-
based veri�cation technique adopting a relaxed visible-state semantics. While
their work is similar to ours in that we both allow a client to depend on proper-
ties of objects that it doesn't (exclusively) own, they di�er from us because they
use the classical invariant technique, with its drawbacks discussed above.

4 Example: Queues of integers

In Figure 2, we present a class that de�nes object propositions which are useful
for reasoning about whether the implementation of a method respects its spec-
i�cation. Our speci�cation logic is based on linear logic[12], a simpli�cation of
separation logic that retains the advantages of separation logic's frame rule. Ob-
ject propositions are treated as resources that may not be duplicated, and which
are consumed upon usage. Pre- and post-conditions are separated with a linear
implication (and use multiplicative conjunction (⊗), additive disjunction (⊕)
and existential/universal quanti�ers (where there is a need to quantify over the
parameters of the predicates).

The predicate Range(int x, int y) in Figure 2 ensures that all the elements in a
linked queue starting from the current Link are in the range [x, y]. We do not need
to specify this.val in the de�nition of the predicate because this is implicit for
all �elds of a predicate of a class. The speci�cation of the method addModulo11
has as precondition this@k Range(0, 10): the reference calling the method has
to have a fraction k to the queue and it has to satisfy the Range(0, 10) predicate
(which is the invariant in this example). The postcondition following the (sign
states that at the end of the method all the cells of the queue are still in the
range [0,10], no matter what modi�cations took place inside the method. Thus
if reference q of Figure 1 calls the method addModulo11, and after reference r
calls the same method, reference r can rely on the invariant that even after q
modi�ed the queue, all the integers in the queue are still in the range [0,10].

A critical mechanism in our methodology is packing/unpacking [8]. When
the code modi�es a �eld, the speci�cation has to follow suit and unpack the
predicate that contains that �eld (unpacking a predicate gives read/write access
to the �elds of that predicate). At the end of a method, the �elds have been
modi�ed and after checking that a predicate holds, we are allowed to pack back
that predicate.

Newly created objects have a fraction of 1, and their state can be manipulated
to satisfy di�erent predicates de�ned in the class. At the point where the fraction
to the object is �rst split into two fractions less than 1 (see Figure 4), the
predicate currently satis�ed by the object's state becomes an invariant that the
object will always satisfy in future execution. Di�erent references pointing to the

4

same object will always be able to rely on that invariant when calling methods
on the object.

The speci�cation in separation logic is more cumbersome and unable to hide
shared data. To express the fact that all values in a segment of linked elements
are in the interval [n1, n2], we need to de�ne the following predicate :

Listseg(r, p, n1, n2) ≡ (r = p) ∨ (r → (i, s) ? Listseg(s, p, n1, n2) ∧ n1 ≤ i ≤
n2). This predicate states that either the segment is null, or the val �eld of r
points to i and the next �eld points to s, such that n1 ≤ i ≤ n2, and the elements
on the segment from s to p are in the interval [n1, n2]. If we wanted to verify
the code below, we would be able to do it without revealing that queues q and
r share the tail p.

Link s = new (Link(3, null),Range(0,10));

Link p = new (Link(6, s),Range(0,10));

Link q = new (Link(1, p),Range(0,10));

Link r = new (Link(8, p),Range(0,10));

r.addModulo11(9); q.addModulo11(7);

In separation logic, the natural pre- and post-conditions of the method ad-
dModulo11 would be Listseg(this, null, 0, 10). Thus, before calling addModulo11
on r, we would have to combine Listseg(r, p, 0, 10) ? Listseg(p, null, 0, 10) into
Listseg(r, null, 0, 10). We observe the following problem: in order to call

addModulo11 on q, we have to take out Listseg(p, null, 0, 10) and combine
it with Listseg(q, p, 0, 10), to obtain Listseg(q, null, 0, 10). But the speci�cation
of the method does not allow it, which causes a problem in the veri�cation of
the code above. The speci�cation of addModulo11 has to be modi�ed instead,
by mentioning that there exists some sublist Listseg(p, null, 0, 10) that we pass
in and which gets passed back out again. The modi�cation is unnatural and
unmodular: the speci�cation of addModulo11 should not care that it receives
a list made of two separate sublists, it should only care that it receives a list
in range [0, 10]. Abstract predicates used without fractional permissions have to
reveal the exact structure of the queues. When we add the fractional permissions,
we are able to hide the shared data and our work gets closer to Parkinson's
concurrent abstract predicates [9] (with the added bene�t of proven automation
potential).

5 Grammar

The programming language that we are using is inspired by Featherweight Java
[13], extended to include object propositions. We retained only Java concepts
relevant to the core technical contribution of this paper, omitting features such
as inheritance, casting or dynamic dispatch that are important but are handled
by orthogonal techniques. We plan to focus on these features in future work.

We show the syntax of our simple class-based object-oriented language in
Figure 5. In addition to the usual constructs, each class can de�ne one or more
abstract predicates Q in terms of concrete formulas R. Each method comes with
pre and post-condition formulas. Formulas include object propositions P , terms,

5

primitive binary predicates, conjunction, disjunction, keys, and quanti�cation.
We distinguish e�ectful expressions from simple terms, and assume the program
is in let-normal form. The pack and unpack expression forms are markers for
when packing and unpacking occurs in the proof system. In the grammar, r
represents a reference to an object and i represents a reference to an integer. In

Prog ::= ClDecl e

ClDecl ::= class C { FldDecl PredDecl MthDecl }

FldDecl ::= T f

PredDecl ::= predicate Q(T x) ≡ R

MthDecl ::= T m(T x) MthSpec { e; return e }

MthSpec ::= R (R

R ::= P | R ⊗ R | R ⊕ R |
∃z.R | ∀z.R | r.f → x | t binop t

P ::= r@k Q(t) | unpacked(r@k Q(t))

k ::= n1
n2

(where n1, n2 ∈ N and 0 < n1 ≤ n2)

e ::= t | r.f | r.f = t | r.m(t) | newC(t) |
if (t) { e } else { e } |
let x = e in e |
t binop t | t && t | t ‖ t | ! t |
pack r@k Q(t)in e |
unpack r@k Q(t)in e

t ::= x | n | null | true | false

x ::= r | i

binop ::= + | − | % | = | ! = | ≤ | < | ≥ | >
T ::= C | int | Boolean

Fig. 3. Language and Object Propositions Grammar

order to allow objects to be aliased, we must split a fraction of 1 into multiple
fractions less than 1 [6]. When an object is created, the only reference to it has
a fraction of 1. Since object propositions are considered resources, a fraction of
1 is never duplicated. We also allow the inverse of splitting permissions: joining,
where we de�ne the rules in Figure 4.

6 Proof Rules

This section describes the proof rules that can be used to verify correctness
properties of code.

type context Γ ::= · | Γ, x : T
linear context Π ::=

⊕n
i=1Πi

Πi ::= · | Πi ⊗ P | Πi ⊗ t1 binop t2 |
Πi ⊗ r.f → x | ∃z.P | ∀z.P

The judgment to check an expression e is of the form Γ ;Π ` e : ∃x.T ;R. This
is read �in valid context Γ and linear context Π, an expression e executed has
type T with postcondition formula R�.This judgment is within a receiver class C,
which is mentioned when necessary in the assumptions of the rules. By writing

6

∃x, we bind the variable x to the result of the expression e in the postcondi-
tion. Γ gives the types of variables and references, while Π is a precondition in
disjunctive normal form. The linear context Π should be just as general as R.

The static proof rules also contain the following judgments: Γ ` r : C,
Γ ;Π ` R and Γ ;Π ` r.T ;R. The judgment Γ ` r : C means that in valid
type context Γ , the reference r has type C. The judgment Γ ;Π ` R means
that from valid type context Γ and linear context Π we can deduce that object
proposition R holds. The judgment Γ ;Π ` r.T ;R means that from valid type
context Γ and linear context Π we can deduce that reference r has type T and
object proposition R is true about r.

Before presenting the detailed rules, we provide intuition for why our system
is sound (the formal soundness theorem is proved in our technical report [19],
Section 9.1). The soundness of the proof rules means that given a heap that sat-
is�es the precondition formula, a program that typechecks and veri�es according
to our proof rules will execute, and if it terminates, will result in a heap that
satis�es the postcondition formula. The �rst invariant enforced by our system is
that there will never be two con�icting object propositions to the same object.
The fraction splitting rule can give rise to only one of two situations, for a par-
ticular object: there exists a reference to the object with a fraction of 1, or all
the references to this object have fractions less than 1. For the �rst case, sound
reasoning is easy because aliasing is prohibited. The second case, concerning

k ∈ (0, 1]

r@k Q(t) ` r@ k
2 Q(t)⊗ r@ k

2 Q(t)
(Split)

ε ∈ (0, 1) k ∈ (0, 1] ε < k

r@ε Q(t1)⊗ r@(k − ε) Q(t1) ` r@k Q(t1)
(Add)

Fig. 4. Rules for adding/splitting fractions

fractional permissions less than 1, follows an inductive argument in nature. The
argument is based on the property that the invariant of a shared object (one
can think of an object with a fraction less than 1 as being shared) is assumed to
hold whenever that object is packed.

The reader must pay attention here: we assume that the invariant holds,
we do not state that the invariant is true in the Boolean sense. This is because
another reference might be in the process of modifying the same object. Even so,
that reference will restore the invariant when it is done modifying the object and
it will pack back the invariant. That is why we can assume that the invariant
holds. In this way, a predicate is true in the Boolean sense when its de�nition
is true and all predicates of other objects that it transitively depends on are
packed. The base case in the induction occurs when an object with a fraction
of 1, whose invariant holds, �rst becomes shared. In order to access the �elds
of an object, we must �rst unpack the corresponding predicate; by induction,
we can assume its invariant holds as long as the object is packed. We know the
object is packed immediately before the unpack operation, because the rules of
our system ensure that a given predicate over a particular object can only be
unpacked once; therefore, we know the object's invariant holds. Assignments to
the object's �elds may later violate the invariant, but in order to pack the object

7

back up we must restore its invariant. For a shared object, packing must restore
the same predicate the object had when it was unpacked; thus the invariant
of an object never changes once that object is shared, avoiding inconsistencies
between aliases to the object. (Note that if at a later time we add the fractions
corresponding to that object and get a fraction of 1, we will be able to change
the predicates that hold of that object. But as long as the object is shared, the
invariant of that object must hold.)

This completes the inductive case for soundness of shared objects. The in-
duction is done on the steps when a predicate is packed or unpacked. All of the
predicates we might infer will thus be sound because we will never assume any-
thing more about that object than the predicate invariant, which should hold
according to the above argument.

In the following paragraphs, we describe the most interesting proof rules
while inlining the rules in the text. The rest of the rules are described in the
technical report [19] in Section 6. In the rules below we assume that there is a
class C that is the same for all the rules.

New checks object construction. We get a key for each �eld and the remaining
linear context Π1. The context Π1 contains the object propositions of Π from
which we extracted the object propositions of the form z.f → t containing the
�elds of the newly created object.

fields(C) = T f Γ ` t : T

Γ ;Π ` new C(t) : ∃z.C; z.f → t⊗Π1

New

The Call rule simply states what is the object proposition that holds about
the result of the method being called. This rule �rst identi�es the speci�cation
of the method (using the helper judgmentMtype) and then goes on to state the
object proposition holding for the result. The ` notation in the fourth premise
of the Call rule represents entailment in linear logic.

The reader might see that there are some concerns about the modularity
of the CALL rule: Π1 shouldn't contain unpacked predicates. Indeed, it is im-
portant that the CALL rule tracks all shared predicates that are unpacked. It
does not track predicates that are packed, nor unpacked predicates that have
a fractional permission of 1. Our veri�cation methodology works best when the
predicates of shared objects being passed to methods are all packed. The normal
situation is indeed that all shared predicates are packed, and any method can
be called in this situation. We only make calls with a shared unpacked predicate
when traversing a data structure hand-over-hand as in the Composite pattern in
Section 7. The fact that we need to track unpacked shared predicates does rep-
resent a limitation in our system, however, it is one that goes hand in hand with
the advantage of supporting shared predicates. The implementation in Boogie
[2] that we describe in Section 8 has o�ered us insight in how to deal with this
situation in a practical way.

8

Γ ` r0 : C0 Γ ` t1 : T
Γ ;Π ` [r0/this][t1/x]R1 ⊗Π1

mtype(m,C0) = ∀x : T .∃result.Tr;R
′
1 (R

R1 ` R′
1

Π1 cannot contain unpacked predicates

Γ ;Π ` r0.m(t1) : ∃ result.Tr; [r0/this][t1/x]R⊗Π1
Call

Γ ;Π ` t1 : Ti; t1@k0 Q0(t0)⊗Π1

Γ ;Π1 ` r1.fi : Ti; r
′
i@k

′ Q′(t′)⊗Π2

Π2 ` r1.fi → r′i ⊗Π3

Γ ;Π ` r1.fi = t1 : ∃x.Ti;x@k
′ Q′(t′)⊗ t1@k0 Q0(t0)

⊗ r1.fi → t1 ⊗Π3

Assign

The rule Assign assigns an object t to a �eld fi and returns the old �eld
value as an existential x. For this rule to work, the current object this has to be
unpacked, thus giving us permission to modify the �elds. The rules for packing
and unpacking are Pack1, Pack2, Unpack1 and Unpack2. As mentioned be-
fore, when we pack an object to a predicate with a fraction less than 1, we have
to pack it to the same predicate that was true before the object was unpacked.
The restriction is not necessary for a predicate with a fraction of 1: objects that
are packed to this kind of predicate can be packed to a di�erent predicate than
the one that was true for them before unpacking.

Γ ;Π ` r : C; [t2/x]R2 ⊗Π1

predicate Q2(Tx) ≡ R2 ∈ C
Γ ; (Π1 ⊗ r@1 Q2(t2)) ` e : ∃x.T ;R

Γ ;Π ` pack r@1 Q2(t2) in e : ∃x.T ;R
Pack1

Γ ;Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R

Γ ;Π ` pack r@k Q(t1) in e : ∃x.T ;R
Pack2

As mentioned earlier, we allow unpacking of multiple predicates, as long as the
objects don't alias. We also allow unpacking of multiple predicates of the same
object, because we have a single linear write permission to each �eld. There can't
be any two packed predicates containing write permissions to the same �eld.

Γ ;Π ` r : C; r@1 Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C
Γ ; (Π1 ⊗ [t1/x]R1) ` e : ∃x.T ;R

Γ ;Π ` unpack r@1 Q(t1) in e : ∃x.T ;R
Unpack1

Γ ;Π ` r : C; r@k Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ ; (Π1 ⊗ [t1/x]R1 ⊗ unpacked(r@k Q(t1)) ` e : ∃x.T ;R
∀r′, t : (unpacked(r′@k′ Q(t)) ∈ Π ⇒ Π ` r 6= r′)

Γ ;Π ` unpack r@k Q(t1) in e : ∃x.T ;R
Unpack2

9

We have also developed rules for the dynamic semantics, that are used in
proving the soundness of our system, together with the standard rules of linear
logic and integer arithmetic. The reader can refer to the additional technical
report [19], Section 9, for the dynamic semantics rules and proof of soundness.

7 Composite

The Composite design pattern [11] expresses the fact that clients treat individual
objects and compositions of objects uniformly. Verifying implementations of the
Composite pattern is challenging, especially when the invariants of objects in
the tree depend on each other [16], and when interior nodes of the tree can
be modi�ed by external clients, without going through the root. As a result,
verifying the Composite pattern is a well-known challenge problem, with some
attempted solutions presented at SAVCBS 2008 (e.g. [5, 14]). We describe a new
formalization and proof of the Composite pattern using object propositions that
provides more local reasoning than prior solutions. For example, in Jacobs et
al. [14] a global description of the precise shape of the entire Composite tree
must be explicitly manipulated by clients; in our solution a client simply has a
fraction to the node in the tree it is dealing with.

We implement a popular version of the Composite design pattern, as an
acyclic binary tree, where each Composite has a reference to its left and right
children and to its parent. The code is given in Figure 5.

Each Composite caches the size of its subtrees in a count �eld, so that a
parent's count depends on its children's count. Clients can set a new left child or
right child at any time, to any node. This operation changes the count of all an-
cestors, which is done through a recursive call of the method updateCountRec()
that starts a noti�cation protocol from the current node and up the tree to the
root. The pattern of circular dependencies and the noti�cation mechanism are
hard to capture with veri�cation approaches based on ownership or uniqueness.
We assume that the noti�cation terminates (that the tree has no cycles) and we
verify that the Composite tree is well-formed: parent and child pointers line up
and counts are consistent.

Previously the Composite pattern has been veri�ed with a related approach
based on access permissions and typestate [5]. That veri�cation abstracted counts
to an even/odd typestate and relied on non-formalized extensions of a formal
system.

7.1 Speci�cation

A Composite tree is well-formed if the �eld count of each node n contains the
number of nodes of the tree rooted in n. A node of the Composite tree is a leaf
when the left and right �elds are null.

The goal of the speci�cation is to verify that after we change the left child (or
right) of a node by calling the method setLeft() (or setRight()), the tree is still
in a consistent state. Since the count �eld of a node depends on the count �elds

10

pub l i c Composite ()
{ t h i s . count = 1 ;
t h i s . l e f t = nu l l ;
t h i s . r i g h t = nu l l ;
t h i s . parent = nu l l ; }

p r i va t e void updateCountRec (){
i f (t h i s . parent != nu l l)
{ t h i s . updateCount () ;
t h i s . parent . updateCountRec () ; }

e l s e t h i s . updateCount () ; }

p r i va t e void updateCount (){
i n t newc = 1 ;
i f (t h i s . l e f t != nu l l)
newc = newc + l e f t . count ;

i f (t h i s . r i g h t != nu l l)
newc = newc + r i gh t . count ;

t h i s . count = newc ; }

pub l i c void s e tL e f t (Composite l)
{ i f (l . parent==nu l l){
l . parent= th i s ;
t h i s . l e f t = l ;
t h i s . updateCountRec () ; }}

pub l i c void se tRight (Composite r)
{ i f (r . parent==nu l l){
r . parent = th i s ;
t h i s . r i g h t = r ;
t h i s . updateCountRec () ; }}

Fig. 5. Composite class

predicate count (int c) ≡
∃ ol, or, lc, rc. this.count→ c ⊗

c = lc+ rc+ 1 ⊗ this@
1

2
left(ol, lc)

⊗ this@
1

2
right(or, rc)

predicate left (Composite ol, int lc) ≡
this.left→ ol⊗

(
(ol = null (lc = 0)

⊕ (ol 6= null (ol@
1

2
count(lc))

)
predicate right (Composite or, int rc) ≡
this.right→ or⊗

(
(or = null (rc = 0)

⊕ (or 6= null (or@
1

2
count(rc))

)
predicate parent () ≡
∃op, c, k. this.parent→ op ⊗

this@
1

2
count(c) ⊗((

op 6= null (op@k parent() ⊗

(op@
1

2
left(this, c)⊕ op@

1

2
right(this, c))

)
⊕ (op = null (this@

1

2
count(c))

)

Fig. 6. Predicates for Composite

of its children nodes, we must ensure that after modifying a child the invariants
of the transitive parents are restored.

We use the following methodology for veri�cation: each node has a fractional
permission to its children, and each child has a fractional permission to its parent.
We allow unpacking of multiple object propositions as long as they satisfy the
heap invariant: if two object propositions are unpacked and they refer to the
same object then we require that they do not have �elds in common. For more
information about the heap invariants, see our technical report [19] Section 9.

As a downside, the speci�cation of the composite is verbose: we have four
predicates that are recursive and depend on each other. The source of this
verbosity comes from the the fact that the composite example itself is com-
plicated and thus necessitates a complicated speci�cation and veri�cation. We
allow clients to directly mutate any place in the tree, using predicates that rea-
son about one object in the composite at a time and treat other objects in the

11

composite abstractly. Note that a simpler speci�cation is possible in our system
but would limit mutation to the root of the tree.

The predicates of the Composite class are presented in Figure 6. The de�-
nition of each predicate mentions the �eld with the same name and how that
�eld interacts with the other predicates. Thus, the predicate count has a pa-
rameter c, which is an integer representing the value at the count �eld. There
are two existentially quanti�ed variables lc and rc, for the count �elds of the
left child lc and the right child rc. By c = lc + rc + 1 we make sure that the
count of this is equal to the sum of the counts for the children plus 1. By
this@ 1

2 left(ol, lc)⊗ this@ 1
2 right(or, rc) we connect lc to the left child (through

the left predicate) and rc to the right child (through the right predicate). The
count predicate ensures that the tree starting at the current node has the count
�elds of all nodes in a consistent state.

The predicate left states that the predicate count(lc) holds for this.left,
the left child of this. The predicate right states that the predicate count(rc)
holds for this.right, the right child of this. The permission for the left (right)
predicate is split in equal fractions between the count predicate and the left
(right) child's parent predicate.

Inside the parent predicate of this, there is a 1
2 permission to the count

predicate (and implicitly to its count �eld) of this. When a method needs to
modify the count �eld of an object, it will need a fraction of 1 to the count
predicate, since this predicate has parameters in its declaration and the changes
of these parameters are visible to other references. The other 1

2 permission is
taken from unpacking the left predicate (or right, depending if this is the left
or right child of its parent) of op. This is the reason why there is only a half
permission to the count predicate in the left predicate, because the other half is
in the parent predicate. The parent predicate contains only a fraction of k to the
parent of this so that any client can use the remaining fraction to reference the
node and add children to the parent. Note that a client cannot use a fraction of
1 to the parent predicate of this because after the Composite tree is created and
all the predicates established, the k fraction to the parent predicate of this has
been used; the veri�cation system keeps track of the fractional permissions and
the clients can use that information. A client can actually use this to update the
parent �eld, but in order to pack the parent predicate the client has to ensure
that the �eld count of each node n contains the number of nodes of the tree
rooted in n (the well-formedness condition of the Composite example). If this
condition is not met, the client will not be able to pack the parent predicate; the
Boogie implementation will not allow the parent predicate to be packed because
its de�nition is not satis�ed.

The parent predicate is the invariant in the Composite example and ensures
that all the nodes in the tree, both below and above the current node, are in a
consistent state. If the left child of this is replaced with a new node (by calling
the method setLeft), we need to change the count �eld of this. Because the
count predicate has parameters that might change when the left child of this
is modi�ed, we need a fraction of 1 (full permission) in order to change it. The

12

only invariant in the Composite example is the predicate parent which has no
parameters; this absence of parameters makes it possible to not reveal to outside
clients the changes in the count �elds inside the tree. Other clients that depend
on the parent invariant of any node in the tree will be able to still rely on
that invariant at the end of calling the public method setLeft. Note that the
implementation of setLeft(l) does nothing in the case that parameter l already
has a parent. Only the methods setLeft, setRight and the constructor in Figure
5 are public and these are the only methods that can be called by external clients;
all other methods are private, as they are helper methods that help to restore
the consistency in the tree and they can only be called by references internal to
the tree. Thus when we obtain a full permission to the count �eld of this we are
sure that no other reference exists to this �eld (internal or external).

A permission of 1
2 to the count �eld of this is acquired by unpacking the

count predicate of this. Getting the other half requires us to unpack the parent
predicate of this, which gives us access to the count predicate of the parent op of
this. Now we can unpack the count predicate of the parent op and we get access
to the left and right predicates of the parent op. We assume that this is the
right child of its parent (the other way is analogous). Inside the right predicate
of the parent, there is the other half of the permission to the count predicate
of this (and implicitly to the count �eld of this). By adding the two halfs we
have a permission of 1 to the count �eld of this and we can modify it by calling
the method updateCount. We recursively unpack the count predicates of the
ancestors of this all the way to the root node.

Note that after calling the method updateCount, the count predicate of this
can be packed because the tree that has this as the root is consistent now.
The parent predicate of this cannot be packed however because the parent
predicate of this is now inconsistent. The parent predicates will be recursively
unpacked before calling the method updateCountRec and they will be packed
back only when the recursion �nishes. Thus, the parent predicate of this will
be packed only after the call this.updateCountRec() returns. Since all parent
predicates will be packed, this signals that the tree is in a consistent state. The
complete speci�cation for each method is given in Figure 7. The method setLeft
(or setRight) is the one being called by clients when they want to modify the
Composite tree and this method has to preserve the invariant parent in its
speci�cation. When the programmer writes the speci�cations of the methods
updateCount and updateCountRec, he/she should be guided by what object
propositions hold before the calls to these functions and what object propositions
should hold afterwards, in order for the invariant parent to hold at the end of
the method setLeft. The constructor of the class Composite returns half of
the permission for the left and right predicates, and half of a permission to
the parent predicate. Note that it could return half of a permission to its count
predicate, depending if the programmer needs that predicate to prove a property
right after a new Composite object is created.

The method updateCountRec() takes in a fraction of k1 to the unpacked
parent predicate and a half fraction to the unpacked count predicate of this,

13

pub l i c Composite ()
(this@ 1

2
parent() ⊗ this@ 1

2
left(null, 0) ⊗

this@ 1
2
right(null, 0)

{ . . . }

p r i va t e void updateCount ()
∃ c, c1, c2, ol, or.
unpacked(this@1 count(c)) ⊗
this@ 1

2
left(ol, c1) ⊗ this@ 1

2
right(or, c2)

(∃ c. this@1 count(c)
{ . . . }

pub l i c void s e tL e f t (Composite l)
this 6= l ⊗ this@ 1

2
left(null, 0) ⊗ ∃ k1, k2.

(this@k1 parent() ⊗ l@k2 parent()) (
∃ k.this@k parent()
{ . . . }

p r i va t e void updateCountRec ()
∃ k1, opp, lcc, k, ol, lc, or, rc.
(unpacked(this@ k1 parent()) ⊗
this.parent → opp ⊗
opp 6= this ⊗
((((opp 6= null (opp@k parent() ⊗
(opp@ 1

2
left(this, lcc) ⊕

opp@ 1
2
right(this, lcc))

)) ⊕
(opp = null (this@ 1

2
count(lcc))

)) ⊗
unpacked(this@ 1

2
count(lcc)) ⊗

this@ 1
2
left(ol, lc)⊗this@ 1

2
right(or, rc)

(∃ k1.this@k1 parent())
{ . . . }

Fig. 7. Speci�cations for Composite methods

and it returns the k1 fraction to the packed parent predicate. This means that
after calling this method, the parent predicate holds for this.

In the same way, the method updateCount takes in the unpacked predicate
count for this object and it returns the count predicate packed for this. The
object propositions this@ 1

2 left(ol, c1) ⊗this@ 1
2 right(or, c2) come from the de�-

nition of the unpacked predicate count(c), they are not di�erent ones. The only
part of the predicate count(c) that is not in the precondition of the method
updateCount is c = lc + rc + 1; this is because when entering the method
updateCount, the count �eld of this might not be in a consistent state, con-
sidering that the left (or right) child of this has been replaced in setLeft (or
setRight).

Thus, after calling updateCount(), the object this satis�es its count predi-
cate. We need a fraction of 1 to the count predicate both in the precondition and
the postcondition because the method updateCount modi�es the �eld count of
this and because the parameter of the predicate count is the actual value of the
�eld count. If this value is modi�ed and revealed to other references, the method
modifying it should have a permission of 1 (full) to the �eld count.

The method setLeft(Composite l) takes in a fraction to the parent predicate
of this and a fraction to the parent predicate of l . The postcondition shows that
after calling setLeft, the parent predicate holds.

8 Implementation of Composite using Boogie

We manually veri�ed the Composite example (see Section 11.3 of our technical
report [19]) and we implemented our veri�cation in the intermediate veri�cation
language Boogie (see the code in Section 11.2 of our technical report). All three
methods and the constructor of the Composite class from Figure 5 were formally
veri�ed by the Boogie tool [1]. In our Boogie encoding, we created a type type Ref
to represent references of type Composite. We represented the heap by creating

14

maps from objects to their �elds: for example we represented the �eld left by
var left: [Ref]Ref; which maps an object of type Composite to its left child of
type Composite. We created a new map type to keep count of fractions type
FractionType = [Ref, PredicateTypes] int;. Given a reference of type Composite
and the name of a predicate, a map of type FractionType returns the fraction
associated with that reference and that predicate. In our Boogie encoding, a
fraction of 1 is represented by 100, while a fraction of 1

2 by 50. We used assume
statements in Boogie to assume facts that we knew were true according to our
methodology. We used assert statements in Boogie whenever we needed to prove
something(e.g. before packing a predicate).

For each predicate we wrote a function and several axioms related to that
function. These axioms were of two types: related to the packing of that predicate
- stating what are the properties necessary for packing that predicate and for
it being true; and related to the unpacking of that predicate - given that the
predicate is true, we stated the properties that are true according to the de�nition
of the predicate.

Since Boogie creates veri�cation conditions that it sends to the Z3 theorem
prover, we had to pay special attention to existential and universal quanti�cation.
We wrote three axioms that helped our proof with the instantiation of variables.
For example, the parameter c of the count predicate represents the value of the
count �eld of this, but in the parent predicate it is existentially quanti�ed. We
wrote an axiom that indicates to Boogie that the existentially quanti�ed value
c is actually count[this], i.e., the value of the count �eld of this. We also had
to write two frame axioms that informed Boogie that even if a global map was
modi�ed, that did not impact the part of the global map that was used in certain
predicates and thus the predicates were not modi�ed.

The most interesting insight that we got from using Boogie for the veri�cation
of the Composite pattern was that when we enter a method with some predicates
unpacked (in the precondition), as in the case of the method updateCountRec,
we cannot assume that the invariants that are packed are true in the Boolean
sense. This is related to the discussion of the Call rule from Section 6. We can
however assume that they hold, which means that they will be true at the end of
the method that is accessing them. If a predicate is true or not in the Boolean
sense does not modify the fractions to other objects that it holds inside. We can
use this information about fractions to obtain full permission to the predicates
that we want to modify (such as the predicate count, as described in the previous
section).

Our �nal goal is to create a tool that automatically translates our Java-
like code and speci�cations into Boogie. We believe that most of the Boogie
encoding that we have manually translated can be automatically translated into
Boogie, apart from the axioms about the instantiation of existential variables
and the frame axioms. Without these axioms, Boogie will report that some
assertions might not hold. In that case, the developers could simply assume
those statements instead of trying to prove them using assert, or they could
improve the translation by writing the axioms themselves.

15

References

1. http://rise4fun.com/Boogie/.
2. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan

M. Leino. Boogie: A modular reusable veri�er for object-oriented programs. In
FMCO, pages 364�387. Springer, 2005.

3. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wol-
fram Schulte. Veri�cation of object-oriented programs with invariants. Journal

of Object Technology Special Issue: ECOOP 2003 workshop on Formal Techniques

for Java-like Programs, 3(6):27�56, June 2004.
4. Kevin Bierho� and Jonathan Aldrich. Modular typestate checking of aliased ob-

jects. In OOPSLA, pages 301�320, 2007.
5. Kevin Bierho� and Jonathan Aldrich. Permissions to specify the composite design

pattern. In Proc of SAVCBS 2008, 2008.
6. John Boyland. Checking interference with fractional permissions. In Static Analysis

Symposium, pages 55�72, 2003.
7. Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies. Local veri�-

cation of global invariants in concurrent programs. In CAV, pages 480�494, 2010.
8. Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP, pages

465�490, 2004.
9. Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew Parkinson, and

Viktor Vafeiadis. Concurrent abstract predicates. In ECOOP, pages 504�528, 2010.
10. Manuel Fähndrich and Robert DeLine. Adoption and focus: practical linear types

for imperative programming. In PLDI, pages 13�24, 2002.
11. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.
12. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1�102, 1987.
13. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a

minimal core calculus for Java and GJ. pages 132�146, 2001.
14. Bart Jacobs, Jan Smans, and Frank Piessens. Verifying the composite pattern

using separation logic. In Proc of SAVCBS 2008, 2008.
15. Neel R. Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Verifying event-

driven programs using rami�ed frame properties. In TLDI '10, pages 63�76, 2010.
16. Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Speci�cation and veri-

�cation challenges for sequential object-oriented programs. Form. Asp. Comput.,
19:159�189, June 2007.

17. K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In
In ECOOP, 2004.

18. Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars Birkedal. Abstract
Predicates and Mutable ADTs in Hoare Type Theory. In ESOP, volume 4421 of

LNCS, pages 189�204, 2007.
19. Ligia Nistor, Jonathan Aldrich, Stephanie Balzer, and Hannes Mehnert. Object

propositions. Technical Report CMU-CS-13-132, Carnegie Mellon University, 2013.
http://www.cs.cmu.edu/~lnistor/techReportCMU-CS-13-132.pdf.

20. Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In
POPL, pages 247�258, 2005.

21. D.L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15:1053�1058, 1972.

22. Alexander J. Summers and Sophia Drossopoulou. Considerate reasoning and the
composite design patterns. In VMCAI, volume 5944 of Lecture Notes in Computer
Science, pages 328�344, 2010.

16

