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Abstract. In this paper we present Oprop, a tool that implements
the theory of object propositions. We have recently introduced object
propositions as a modular ver�cation technique that combines abstract
predicates and fractional permissions. The Oprop tool, found as a web
application at lowcost-env.ynzf2j4byc.us-west-2.elasticbeanstalk.com, ver-
i�es programs written in a simpli�ed version of Java augmented with the
object propositions speci�cations. Our tool parses the input �les and au-
tomatically translates them into the intermediate veri�cation language
Boogie, which is veri�ed by the Boogie veri�er that we use as a back end.
We present the details of our implementation, the rules of our translation
and how they are applied on an example. We describe an instance of the
challenging Composite design pattern, that we have automatically veri-
�ed using the Oprop tool, and prove the equivalence between formulas
in Oprop and their translation into Boogie.
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1 Motivation

In this paper we present a practical veri�cation tool, Oprop, for object-oriented
programs in single-threaded settings. In 2014 we published a method for modular
veri�cation [23] of object-oriented code in the presence of aliasing. Our approach,
object propositions, builds on separation logic and inherits its modularity advan-
tages, but provides additional modularity by allowing developers to hide shared
mutable data that two objects have in common. The implementations of the two
objects have a shared fractional permission [5] to access the common data (for
example each of the two objects has a �eld pointing to the same object and thus
each object has a half fraction to that object), but this need not be exposed in
their external interface.

Our work is modular to a class: in each class we de�ne predicates that objects
of other classes can rely on. We get the modularity advantages while also sup-
porting a high degree of expressiveness by allowing the modi�cation of multiple
objects. Like separation logic and permissions, but unlike conventional object



invariant and ownership-based work (including [20] and [21]), our system allows
�ownership transfer" by passing unique permissions around (permissions with
a fraction of 1). Unlike separation logic and permission systems, but like ob-
ject invariant work and its extensions (for example, the work of Summers and
Drossopoulou [27]), we can modify objects without owning them. More broadly,
unlike either ownership or separation logic systems, in our system object A can
depend on an invariant property of object B even when B is not owned by A,
and when A is not �visible" from B. This has information-hiding and system-
structuring bene�ts. Part of the innovation is combining the two mechanisms
above so that we can choose between one or the other for each object, and
even switch between them for a given object. By being able to formally verify
di�erent classes and methods of those classes independently of each other and
automatically using our Oprop tool, our work can be used to formally verify
component-based software.

The contributions of this paper are a description of how we implemented
our methodology in the Oprop tool, a proof of soundness of our core translation
technique, and experience verifying the Composite pattern and a few smaller
examples with the tool. In Section 2 we give a background presentation of object
propositions, together with an example class written in the Oprop language.
Section 3 presents the tool and how it can be accessed as a web application.
Section 4 and 5 present an intuitive description of the formal translation rules
from Oprop into Boogie and the formal proof of equivalence between formulas
written in Oprop and their Boogie translation. We conclude by showing the
examples that we automatically veri�ed using Oprop and compare our work to
existing approaches, showing how our work contributes to the state of the art
in the area of tool based approaches that facilitate the application of formal
methods for component based software.

2 The Theory of Object Propositions

The object proposition methodology [23] uses abstract predicates [24] to char-
acterise the state of an object, embeds those predicates in a logical framework
and speci�es sharing using fractional permissions [5]. When an object a has a
fractional permission to object b it means that one of the �elds of a is a refer-
ence to b. Object propositions are associated with object references in the code.
Programmers can use them in writing method pre- and post-conditions and in
the packing/unpacking annotations that they can insert in the code as part of
veri�cation.

To verify a method, the abstract predicate in the object proposition for the
receiver object is interpreted as a concrete formula over the current values of
the receiver object's �elds (including for �elds of primitive type int). Following
Fähndrich and DeLine [9], our veri�cation system maintains a key for each �eld
of the receiver object, which is used to track the current values of those �elds
through the method. A key o.f → x represents read/write access to �eld f of
object o holding a value represented by the concrete value x.
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To gain read or write access to the �elds of an object, we have to unpack it
[8]. After a method �nishes working with the �elds of a shared object (an object
for which we have a fractional permission, with a fraction less than 1) our proof
rules ensure that the same predicate as before the unpacking holds of that shared
object. If the same predicate holds, we are allowed to pack back the shared object
to that predicate. Since for an object with a fractional permission of 1 there is
no risk of interferences, we don't require packing to the same predicate for this
kind of objects.

Object propositions are unique in providing a separation logic with fractions,
in which developers can unpack an object that is shared with a fractional permis-
sion, modify its �elds, and pack it again as long as the new �eld values validate
the original abstract predicate. The programming language that we are using
is inspired by Featherweight Java [13], extended to include object propositions.
We retained only Java concepts relevant to the core technical contribution of
this paper, omitting features such as inheritance, casting or dynamic dispatch
that are important but are handled by orthogonal techniques. Since they contain
fractional permissions which represent resources that have to be consumed upon
usage, object propositions are consumed upon usage and their duplication is for-
bidden. Therefore, we use linear logic [11] to write the speci�cations. Pre- and
post-conditions are separated with a linear implication ( and use multiplicative
conjunction (⊗), additive disjunction (⊕) and existential/universal quanti�ers
(where there is a need to quantify over the parameters of the predicates).

Prog ::= ClDecl e

ClDecl ::= class C { FldDecl PredDecl MthDecl }
FldDecl ::= T f

PredDecl ::= predicate Q(T x) ≡ R

MthDecl ::= T m(T x) MthSpec { e; return e }

MthSpec ::= R ( R
R ::= P | R ⊗ R | R ⊕ R |

∃x:T.R | ∃z:double.R | ∃z:double.z binop t⇒ R |
∀x:T.R | ∀z:double.R | ∀z:double.z binop t⇒ R |
t binop t⇒ R

P ::= r#k Q(t) | unpacked(r#k Q(t)) |
r.f → x | t binop t

k ::= n1
n2

(where n1, n2 ∈ N and 0 < n1 ≤ n2) | z

e ::= t | r.f | r.f = t | r.m(t) |
new C(Q(t)[t])(t) |
if (t) { e } else { e } | let x = e in e |
t binop t | t && t | t ‖ t | ! t |
pack r#k Q(t)[t]in e | unpack r#k Q(t)[t]in e

t ::= x | n | null | true | false

x ::= r | i

binop ::= + | − | % | = | ! = | ≤ | < | ≥ | >
T ::= C | int | boolean | double

Fig. 1. Grammar of object propositions
We show the syntax of our simple class-based object-oriented language, that

we call the Oprop language, in Figure 1. In rule ClDecl each class can de�ne one
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or more abstract predicates Q in terms of concrete formulas R. Each method
in the rule MthDecl comes with pre- and post-condition formulas. Formulas R
include object propositions P , terms t, primitive binary predicates, conjunction,
disjunction, keys r.f → x, and quanti�cation. We distinguish e�ectful expressions
from simple terms, and assume the program is in let-normal form. The pack and
unpack expression forms are markers for when packing and unpacking occurs in
the proof system. In the grammar, r represents a reference to an object and i
represents an integer. The variable z represents a metavariable for fractions and
it has type double. In a program, a fraction can be a constant of type double
or it can be represented by a metavariable. The horizontal bar above a symbol
means that there could be one or more occurrences of that symbol.

The example SimpleCell.java in Figure 2 shows an Oprop class. We created
the SimpleCell example to illustrate how we can modify an object even if we do
not have a full permission to it. Also, we can rely only on the speci�cations of
methods in order to reason about them, which strengthens our modularity claim.

Note that even though the class is written in the Oprop language, the exten-
sion of the �le remains .java. This example di�ers from our grammar in a couple
of ways: every Oprop input �le has to have the declaration of the enclosing pack-
age as �rst statement, and the linear conjunction and disjunction that we use in
our formal grammar in Figure 2 are replaced by && and || in the Oprop code.

Figure 2 shows the declaration of the SimpleCell class, the declaration of
the predicates, the changeVal method and its speci�cation, and the main()

method. When the object c is created in the main() method, line 17, we have
to specify the predicate that holds for it in case the object becomes shared in
the future. Since the predicate PredVal de�ned on line 5 has one existentially
quanti�ed variable and the Boogie tool cannot successfully instantiate existential
variables, we give the witness 2 for the variable int v existentially quanti�ed in
the body of the predicate PredVal. In general, whenever there is an existential
Oprop statement in the code, we pass the witnesses for that statement explicitly.
The tilde sign in the speci�cation of the changeVal method on line 9 is there to
di�erentiate between variables k used for fractions and other variables that are
used as parameters to predicates.

When we unpack a predicate, as we do on line 12, we check that the provided
witness is the right one; we do not assume that the programmer provided the
right witness. We implemented the translation strategy in this way because the
programmer might make a mistake and provide the wrong witness.

3 The Oprop Tool

The Oprop tool, found at lowcost-env.ynzf2j4byc.us-west-2.elasticbeanstalk.com
as a web application, takes as input any number of �les written in Java and
annotated with object propositions speci�cations. The tool produces for each
input �le the corresponding Boogie translation �le. We have written in Java the
translation rules from Oprop into the Boogie language and we are deploying
them in the form of a jar �le on the Oprop web application. If the user has

4



1 package x ;
2 c l a s s S impleCe l l {
3 i n t va l ;
4 S impleCe l l next ;
5 p r ed i c a t e PredVal ( ) = e x i s t s i n t v : t h i s . va l −> v && v<15
6 p r ed i c a t e PredNext ( ) = e x i s t s S impleCe l l obj :
7 t h i s . next −> obj && ( obj#0.34 PredVal ( ) )
8 void changeVal ( i n t r )
9 ~double k : r e qu i r e s ( t h i s#k PredVal ( ) ) && ( r<15)
10 ensure s t h i s#k PredVal ( )
11 {
12 unpack ( t h i s#k PredVal ( ) ) [ t h i s . va l ] ;
13 t h i s . va l = r ;
14 pack ( t h i s#k PredVal ( ) ) [ r ] ;
15 }
16 void main ( ) {
17 S impleCe l l c = new SimpleCe l l ( PredVal ( ) [ 2 ] ) (2 , nu l l ) ;
18 S impleCe l l a = new SimpleCe l l ( PredNext ( ) [ c ] ) (2 , c ) ;
19 S impleCe l l b = new SimpleCe l l ( PredNext ( ) [ c ] ) (3 , c ) ;
20 unpack ( a#1 PredNext ( ) ) [ c ] ;
21 unpack (b#1 PredNext ( ) ) [ c ] ;
22 c . changeVal (4 ) ;
23 }
24 }

Fig. 2. SimpleCell.java

provided multiple �les as input, there will be multiple �les produced as output.
In the background, the tool concatenates the multiple �les into a single one. The
concatenation of the translated input �les will be accessible to the user on the
last page of the web application, under the link inputBoogie.bpl. The �nal result
of the veri�cation - the Boogie tool run on theinputBoogie.bpl �le - is accessible
by clicking on the link result.txt. The user will be able to see if the original Java
�le augmented with the object propositions annotations was veri�ed or not. If an
error message is displayed, the user has the option of going back to the original
Java �le and adding more annotations that might help the formal veri�cation
and then uploading the new �le to restart the process.

The translation part of the Oprop tool is composed of two parts: JExpr [2] and
the Boogie translation. JExpr is a parser for a very small subset of Java. We took
this o�-the-shelf parser and added support for the parsing of object propositions
annotations. The JExpr system consists of the following components: a JavaCC
parser, a set of Abstract Syntax Tree classes, a Contextual Semantic Analysis vis-
itor and a type resolution class used by the Contextual Visitor. We implemented
the Boogie translation in a �le called BoogieVisitor.java. In this �le we implement
the translation rules presented in Section 4. By implementing the visitor design
pattern, we visit all the nodes of the Abstract Syntax Tree and perform the
translation for each one. We have nodes such as FieldDeclaration, PredicateDec-
laration,MethodDeclaration, ObjectProposition, FieldSelection,MethodSelection,
BinaryExpression, FormalParameter, AllocationExpression, etc.
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The resulting Boogie translation is fed into the Boogie veri�er, in the back-
ground of our web application. The Boogie veri�er uses the Z3 high-performance
theorem prover [7] to answer whether the program was veri�ed successfully or
not. The Z3 theorem prover works very well for our methodology, since our ab-
stract predicates use integers to express the properties of �elds. Reasoning about
integers in an automated way can be di�cult, but Z3 is one of the most promi-
nent satis�ability modulo theories (SMT) solvers and it is used in related tools
such as Boogie [3], Dafny [17], Chalice [16] and VCC [6].

4 Translating Object Propositions into Boogie

In order for us to be able to use Z3 for the veri�cation of the generated conditions,
we need to encode our extended fragment of linear logic into Boogie, which is
based on �rst order logic and uses maps as �rst class citizens of the language. A
detailed description of the syntax and semantics of the Boogie language can be
found in [18] available at http://research.microsoft.com/~leino/papers.

html. By `extended fragment of linear logic' we mean the fragment of linear
logic containing the operators ⊗ and ⊕, that we extend with the speci�cs of our
object propositions methodology. Speci�cally, we need to encode R described
in the grammar in Section 2. The crux of the encoding is in how we treat the
fractions of the object propositions, how we keep track of them and how we
assert statements about them. For object propositions, we encode whether they
are packed or unpacked, the amount of the fraction that they have and the
values of their parameters. Fractions are intrinsically related to keeping track
of resources, the principal idea of linear logic. The challenge was to capture all
the properties of the Oprop language and soundly translate them into �rst order
logic statements. We were able to use the map data structure that the Boogie
language provides to model the heap and the �elds of each class. The maps were
also helpful for keeping track of the fractions associated with each object, as well
as for knowing which object propositions were packed and which were unpacked
at all points in the code.

Our translation of linear logic (LL) into �rst order logic (FOL) is given in
the following paragraphs of this subsection, where we present the most inter-
esting rules of translation of our Oprop language into the Boogie intermediate
veri�cation language. The translation of SimpleCell.java from Figure 2 into the
Boogie language is given in Figures 3 and 4, and we point to the lines in these
two �gures for each translation rule that we describe. We give the intuition for
each translation rule, in the order that it appears in Figures 3 and 4.

At the start of each Boogie program we declare the type Ref that represents
object references, as can be seen on line 1 in the SimpleCell example.

A class declaration is made of the �eld, predicate, constructor and method
declarations. The function trans represents the formal translation function. For
a complete list of translation rules and their explanations, please refer to Section
4.3.1 in [22].

trans(ClDecl) ::= trans(FldDecl) trans(PredDecl)
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1 type Ref ;
2 const nu l l : Ref ;
3 var va l : [ Ref ] i n t ;
4 var next : [ Ref ] Ref ;
5 var packedPredNext : [ Ref ] bool ;
6 var fracPredNext : [ Ref ] r e a l ;
7 var packedPredVal : [ Ref ] bool ;
8 var fracPredVal : [ Ref ] r e a l ;
9
10 procedure PackPredNext ( obj : Ref , t h i s : Ref ) ;
11 r e qu i r e s ( packedPredNext [ t h i s ]== f a l s e ) &&
12 ( ( ( f racPredVal [ next [ t h i s ] ] >= 0 .34 ) ) ) && ( next [ t h i s ]==obj )

;
13 procedure UnpackPredNext ( obj : Ref , t h i s : Ref ) ;
14 r e qu i r e s packedPredNext [ t h i s ] &&
15 ( fracPredNext [ t h i s ] > 0 . 0 ) ;
16 r e qu i r e s ( next [ t h i s ]==obj ) ;
17 ensure s ( ( ( f racPredVal [ next [ t h i s ] ] >= 0 .34 ) ) ) && ( next [ t h i s

]==obj ) ;
18
19 procedure PackPredVal ( v : int , t h i s : Ref ) ;
20 r e qu i r e s ( packedPredVal [ t h i s ]== f a l s e ) &&
21 ( ( v<15) ) && ( va l [ t h i s ]==v) ;
22 procedure UnpackPredVal ( v : int , t h i s : Ref ) ;
23 r e qu i r e s packedPredVal [ t h i s ] &&
24 ( fracPredVal [ t h i s ] > 0 . 0 ) ;
25 r e qu i r e s ( va l [ t h i s ]==v) ;
26 ensure s ( ( v<15) ) && ( va l [ t h i s ]==v) ;
27
28 procedure S impleCe l l ( v : int , n : Ref , t h i s : Ref )
29 mod i f i e s next , va l ;
30 ensure s ( ( va l [ t h i s ]==v)&&(next [ t h i s ]==n) ) ;
31 ensure s ( f o r a l l x : Ref : : ( ( x!= t h i s )==>(next [ x]==old ( next [ x ] ) )

) ) ;
32 ensure s ( f o r a l l x : Ref : : ( ( x!= t h i s )==>(va l [ x]==old ( va l [ x ] ) ) ) )

;
33 { va l [ t h i s ] :=v ;
34 next [ t h i s ] :=n ; }
35
36 procedure changeVal ( r : int , t h i s : Ref )
37 mod i f i e s packedPredVal , va l ;
38 r e qu i r e s ( t h i s != nu l l ) && ( ( ( packedPredVal [ t h i s ] ) &&
39 ( fracPredVal [ t h i s ] > 0 . 0 ) )&&(r<15) ) ;
40 ensure s ( ( packedPredVal [ t h i s ] ) &&
41 ( fracPredVal [ t h i s ] > 0 . 0 ) ) ;
42 r e qu i r e s ( f o r a l l x : Ref : : packedPredVal [ x ] ) ;
43 ensure s ( f o r a l l x : Ref : : packedPredVal [ x ] ) ;
44 ensure s ( f o r a l l x : Ref : : ( f racPredVal [ x]==old ( fracPredVal [ x

] ) ) ) ;

Fig. 3. simplecell.bpl
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50 {
51 assume ( f o r a l l y : Ref : : ( f racPredVal [ y ] >= 0 . 0 ) ) ;
52 c a l l UnpackPredVal ( va l [ t h i s ] , t h i s ) ;
53 packedPredVal [ t h i s ] := f a l s e ;
54 va l [ t h i s ] := r ;
55 c a l l PackPredVal ( r , t h i s ) ;
56 packedPredVal [ t h i s ] := true ;
57 }
58
59 procedure main ( t h i s : Ref )
60 mod i f i e s fracPredNext , fracPredVal , next ,
61 packedPredNext , packedPredVal , va l ;
62 r e qu i r e s ( f o r a l l x : Ref : : packedPredNext [ x ] ) ;
63 r e qu i r e s ( f o r a l l x : Ref : : packedPredVal [ x ] ) ;
64 {
65 var c : Ref ;
66 var a : Ref ;
67 var b : Ref ;
68 assume ( c !=a ) && ( c !=b) && (a!=b) ;
69 assume ( f o r a l l y : Ref : : ( fracPredNext [ y ] >= 0 . 0 ) ) ;
70 c a l l S impleCe l l (2 , nu l l , c ) ;
71 packedPredVal [ c ] := f a l s e ;
72 c a l l PackPredVal (2 , c ) ;
73 packedPredVal [ c ] := true ;
74 fracPredVal [ c ] := 1 . 0 ;
75 c a l l S impleCe l l (2 , c , a ) ;
76 packedPredNext [ a ] := f a l s e ;
77 c a l l PackPredNext ( c , a ) ;
78 fracPredVal [ c ] := fracPredVal [ c ] − 0 . 3 4 ;
79 packedPredNext [ a ] := true ;
80 fracPredNext [ a ] := 1 . 0 ;
81 c a l l S impleCe l l (3 , c , b ) ;
82 packedPredNext [ b ] := f a l s e ;
83 c a l l PackPredNext ( c , b ) ;
84 fracPredVal [ c ] := fracPredVal [ c ] − 0 . 3 4 ;
85 packedPredNext [ b ] := true ;
86 fracPredNext [ b ] := 1 . 0 ;
87 c a l l UnpackPredNext ( c , a ) ;
88 fracPredVal [ c ] := fracPredVal [ c ] + 0 . 3 4 ;
89 packedPredNext [ a ] := f a l s e ;
90 c a l l UnpackPredNext ( c , b ) ;
91 fracPredVal [ c ] := fracPredVal [ c ] + 0 . 3 4 ;
92 packedPredNext [ b ] := f a l s e ;
93 c a l l changeVal (4 , c ) ;
94 }

Fig. 4. simplecell.bpl - cont.
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trans(ConstructorDecl) trans(MthDecl)

Each �eld is represented by a map from object references to values, repre-
senting the value of that �eld. You can see the maps declared for the �elds val
and next on lines 3 and 4.

trans(FldDecl) ::= var f: [Ref]trans(T);

We declare a map from a reference r to a real representing the fraction k for
each object proposition r#k Q(t). We declare a second map from a reference r

to a boolean, keeping track of which objects are packed. Each key points to true
if and only if the corresponding object proposition is packed for that object. For
each predicate Q, we have a map keeping track of fractions and a map keeping
track of the packed objects. The result of these translation rules is shown on
lines 5 to 8 in the SimpleCell example.

For each predicate Pred we have a map fracPred declared as follows

var fracPred : [Ref] real. You can see two such maps on lines 6 and
8 of Figure 3 representing the fraction maps for the predicates PredNext and
PredVal. For each object obj, this map points to the value of type real of the
fraction k that is in the object proposition obj#k Pred(t). The map fracPred

represents all the permissions on the stack. Since fracPred is a global variable it
always contains the values of the fractions for all objects. An important distinc-
tions is that in a method we only reason about the values stored in fracPred for
locally accessible objects (objects that are mentioned in the precondition of that
method). As we go through the body of that method, the value of fracPred for
the objects that are touched in any way changes.

The declaration of an abstract predicate Q has two steps: we write a proce-
dure PackQ that is used for packing the predicate Q, and a procedure UnpackQ
that is used for unpacking it.

The procedure PackQ is called in the code whenever we have to pack an object
proposition, according to the pack(...) annotations that the programmer inserted
in the code. Right after calling the PackQ procedure, we write packedQ[this]
:= true; in the Boogie code. After calling the PackQ procedure, we also write
the statements that manipulate the fractions that appear in the body of the
predicate that we are packing. When packing a predicate, we subtract from the
current value of fractions.

Whenever there is a packed object proposition in the body of a predicate,
for example assume that in the body of the predicate P we have the packed
object proposition r1#k Q(), we model it in the following way: in the proce-
dures UnpackP and PackP we have requires (fracQ[r1] > 0.0) and ensures

(fracQ[r1] > 0.0) respectively. Note that we do not have requires packedQ[r1]

and ensures packedQ[r1] respectively, in the body of a predicate. The intu-
ition here is that we do not know whether an object proposition appearing in the
de�nition of a predicate is unpacked. For the pre- and post-conditions of pro-
cedures our methodology guarantees that if an object proposition is unpacked,
it will appear in the speci�cations as unpacked. All unpacked object proposi-
tions will be stated in the speci�cations of methods. For all procedures where
we might have unpacked object propositions in the pre-conditions of that proce-
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dure, we add a statement of the form requires (forall y:Ref :: (y!=obj1)

==> packedQ[y]). This statement states that all the object propositions that
are not explicitly mentioned to be unpacked will be considered packed. For the
requires forall statement just mentioned, assume that the object obj1 has
been explicitly mentioned in an unpacked object proposition. The upside is that
we can rely on such ensures forall statements but we also need to prove them
as post-conditions of procedures. You can see the procedures PackPredNext and
PackPredVal for predicates PredNext and PredVal on lines 10 to 12 and 19 to
21 respectively.

Note that the predicate PredVal has an existential statement in its de�nition,
for the variable v for which we instead use the global variable of the �eld val

in the Boogie translation. The implementation of this idea can be seen in the
SimpleCell example on line 21, where the val �eld is existentially quanti�ed
and the Boogie global variable val[this] is used instead in the de�nition of the
predicate. We side-e�ect the predicate PredVal to add the existential parameter
v, as can be seen in the formal translation rule from Figure 5. This parameter
is added to the list of parameters of the enclosing predicate, as can be seen on
line 19.

f unc t i on addEx i s t en t i a l ( t rans (R) , t : t rans (T) )
{

MethodOrPredDeclaration r e s u l t ;
l e t methodOrPred ( params ) be the method
or p r ed i c a t e in the body o f which R i s found ;
update methodOrPred ( params ) to be methodOrPred ( params , t :

t rans (T) ) ;
r e s u l t := methodOrPred ( params , t : t rans (T) ) ;
r e turn r e s u l t ;

}

Fig. 5. addExistential() translation helper function

Similarly, the procedure UnpackQ is called in the code whenever we need to
unpack an object proposition, whenever we need to access the �eld of an ob-
ject or we need to add together fractions in order to get the right permission
(usually when we need a permission of 1 in order to modify a predicate). The
procedure UnpackQ is inserted in the code whenever the programmer inserted
the unpack(...) annotation in the Java code. Right after calling the procedure
UnpackQ, we write packedQ[this] := false; in the code. We also write the
statements that add to the fractions that appear in the body of the pred-
icate that we are packing. You can see the procedures UnpackPredVal and
UnpackPredNext for predicates PredVal and PredNext on lines 22 to 26 and
13 to 17. Note that in the ensures statement of the predicate PredNext we did
not write fracPredNext[this] >= 0.34. This not needed because we are going
to add this fraction in the caller, right after calling UnpackPredNext.

For each class we write a constructor. For the class SimpleCell the transla-
tion of the constructor is on lines 28 to 34.
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A method is translated into a procedure in Boogie.

trans(MthDecl) ::= procedure m( trans(T) x ) returns (r:trans(T))
trans(MthSpec)
{ assume (forall y:Ref :: (fracQ[y] >= 0.0) );

trans(e1) ; var r := trans(e2); return r; }

When specifying a method, we have to specify the variables that it modi�es,
its precondition and its postcondition. We de�ne the method changeVal in the
SimpleCell class on lines 36 to 57. For each method we have added two kinds
of statements that we call requires forall and ensures forall.

The requires forall statement explicitly states the object propositions
that are packed at the beginning of a method, which are almost all object propo-
sitions in most cases. Since there are no unpacked object propositions in the
preconditions of the method changeVal, the requires forall states that all
the object propositions for the PredVal predicate are packed. Each requires

forall or ensures forall statement refers to a single predicate and thus each
method might have multiple such statements.

The modifies clause of a procedure in Boogie has to state all the global
variables that this procedure modi�es, through assignment, and all the variables
that are being modi�ed by other procedures that are called inside this procedure.
The modifies clause that Boogie needs for each procedure states that all the
values of a certain �eld have been modi�ed, for all references. This leads to
us not being able to rely on many properties that were true before entering a
procedure. We counteract the e�ect of the modifies by adding statements of
the form ensures (forall y:Ref :: (fracP[y] == old(fracP[y]) ) ) and

ensures (forall y:Ref :: (packedP[y] == old(packedP[y]) ) ), for all
fracP, packedP or global �elds maps that were mentioned in the modifies clause
of the current procedure. Of course, if the value of the maps fracP, packedP, etc.
does change in the method we do not add these ensures forall statements.

If we have multiple declarations of the form var c: Ref, var d: Ref, we
also add the assumption statement assume (c!=d) as on line 68 because the
Boogie tool does not assume that these two variables are di�erent, while the
Java semantics does assume this. We explicitly assume in the beginning of the
body of each method that all fractions that are mentioned in the pre- or post-
conditions of that method are larger than 0, as on line 69. We need to explicitly
add these assumptions because the Boogie tool does not have any pre-existing
assumptions about our global maps representing fractions.

An object proposition r#k Q(t) is generally translated by stating that the
value of the packedQ map for the parameters t and reference r is true and
the value of fracQ for the same parameters and reference is >= k if k is a
constant or is > 0 if k is a metavariable. You can see the translation of the
packed object proposition obj#0.34 PredVal() both inside the PackPredNext

and UnpackPredNext procedures corresponding to the predicate PredNext.

When the programmer wants to pack an object to a predicate Q, he needs to
write the statement call PackQ(..., this) in the program. When translating
this call to Pack, the Oprop tool writes packedQ[this] := true. You can see
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an example of such a call to Pack on lines 71 to 74, together with the statements
that assign true to the global packed map for this object and the statement
that subtracts the fraction that is used for the predicate PredVal and the object
c when the packing occurs. The user speci�es to our tool which predicate they
intend to pack to by adding the name of that predicate and the parameters to
that predicate, if there are any, in the call to the constructor. This can be seen
on lines 17-19 in Figure 2 right after the name of the constructor SimpleCell.
For our SimpleCell example the constructor is called multiple times in our main
function and you can see one such call and the statements that are written right
after the call on lines 70 to 74 in the .bpl translation. The user speci�es to our
Oprop tool which predicate they intend to pack to by writing the name of the
predicate, together with any parameters that the predicate needs, in the call to
the constructor.

Similarly, when we unpack an object from an object proposition that refers
to predicate Q, we write the statement call UnpackQ(..., this). Right after
this statement we write packedQ[this] := false. You can see an example of
such a call on lines 87 to 89. As opposed to packing, where we usually consume
a fraction of an object proposition, when we unpack an object proposition we
obtain a fraction and so we have a fraction manipulation statement that adds
to the current value of a fraction, as seen on line 88.

5 Equivalence of Translation

In this section, we present soundness and completeness theorems stating that a
formula in the Oprop language is translated into an equivalent formula in the
�rst-order logic supported by Boogie. We focus on the equivalence of formulas
because that is the heart of our translation approach; modeling the detailed
constructs of Java has been done in other settings and is of less interest. Fur-
thermore, the semantics of Boogie are given as trace sets, a formalism somewhat
distant from the standard dynamic semantics we used in our prior work. Re-
gardless, an informal argument for the equivalence of the rest of the translation
is available in the �rst author's thesis [22] for the interested reader.

We present semantics for our subset of linear logic in Figures 6 and 7. In these
�gures Γ contains typings for term variables, Π0 contains the persistent truths
and Π1 contains the resources. We have adapted these rules from a particularly
elegant formalization of linear logic from Prof. Frank Pfenning's 2012 Carnegie
Mellon course notes [25]. Note that we have divided the Π that we used in
Section 2 into Π0 and Π1, to separate the persistent truths and the ephemeral
resources. In fact the context Π contains the preconditions of the particular
method inside which we have to prove a formula R and we have the equality
Π = Π0;Π1. We are presenting the entailment relation in this section to both
de�ne precisely what it means in our system and allow us to prove properties
about it.

In our restricted setting, the main di�erence between linear and classical
logic is that object propositions are treated as resources, with the amount of
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Γ ;Π0;Π1 ` r#k/2 Q(t)⊗ r#k/2 Q(t)

Γ ;Π0;Π1 ` r#k Q(t)
(OPack1)

Γ ;Π0;Π1 ` r#k*2 Q(t)

Γ ;Π0;Π1 ` r#k Q(t)⊗ r#k Q(t)
(OPack2)

Γ ;Π0;Π1 ` r#k/2 Q(t)⊗ unpacked(r#k/2 Q(t))

Γ ;Π0;Π1 ` unpacked(r#k Q(t))
(OUnpack1)

Γ ;Π0;Π1 ` unpacked(r#k/2 Q(t))⊗ unpacked(r#k/2 Q(t))

Γ ;Π0;Π1 ` unpacked(r#k Q(t))
(OUnpack2)

Γ ;Π0;Π1 ` unpacked(r#k*2 Q(t))

Γ ;Π0;Π1 ` unpacked(r#k Q(t))⊗ unpacked(r#k Q(t))
(OUnpack3)

Γ ;Π0;Π1, r.f → x ` true

Γ ;Π0;Π1 ` r.f→ x
(OField)

Γ ` t1 : T Γ ` t2 : T Γ ` binop : (T, T )→ T2 Γ ;Π0, t1 binop t2;Π1 ` true

Γ ;Π0;Π1 ` t1 binop t2
(OBin)

Fig. 6. Semantics for Linear Logic Formulas

resource represented by the fraction. A threat to sound translation is that a
partial fraction of a proposition in the context could be used twice in the classical
setting, but must only be used once in the linear setting. To prevent this, our
translation converts the formula to disjunctive normal form and coalesces all
fractions within each disjunction, thus ensuring that the entire fraction required
is present in the context even in the classical setting.

Theorem 1 (Completeness Theorem) For a formula R that is written in
linear logic and parses according to the grammar in Section 2, if Γ ;Π0;Π1 `LL

R then trans(Γ ;Π0;Π1) `FOL trans(R).

Proof. The proof is by induction on the rules in Figures 6 and 7. For each formula
R we have to prove that if R is true in linear logic then trans(R) is true in �rst
order logic. Due to space constraints, we show a representative case and leave
the rest to [22], Section 4.5.

� Case OPack1
To prove: If Γ ;Π0;Π1 `LL P then trans(Γ ;Π0;Π1) `FOL trans(P) where:

1. P = r#k Q(t)

2. trans(P) = packedQ[r] && translateObjectProposition(r#k Q(t)) and

3.
Γ ;Π0;Π1 ` r#k/2 Q(t)⊗ r#k/2 Q(t)

Γ ;Π0;Π1 ` r#k Q(t)
(OPack1)
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Γ ;Π0;Π1 ` R1 Γ ;Π0;Π
′
1 ` R2

Γ ;Π0;Π1, Π
′
1 ` R1⊗ R2

(⊗)

Γ ;Π0;Π1 ` R1

Γ ;Π0;Π1 ` R1⊕ R2
(⊕L)

Γ ;Π0;Π1 ` R2

Γ ;Π0;Π1 ` R1⊕ R2
(⊕R)

Γ ` M:T Γ ;Π0;Π1 ` R{M/x}
Γ ;Π0;Π1 ` ∃x:T.R

(∃1)

Γ ` F:double Π0 ` F > 0 Γ ;Π0;Π1 ` R{F/z}

Γ ;Π0;Π1 ` ∃z:double.R
(∃2)

Γ ` F:double Π0 ` F binop t Γ ;Π0;Π1 ` R{F/z}

Γ ;Π0;Π1 ` ∃z:double.z binop t⇒ R
(∃3)

Γ,m : T ;Π0;Π1 ` R{m/x}

Γ ;Π0;Π1 ` ∀x:T.R
(∀1)

Γ, f:double;Π0, f > 0;Π1 ` R{f/z}

Γ ;Π0;Π1 ` ∀z:double.R
(∀2)

Γ, f : double;Π0, f binop t;Π1 ` R{f/z}

Γ ;Π0;Π1 ` ∀z:double.z binop t⇒ R
(∀3)

Γ ;Π0;Π1 ` t1 binop t2⇒ R

Γ ;Π0, t1 binop t2;Π1 ` R
(tbint)

Γ ;Π0;Π1,R ` R
(id)

Fig. 7. Semantics for Linear Logic Formulas - cont.

f unc t i on t r an s l a t eOb j e c tP ropo s i t i on ( r#k Q( t ) )
r e tu rn s St r ing {

St r ing r e s u l t = "" ;
i f ( k i s a constant ) {

r e s u l t += "( fracQ [ r ] >= k) &&";
} e l s e {

r e s u l t += "( fracQ [ r ] > 0 . 0 ) &&"; }
i f parameter t corresponds to a f i e l d o f r {

say that f i e l d i s f i e l d 1 ;
r e s u l t += "( f i e l d 1 [ r]==t ) " ; }

r e s u l t += body o f p r ed i c a t e Q with the formal parameters
r ep laced by the ac tua l ones ;

r e turn r e s u l t ;
}

Fig. 8. translateObjectProposition() translation helper function
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Proof:
From the OPack1 rule we know that
if Γ ;Π0;Π1 `LL r#k Q(t) then Γ ;Π0;Π1 `LL r#k/2 Q(t) ⊗ r#k/2 Q(t)
. Using the induction hypothesis, we know that trans(Γ ;Π0;Π1) `FOL

trans(`LL r#k/2 Q(t) ⊗ r#k/2 Q(t)). Using the de�nition of the trans-
lateAnd() function from Figure 9, we obtains that trans(Γ ;Π0;Π1) `FOL

trans(r#(k/2 + k/2) Q(t)), i.e., trans(Γ ;Π0;Π1) `FOL trans(r#(k) Q(t)).
This means that if P holds in LL then trans(P) holds in FOL. Q.E.D.

Theorem 2 (Soundness Theorem) For a formula R that is written in linear
logic and parses according to the grammar in Section 2, if trans(Γ ;Π0;Π1) `FOL

trans(R) then Γ ;Π0;Π1 `LL R.

Proof. The proof will follow the cases of R in the grammar in Section 2, but it
will be done by induction on the complexity of formula R. For each formula R we
have to prove that if trans(R) is true in �rst order logic then R is true in linear
logic.

� Case P3
To prove: If trans(Γ ;Π0;Π1) `FOL trans(P) then Γ ;Π0;Π1 `LL P, where:

1. R = P = r.f → x
2. trans(P) = (f [r] == x)

Proof:
If (f [r] == x) holds in FOL, by the identity rule from FOL we know that
(f [r] == x) is in trans(Π1). Knowing that we devised f to be a map that
for the key r holds the current value of �eld r.f , it means that the value of
�eld f of reference r is equal to x in LL.

The other cases of the formal proof can be found in [22], Section 4.5. In
section 4.6 of [22] we also present an informal soundness argument.

f unc t i on trans lateAnd (R1 , R2) r e tu rn s FOLFormula {
l e t R = DNF(R1 c r o s s R2)
l e t R' = FOL( c o a l e s c e (R) )
re turn transAtoms (R' ) }

where
DNF(R) conver t s l i n e a r formula R to d i s j u c t i v e normal form
coa l e s c e (R) merges atoms in the same con junct ion by adding

f r a c t i o n s
FOL(R) r ep l a c e s l i n e a r connec t i v e s with f i r s t −order l o g i c

connec t i v e s
transAtoms (R) t r a n s l a t e s the atoms o f R, l e av ing connec t i v e s

unchanged
}

Fig. 9. translateAnd() translation helper function
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6 Evaluation

The Composite design pattern [10] expresses the fact that clients treat individual
objects and compositions of objects uniformly. Verifying implementations of the
Composite pattern is challenging, especially when the invariants of objects in
the tree depend on each other [15], and when interior nodes of the tree can
be modi�ed by external clients, without going through the root. As a result,
verifying the Composite pattern is a well-known challenge problem proposed by
Leavens et al. [15], with some attempted solutions presented at SAVCBS 2008
(e.g. [4, 14]). We have already presented our formalization and manual proof of
the Composite pattern using fractions and object propositions in our published
paper [23]. One of the biggest accomplishments that we present in this paper is
that we were able to automatically verify the Composite pattern using the Oprop
tool. The fact that our tool can automatically verify the challenging Composite
pattern is proof of its maturity.

The annotated Composite.java �le be seen in the example.zip folder that
can be downloaded from the �rst page of the Oprop web application at lowcost-
env.ynzf2j4byc.us-west-2.elasticbeanstalk.com. The Composite.java �le presents
the predicates left, right, count and parent, together with the annotated
methods updateCountRec, updateCount and setLeft that we are able to mod-
ularly verify independently of each other, just by looking at their pre- and post-
conditions. We implement a popular version of the Composite design pattern, as
an acyclic binary tree, where each Composite has a reference to its left and right
children and to its parent. Each Composite caches the size of its subtrees in a
count �eld, so that a parent's count depends on its children's count. Clients can
add a new subtree at any time, to any free position. This operation changes the
count of all ancestors, which is done through a noti�cation protocol. The pat-
tern of circular dependencies and the noti�cation mechanism are hard to capture
with veri�cation approaches based on ownership or uniqueness.

This folder also contains the SimpleCell.java �le, together with the �les Dou-
bleCount.java and Link.java that we formally veri�ed using Oprop. The class
DoubleCount.java represents objects which have a �eld val and a �eld dbl, such
that dbl==2*val. This property represents the invariant of objects of type Dou-
blecount. We want to verify that this invariant is maintained by the method
increment. The example Link.java illustrates how we deal with predicates that
have parameters. As we verify more programs, we are adding examples to this
folder. Note that when an example cannot be veri�ed, the user will see a list
of errors produced by the Boogie backend, detailing which speci�cations could
not be proved. In that case the user should go back to the original example and
modify the pre- and post-conditions of methods, or the pack/unpack annotations
in the body of methods so that the veri�cation can be successfully performed.

7 Related Work

Other researchers have encoded linear logic or fragments of it into �rst order
logic. In his Ph.D. thesis [26] Jason Reed presents an encoding of the entirety of
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linear logic into �rst order logic. The major technical di�erence between Reed's
encoding and ours is that he encodes uninterpreted symbols while our encoding
is done inside the theory of object propositions - the smaller fragment of linear
logic on top of which we have added the object propositions. His encoding is
suited to any formula written in linear logic, irrespective of its meaning, while
ours is targeted towards formulas written in our extended fragment of linear
logic, that have a speci�c semantics.

Heule et al. [12] present an encoding of abstract predicates and abstraction
functions in the veri�cation condition generator Boogie. Their encoding is sound
and handles recursion in a way that is suitable for automatic veri�cation using
SMT solvers. It is implemented in the automatic veri�er Chalice. Since our sys-
tem di�ers from theirs in the way we handle fractions (they need a full permission
in order to be able to modify a �eld, while we are able to modify �elds even if
we have a fractional permission to the object enclosing the �eld), we came up
with an encoding that is speci�c to our needs in our Oprop tool.

Peter Müller et al. [19] created the Viper toolchain, that also uses Boogie and
Z3 as a backend, and can reason about persistent mutable state, about method
permissions or ownership, but they also need a full permission to modify shared
data. There are other formal veri�cation tools for object oriented programs, such
as KeY [1], VCC [6] or Dafny [17], that implement other methodologies.

8 Conclusion

We have presented the Oprop tool that implements the object proposition method-
ology, a modular approach that can be used successfully in the veri�cation of
component-based software. We described the translation rules on which the tool
is based, by referring to one example class and we proved the equivalence be-
tween formulas in Oprop and their translation into Boogie. We gave insight into
the automatic veri�cation of an instance of the Composite pattern and other
examples and described the mode of usage of our web application where the tool
can be accessed.
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