

Software Development Practices, Barriers in the Field and
the Relationship to Software Quality

Beth Yost1, Michael Coblenz2, Brad Myers2, Joshua Sunshine2, Jonathan Aldrich2, Sam Weber2,
Matthew Patron1, Melissa Heeren1, Shelley Krueger1, Mark Pfaff1

1The MITRE Corporation, Bedford, MA, 01730, United States
{bethyost, mpatron, mheeren, sekrueger, mpfaff}@mitre.org

2Carnegie Mellon University, Pittsburgh, PA 15213, United States

{mcoblenz, bam, sunshine, jonathan.aldrich}@cs.cmu.edu, samweber@cert.org

ABSTRACT

Context: Critical software systems developed for the government

continue to be of lower quality than expected, despite extensive

literature describing best practices in software engineering. Goal:

We wanted to better understand the extent of certain issues in the

field and the relationship to software quality. Method: We

surveyed fifty software development professionals and asked about

practices and barriers in the field and the resulting software quality.

Results: There is evidence of certain problematic issues for

developers and specific quality characteristics that seem to be

affected. Conclusions: This motivates future work to address the

most problematic barriers and issues impacting software quality.

CCS Concepts

• Software and its engineering • Software and its engineering~

Software development methods • Software and its engineering~

Software development techniques

Keywords

Software development; software quality; survey.

1. INTRODUCTION
Despite advances in software engineering, software systems being

developed for the government continue to cost more, take longer to

deliver, and be of lower quality than expected [1]. Critical

infrastructure sectors such as healthcare, transportation, and energy

depend on that software. To better understand the issues in practice,

we conducted an exploratory study.

Using a survey, we gathered data on practices in the field for the

requirements, design, build, and test phases of software

development. As improving software quality in practice and

improving the developer experience were key long term objectives,

we asked about the barriers faced by developers and software

quality. The key barriers identified motivate future work to better

understand and address issues with task switching, getting enough

time for development, missing documentation, understanding

design rationale behind a piece of code, and finding code related to

bugs and behaviors to be changed. The results provide evidence of

the value of certain practices (e.g., having a clear architecture, unit

testing) on specific software quality characteristics such as

maintainability and evolvability. The results can be used by

researchers to focus their work and managers to improve their

workplaces and the quality of software produced.

2. RELATED WORK
Software quality and productivity of software engineers have been

studied since at least the 1968 NATO conference [2]. Since then,

researchers have attempted to understand the relationships between

software engineering practices and the outcomes of software

projects. In spite of this work, however, large software projects

continue to fail [3, 4].

Dybå et al. argued that the context of software development is

critical when evaluating the success of software development

practices [5]. For example, the US government commonly acquires

software via a contracting process that differs from how companies

buy software. The Software Engineering Institute conducts

independent technical assessments of software projects. One study

of recurring problems across twelve US Air Force acquisition

programs reported inadequate project management office (PMO)

expertise and staff; high PMO staff turnover; requirements scope

creep; inadequate requirements; and lack of functional

requirements baseline [6]. The results of this study report the

relationship of practices for which others have argued such as clear

and stable requirements with specific quality characteristics such as

software maintainability and reliability in the field.

Cleland-Huang argued that often the problem is one of

requirements [7]. On the basis of experience with large software

projects, Jones argued for a large number of best practices in

software engineering in many areas, including requirements,

architecture, and testing [8]. In addition, some experience reports

exist regarding certain software development practices in

government-related contexts. For example, Upender’s experience

report describes the difficulty of using agile methodologies over a

period of time [9]. The results of this study relate practices such as

unit testing with multiple software quality characteristics including

evolvability and maintainability.

Of course, the causes of poor software project outcomes are

typically multifaceted, which is why our survey took a broad

perspective regarding causes of software project outcomes. Rather

than basing recommendations on an individual’s experience, our

work focused on gathering data on practices in the field and

correlating these with the respondents’ subjective ratings of

specific software quality characteristics.

Publication rights licensed to ACM. ACM acknowledges that this

contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States

Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes
only.

ESEM '16, September 8-9, 2016, Ciudad Real, Spain.

Copyright is held by the owner/author(s). Publication rights

licensed to ACM. ACM 978-1-4503-4427-2/16/09…$15.00

DOI: http://dx.doi.org/10.1145/2961111.2962614

3. METHOD

3.1 Participants
We distributed the survey through software development related

mailing lists and contacts at various companies. Fifty participants

voluntarily responded to the anonymous online survey. Instructions

requested that all participants be over 18 years old and be involved

in software development professionally. Participants had the option

to participate in a raffle for an Amazon Fire tablet upon completion.

The primary job of most respondents was software developer or

project lead (36 out of 50), but also included architects, designers,

managers, and testers. All but one had a college degree and most

had degrees in computer science, electrical engineering, and/or

software engineering. Most were experienced developers, with 19

involved with software development for more than 20 years, and

only 3 less than 5 years.

The participants represented developers of both government and

commercial software. Thirty-seven of the participants currently

work for a federally funded research and development center

(FFRDC), 10 for a commercial company, and 3 for other types of

companies or the government. FFRDCs operate in the public

interest, free from conflicts of interest, providing objective

guidance to U.S. government sponsors. Software developed by

FFRDCs is often prototype software to show a proof-of-concept.

Many government agencies do little software development of their

own, hiring contractors to develop many software systems.

3.2 Materials
We constructed an online survey that contained 46 main questions,

many with sub-questions. These were organized into three sections:

background (job function, gender, age, education, years involved

with development, number of programming languages, codebases

used in career, category of employer), current project (customer

category, domain, product category, people on project, developers

on project, clear intended architecture, how often requirements

change, process used, tools used, software quality characteristics),

and barriers, described as “barriers or problems that you personally

have in performing your job”. Standard Likert scales were used to

measure the extent to which tools or processes were used and for

rating software quality characteristics. The software quality

characteristics came from ISO/IEC 25010:2011, with evolvability

and overall quality in general added. The survey was piloted with

eight volunteers and updated as appropriate.

3.3 Procedure
The online survey took approximately 30 minutes to complete. The

instructions requested help understanding and assessing how tools

and processes impact project execution and the resultant software.

The participants were instructed to answer questions based on their

current or most recently finished significant software development

project, for which they had good working knowledge and, if

possible, to select a project that was being developed for the

government.

The independent variables were the customer for the current

software project, software category, clarity of requirements and

design, extent of code for testing and error handling, the software

processes used, the software development tools used, and the

barriers. The main dependent variables related to software quality.

4. RESULTS

4.1 Software Quality
We measured quality according to subjective self-reported ratings.

The first question asked: “Considering the code developed as part

of this project by the whole team, please rate the following

attributes:”

 Number of Software Defects (design or code errors, bad fixes)

 Severity of Known Software Defects

The second question asked: “Considering the code developed as

part of this project by the whole team, please rate the following

software quality characteristics:”

 Functional Suitability (functionality is complete and correct)

 Performance Efficiency (time, resource use, and capacity)

 Compatibility (software interoperability)

 Usability by users (ease of learning and use, error prevention)

 Reliability (maturity, availability, fault tolerance)

 Security

 Maintainability (modular, re-usable, modifiable, testable)

 Portability (ease of migration to new platform)

 Evolvability (ease of changing code)

 Overall Quality in general

Participants were asked to rate each on a 5-point Likert scale that

went from “Very Low” to “Very High”. There were also options

for “Not relevant to this project” and “Don’t know”. Significant

correlations are shown in Table 1 and are summarized next.

4.1.1 Overall Quality
The overall software quality ratings are shown in Figure 1.

Responses of “Not relevant to this project”, “Don’t know”, and

blank are not shown. Functional suitability had the most “High”

and “Very high” responses (34) while security had the least (13).

The code defect responses are shown in Figure 2.

Figure 1. Software quality overall (# responses out of 50)

Figure 2. Code defects overall (# responses out of 50)

4.1.2 Quality by Software Customer
We compared the ratings for software developed specifically for

government customers versus for commercial customers. The

options allowed participants to select all customer classifications

that applied and included: Internal to your company or

organization, commercial company, non-profit company, military,

non-military government, consumers, and other. To compare

between groups, a category for Government (n=27) was created by

combining “military”, “non-military government”, and one “other”

response listing a civilian government agency. A category for

Commercial (n=6) was created by combining “Commercial

company” and “Consumer”. We did not include responses of

internal (n=7) or any that were combinations of categories (n=10).

N
u

m
b
er

 o
f

D
ef

ec
ts

S
ev

er
it

y
 o

f

K
n

o
w

n
 D

ef
ec

ts

F
u
n
ct

io
n
a
l

S
u
it

ab
il

it
y

P
er

fo
rm

an
ce

E
ff

ic
ie

n
cy

C
o
m

p
at

ib
il

it
y

U
sa

b
il

it
y

R
el

ia
b
il

it
y

S
ec

u
ri

ty

M
ai

n
ta

in
ab

il
it

y

P
o
rt

ab
il

it
y

E
v

o
lv

ab
il

it
y

O
v

er
al

l

R
q

m
ts

 Clear requirements .30,.037,48

Frequently changing requirements -.32,.025,49

Clear architecture -.31,.04,45 .33,.033,41 .31,.03,48 .41,.003,49 .38,.012,44 .41,.003,49

P
ro

ce
ss

es

Waterfall -.35,.034,38

Test-driven development .32,.035,45 .41,.005,47 .33,.025,47

Code reviews .31,.048,42

Unit testing -.32.,.034,44 .30,.042,47 .39,.005,50 .31,.043,44 .45,.001,49 .35,.02,44 .50,.000,49 .47,.001,49

System testing .36,.014,47

Iterative design .32,.041,41 .35,.02,44

Usability evaluations .45,.003,41 .59,.000,49 .32,.027,48 .31,.042,44 .38,.007,48

QA testing .33,.035,42

Writing down design decisions .31,.039,46 .29,.042,49 .30,.041,48 .32,.026,48 .29,.049,48

T
o

o
ls

IDEs .31,.047,43 .40,.005,47

Source version control .46,.003,40 .36,.019,43

Debuggers .29,.041,49 .30,.039,48

Bug tracking database .33,.024,46 .30,.044,47

Project management tools .35,.019,45

Security assessment tools .40,.009,41 -.32,.043,41

Static code analysis tools .35,.015,47

Dynamic analysis tools .33,.032,44

Automated testing frameworks .34,.027,43

B
ar

ri
er

s

Switching tasks often due to other requests -.32.03 47

Getting enough time for software development -.42,.004,45 -.30,.038,47 -.38,.009,47 -.31,.033,47

Documentation that is missing information .50,.001,41 -.48,.001,47 -.42,.004,47 -.34,.023,45 -.39,.007,46 -.40,.01,41 -.41, .005, 46

Understanding the design rationale behind a piece of code -.30,.049,44 -.32,.034,45

Understanding code that I or someone else wrote a while ago .32,.042,41 -.42,.004,46 -.34,.041,37 -.40,.008,44 -.40,.007,45

Convincing managers that I should spend time refactoring code -.42,.004,45 -.34,.033,40 -.38,.011,45

Documentation that is out of date -.40,.005,48 -.33,.042,39 -.31,.034,48 -.35,.023,42 -.33,.022, 47

Finding which code is related to a bug or behavior to be changed .45,.003,41 .35,.028,40 -.44,.003,43 -.58,.000,45 -.39,.012,40 -.44,.002,45 -.56, .000,45

Understanding the impact of changes I make on code elsewhere .38,.016,40 .33,.039,39 -.33.027,45 -.44,.003,42 -.36,.03,36 -.31,.039,44

Determining when the code has reached sufficient quality -.43,.003, 45

Being aware of changes to code elsewhere that impact my code .37,.018,40 -.31,.043,44

Finding duplicate code -.37,.015,42

Turnover - having people important to the project leave .38,.017,40 -.33,.027,46 -.33,.029,45

Usability of libraries, SDKs, or other APIs .34,.031,41 .32,.041,42 -.36,.015,46

Finding who is currently responsible for a piece of code .42,.008,39 -.31,.041,44

Coordinating with developers faraway geographically .33,.041,39 -.34,.025.43 -.37, .015, 42

Finding the best guidance online for development questions .31,.047,42

Lack of tools to automate common tasks .33,.034,42 .56,.000,41 -.36,.015,46

Learnability of debuggers -.42,.005,44

Getting enough time with developers knowledgeable of code .47,.005,35

Learnability of programming languages .42,.006,41 -.37,.01,47

Finding who is currently modifying a piece of code -.43,.004,44 -.39, .009, 44

Table 1. Statistically significant (p< .05) correlations between design, tools, processes, barriers and software quality characteristics.

Each cell contains Spearman’s correlation coefficient (rs), p value (p), and the number of responses (n).

Because of the small size of the Commercial group and the

exploratory nature of the study, the p values were relaxed to .2 for

this comparison only. We treated cases where the participant did

not respond to a question as missing data. Given that relaxed

threshold and corresponding tolerance of possible false positives, a

Mann-Whitney test indicated that the: Severity of Known Software

Defects was reported to be lower for software developed for

Government customers (n=24, median= 2/Low) than for

Commercial customers (n=5, median=3/Medium), U=35.0,

p=.162. Portability was higher for software developed for

Government (n=23, median=3, mean=3.14) than for Commercial

(n=6, median=3, mean=2.67), U=94.5, p=.174. Usability was lower

for software developed for Government (n=27, median=3) than

Commercial (n=6, median=4/High), U=52.5, p=.189.

4.1.3 Quality by Software Category
We asked participants, “In which of the following categories does

your product fall (the intended use of your system)?” The options

were prototype, intended to be used, reference implementation, or

other. Twenty-five were intended to be used and 19 were

prototypes. The reference implementation (4) and other (2)

responses were excluded from our analysis. Given the potential for

major difference in quality between these groups, we compared the

reported quality of software between them. A Mann-Whitney test

indicated that the: Security was higher for software that was

intended to be used (n=21, median=3, mean=3.43) than for

prototypes (n=19, median=3, mean=2.44), U=95.0, p=.005.

4.2 Requirements and Architecture
Requirements: The survey asked participants whether their

projects had clear requirements and how often requirements

changed. For having clear requirements, 19 agreed or strongly

agreed, 10 were neutral, and 21 disagreed or strongly disagreed.

Having clearer requirements correlated with higher levels of

software reliability, (rs =.30, p=.037). Six said the requirements

rarely, very rarely, or never changed; 19 said they occasionally

changed; and 25 reported requirements frequently or very

frequently changed. Having frequently changing requirements

correlated with lower levels of maintainability (rs=-.32, p=.025).

Architecture: The survey asked participants the extent to which

they agreed that: “The codebase for this project has a clear intended

architecture.” As participants more strongly agreed with this, the

number of software defects decreased (rs=-.31, p=.04) and

maintainability (rs=.41, p=.003), portability (rs=.38, p=.012),

compatibility (rs=.33, p=.033), reliability (rs=.31, p=.03), and

overall quality (rs=.41, p=.003) all increased.

4.3 Processes
We asked participants to rate the extent to which they used various

processes on a 5-point Likert scale that we then treated as scalar

variables with values from 1 to 5. The question permitted a

response of “Don’t Know,” which we treated as a missing value.

Overall Processes Used: Iterative design and system testing were

used by more than half of respondents, while the waterfall model

was used the least. The extent to which each type of process was

used in shown in Figure 3.

Correlation with Software Quality: More extensive use of unit

testing correlated with higher quality along eight software quality

characteristics. The strongest correlations were between unit testing

and evolvability and between usability evaluations and usability.

There were no significant correlations between quality and agile

methods, but waterfall resulted in lower levels of compatibility

(rs=-.35, p=.034). There were more people using agile almost every

time or always (22) than waterfall (5).

Other Process-Related Factors: As the number of people on the

project increased, so did the number of software defects (rs=.32,

p=.03) and the severity of known defects (rs=.38, p=.011), though

the security weakly increased (rs=.31, p=.039). Likewise, we asked

specifically about developers on the project, and as that number

increased, so did the number of software defects (rs=.30, p=.043)

and their severity (rs=.35, p=.019).

Given the distribution in lines of code (LOC) responses (<10K n=9,

10K-100K n=22, 100K-1M n=13, 1M-10M n=4, >10M n=1), we

regrouped the data into <100K (n=31) and >100K (n=17); we

omitted the single >10M response as an anomaly. In comparing

groups, there was a significant difference at p<.05 using the Mann

Whitney U test: portability was higher when there were less than

100K LOC (n=29, median=3/Medium) compared to >100K LOC

(n=13, median=2/Low), U=99.0, p=.014.

Figure 3. Extent of process use.

4.4 Developer Tools
Although adoption of version control was nearly universal, security

assessment tools and program analysis tools were used

infrequently. The extent to which each type of tool was used is

shown in Figure 4. We also analyzed the correlation between tool

usage and software quality (significant correlations are in Table 1).

The strongest relationships were: use of source control was

positively correlated with compatibility (rs=.46, p=.003); use of

IDEs was positively correlated with overall quality (rs=.40,

p=.005). Use of security assessment tools was positively correlated

with severity of known software defects (rs=-.40, p=.009). Perhaps

these tools result in more knowledge of defects or these tools are

being applied to systems that are known to have defects.

We asked about the criteria for selecting tools, who selected them,

and how well they worked. To the extent that respondents more

strongly agreed that their tools were modern and up-to-date, that

significantly correlated with increases in functional suitability

(rs=.40, p=.004), usability (rs=.38, p=.006), portability (rs=.42,

p=.005), and overall quality (rs=.35, p=.014).

Figure 4. Extent of tool use

4.5 Testing and Error Handling
We asked, “Approximately what percent of the code is for error

handling and recovery?” and “If there is extra code to test this

project, for example a separate test harness or unit test,

approximately what percent of the code is for that?”

On average 11% of code was for error handling and recovery, with

a range from 1%-60%. On average, 14% of code was extra code to

test, ranging from 0%-50% of total code. As the percent of code for

error handling and recovery increased, so did the performance

(rs=.32, p=.045). As the percent of code to test the project

increased, so did the maintainability (rs=.35, p=.023).

4.6 Barriers
Participants rated how serious a problem each of the following was

for them when performing their job. Figure 5 shows a sorted list of

barriers across all survey respondents.

Figure 5. Barriers.

4.6.1 Barriers by Software Customer
The top four barriers for the government-only participants (n=27)

were: getting enough time for software development, switching

tasks often due to other requests from my manager or teammates,

documentation that is missing information, and specifications that

lacked information about what the product should do.

4.6.2 Correlation with Software Quality
Table 1 shows statistically significant correlations between barriers

and software quality. The strongest relationships were between

challenges with finding which code was related to a bug or behavior

and low maintainability and overall quality.

A Mann-Whitney test was done to compare the groups that were

and were not experiencing each barrier. We eliminated from the

analysis the groups that were lopsided, where there were more than

twice as many in the not/minor problem group or the

moderate/serious problem group. For the remaining quality

characteristics, there were three barriers where multiple

characteristics were significantly different between groups:

Finding code related to a bug or behavior to be changed:

 Overall reported quality was higher when this was a minor

problem (n=13, median=4) than when it was a serious

problem (n=16, median=3), U=41.0, p=.005, effect size r=.55.

 Maintainability was higher when this was a minor problem

(n=13, median=4) than when it was a serious problem (n=16,

median=3), U=40.50, p=.004, r=.54.

 Evolvability was higher when this was a minor problem

(n=13, median=4) than when it was a serious problem (n=16,

median=4), U=44.00, p=.008, r=.51.

Understanding code that I or someone else wrote a while ago.

 Maintainability was higher when this was a minor problem

(n=14, median=4) than when it was a serious problem (n=15,

median=3), U=51.50, p=.02, r=.46.

 Functional suitability was higher when this was a minor

problem (n=14, median=4) then when it was a serious

problem (n=15, median=3), U=54.50, p=.03, r=.43.

 Reliability was higher when this was a minor problem (n=14,

median=4) than when it was a serious problem (n=15,

median=3), U=57.50, p=.04, r=.40.

Understanding the design rationale behind a piece of code.

 Maintainability was higher when this was a minor problem

(n=15, median=4) than when it was a serious problem (n=14,

median=3), U=55.00, p=.03, r=.43.

 Evolvability was higher when this was a minor problem

(n=15, median=4) than when it was a serious problem (n=14,

median=3), U=59.00, p=.046, r=.39.

Given that maintainability is impacted by all of these barriers, it

appears that it is the characteristic that is most vulnerable overall.

5. DISCUSSION
The goal of taking a broad approach in this study was to identify

promising areas on which to focus future research to improve the

quality of government software, based on practices in the field and

barriers faced. Follow-on studies should address specific barriers

or measure increased adoption of certain best practices. The most

problematic barriers require future work to address them. The

results can be used by researchers to focus their work and by

managers to identify changes to processes and tools that could

improve the lives of developers and the quality of software being

produced.

The data provide an indication of which of the many barriers we

should focus on if we want to improve software quality: those

problematic for the most developers or correlated most strongly

with specific quality characteristics we want to improve. The most

problematic barriers can generally be grouped into two categories:

task-switching and getting enough time for software development;

and documentation-related issues. Task-switching occurs when

developers must switch among development tasks or when they

work on multiple projects in an interlaced fashion. Task switching

should be avoided where practical. Where not practical, switching

tasks often can lead to difficulty in schedule estimates and lost time

due to getting back into the zone [10]. Tools that help developers

pick up where they left off and better deal with task switching may

help mitigate these issues. Further study is needed to understand

how to address time requirements for development. The second

group of barriers had to do with missing documentation,

understanding design rationale in code, or understanding code

written a while ago. Tools that can generate documentation for

legacy code, that encourage developers to document design

rationale especially for unusual or complex modules, and that can

keep the architecture models up to date as code is being written

could prove particularly beneficial. Addressing these

documentation-related barriers would address some of the largest

reported problems and could help improve maintainability,

functionality, reliability, and evolvability of the software.

We also saw the extent to which certain practices are used in the

field. These correspond to opportunities to improve practice and the

resulting software quality. While factors such as clarity and

stability of requirements and architecture have long been known to

be beneficial, our survey has tied these practices to the extent to

which they are problematic in the field. We also tied them to the

specific quality characteristics that may benefit from improvements

in practice. Similarly, we saw the average amount of code dedicated

to error handling and recovery and that the greater the percentage

of code for that, the better the performance of the software, and the

greater the percent of code for testing, the more maintainable. We

found evidence of a move away from waterfall, especially for the

development of government software: waterfall was the least-used

process. Though agile methods did not appear to correlate with any

increases in quality characteristics in this study, waterfall had a

negative impact on quality.

We did not find evidence in favor of the hypothesis that commercial

software would be rated higher quality than government software;

in fact, government software was reported to have fewer known

severe defects and be more portable. Commercial software was

reported to be more usable. This may be because commercial

companies have recognized the importance of usable systems while

the government is only starting to recognize the importance. The

government likely has greater need for enhanced security. In

software intended for public use, there may also be greater need for

more portable software given the variety of platforms used by the

public. In general, the perception that government software is lower

quality than commercial may not be accurate and may be a

reflection of increased transparency and publicity when

government software fails. Further study is needed to investigate.

6. LIMITATIONS
The study was a relatively small survey with only fifty participants.

The large number of FFRDC participants may pose a threat to

validity, which may be mitigated somewhat by the variety of

domains represented.

Due to the small number who had a primary job function other than

developer, no analysis was done to compare based on job function.

While most of the responses would likely remain the same across

groups (e.g., software quality), it is possible an architect or tester

may use different tools or encounter slightly different barriers.

The software quality ratings were subjective and therefore may not

agree with objective quality assessments. Further study should

compare developers’ subjective assessments to objective software

quality measurements to evaluate these possibilities.

We performed a large number of statistical tests. With correlations

there is no need to correct alpha because the correlation coefficient

itself is an effect size. For comparisons between two groups, no

correction is needed. Given the significance threshold of p<.05,

however, it is likely that some of the results are random

occurrences. These tests do not account for the interaction between

factors. While we did exploratory regression and multi-factor

analysis, we do not report the results here because more responses

would be needed to produce a reliable model.

Conceptually, it is likely that development practices and barriers

precede and therefore affect the software quality. However,

inferring causality becomes a problem in cases where software

quality may have caused the developers to use a particular approach

or encounter a barrier.

For the exploratory comparison between government and

commercial software quality, the small number of commercial

product developers may cause a failure to detect important

differences. Related, each group may have a systematic bias in how

they see software quality. Further comparison between groups

should include more developers and objective measures.

7. CONCLUSION
Our survey gathered data on development practices, barriers in the

field, and their relationship to software quality. These results

provide motivation for future research to address the key barriers

and evidence of the extent of use and value of certain practices and

tools in the field.

8. ACKNOWLEDGEMENTS
The authors would like to thank the respondents to the survey.

Funding for this work comes from grants from MITRE, NSF under

grant CNS-1423054 and the Air Force under Contract #FA8750-

15-2-0075. This material is based upon work funded and supported

by the Department of Defense under Contract No. FA8721-05-C-

0003 with Carnegie Mellon University for the operation of the

Software Engineering Institute, a federally funded research and

development center. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the authors

and do not necessarily reflect those of the US Government.

Approved for Public Release; Distribution Unlimited. MITRE Case

Number 16-1649. SEI Document Marking Number DM-0003591.

9. REFERENCES
[1] U.S. Government Accountability Office. (2013). Major

automated information systems: Selected defense programs

need to implement key acquisitions practices. (GAO

Publication No. 13-311). Washington, D.C.: U.S.

Government Printing Office.

[2] Software Engineering: Report of a Conference Sponsored by

the NATO Science Committee, Garmisch, Germany, 7-11

Oct. 1968, Brussels, Scientific Affairs Division, NATO.

Peter Naur and Brian Randell (Eds.).

[3] Goldstein, Harry. "Who killed the virtual case file?" IEEE

SPECTRUM 42(9) (2005):18.

[4] Ford, Paul. The Obamacare Website Didn't Have to Fail.

How to Do Better Next Time. Bloomberg Businessweek.

October 17, 2013.

[5] Tore Dybå, Dag I.K. Sjøberg, and Daniela S. Cruzes. What

works for whom, where, when, and why? on the role of

context in empirical software engineering. In Proceedings of

the ACM-IEEE international symposium on Empirical

software engineering and measurement (ESEM '12). ACM,

New York, NY, USA, 19-28.

[6] Novak, William and Williams, Ray. We Have All Been Here

Before: Recurring Patterns Across 12 U.S. Air Force

Acquisition Programs. Presentation at 2010 Systems and

Software Technology Conference (SSTC). April 29, 2010.

[7] Cleland-Huang, Jane. IEEE Software. Don’t Fire the

Architect! Where Were the Requirements? IEEE Software

[8] Jones, Capers. Software Engineering Best Practices.

McGraw-Hill, 2010.

[9] Upender, Barg. Staying agile in government software

projects. Agile Conference, 2005, pp. 153-159.

[10] Parnin, Chris and Rugaber, Spencer. “Resumption strategies

for interrupted programming tasks.” Software Quality

Journal, 2011. 19(1): pp. 5-34.

