Eco: Controlling the Power of Simplicity

Andi Bejleri Jonathan Aldrich Kevin Bierhoff
Universita di Pisa Carnegie Mellon University Carnegie Mellon University
Lugarno Pacinotti Pittsburgh, PA 15213, USA Pittsburgh, PA 15213, USA

43 - 56126 Pisa, Italy jonathan.aldrich @ cs.cmu.edu kevin.bierhoff @ cs.cmu.edu

bejleri @ cli.di.unipi.it

Abstract | socket <— () | ”a new empty object”
socket AddSlots: (|bind = (< code > ...
socket AddSlots: (| port <— Nil |)
”adding a new data slot”
socket AddSlots: (|listen = (< code > ...
socket AddSlots: (|accept = (< code > ...
socket AddSlots: (Jread = (< code >)|)

The SELF programming language provides powerful dynamic fea-
tures, allowing programmers to add and remove methods from ob-
jects and to change the inheritance hierarchy at run time. These
facilities are useful for modeling objects that behave in different
ways at different points in the object’s lifecycle. Unstructured use
of these techniques, however, can result in arbitrary changes to the) P

interface of the object, and thus is incompatible with statically type- SOCIZei f‘%giois: gluz”te:((i‘ dfita;)‘ D< code >)|)
checked languages such as C++, C# and Java.)|))|))|§OC € ots: {jetose = 1< code

This paper proposes a structural type system for tracking changes
to the interface of an object as methods are added and removedFigure 1. TCP socket example illustrating the expressiveness of
and inheritance is changed at run time. The type system tracks SELF for ensuring that method protocols are respected

the linearity of object and method references in order to ensure

that objects whose interfaces change are not aliased. We show

how our type system can express and enforce interesting protocolguage, Eo, that has the power of E2F to change the behavior
specifications. We then define a formal model of the language and Of objects but controls this power with a static type system. The
type system, and prove that the type system is sound. Thus, ourfollowing two subsections explain in more detail what changes to
system is a foundation for languages that combine much of the objects are allowed in@8 F and how Eo0 guarantees the validity
power of dynamic languages likesSF with the benefits of static ~ Of those changes.

typechecking.

1.1 Expressing Method Protocols in 8LF
Keywords Prototype-based languages, dynamic inheritance, Self

" SELF’s dynamism can be used to express constraints on the order-
Type safety

ing of calls to an object’s methods. For example, Figure 1 demon-
) strates how a Berkeley TCP socket might be implementedirFS
1. Introduction the addSlots:message is used to add new methods to the socket

Objects, by their nature, often have different behavior in different object. A consraint on the design of sockets is that methods must
stages of their lifecycle. 8 F [25] is a prototype-based object- be called in a particular order: firbind, thenlisten thenaccept
oriented language that allows programmers to dynamically changegnd finally any series t(rﬁstd and ertte b“efgrg (;allelén.ggl%se Int
the inheritance hierarchy and the set of methods that each object ELF, We can ensure en s not cafled betorevind by no

understands. ThusesF objects can have different behavior at evetr;] addﬁingbthdaisterlll nzjetg.odlltolthe ﬁoclgbe;object}qugtlil tmﬁqdd
different points in program execution. This model is appealing for method has been called. Simiiarly, when nmethod Is called,

h X . : the acceptmethod is added to the object, and when that is called,
implementing a large variety of software systems (see figure 1). .
SELF is dynamically typed, allowing arbitrary changes to ob- theread write, andclosemethods are added. We can use the same

jects. Unfortunately, this leads to runtime errors when objects re- teﬁrrélquedfor f!elgs_:Ftheort field ISI not ”.";ag'dn.gfu'.t‘im{g'”d kl)s' ¢
ceive messages they don’t understand. Static typing can eliminatecﬁti?tﬁ al;]in;?nmth d V\;e catn simply avoid adding 1t to the objec
these errors at compile-time. However, this traditionally comes at a u e ethod executes.

cost: In existing statically typed object-oriented languages the class he';g&'ﬁ%g{;gg:?ﬁgest (?s,kt)éen:tvt/rilllersati(s)én;(r)nfgg ;)egor:gtirr]w{jgfrstoo q
of an object and the messages it understands are fixed at Objec{error since this méthod)r/1as not yet been definegd for the socket
creation time and cannot be changed later. We propose a new lan-", . ; Ly g)
object. Thus, adding (and removing, although this is not shown in
the examples) methods to an object dynamically is an elegant way
to ensure that methods are not called inappropriately, because the
method simply does not exist.
Permission to make digital or hard copies of all or part of this work for personal or In contrast, in a more conventional object-oriented language
classroom use is granted without fee provided that copies are not made or distributedsuch as Java, clients could call methods in an arbitrary order. The
for profit or commercial advantage and that copies bear this notice and the full citation d | f ' ket lib ith Vi |)
on the first page. To copy otherwise, to republish, to post on servers or to redistribute eve.oper of a Java socket library mu_St e'_t er manually implement
to lists, requires prior specific permission and/or a fee. run-time checks that throw an exception if the methods are called
FOOL/WOOD "06 14 January 2006, Charleston, SC in the wrong order, or risk corruption of the socket’s internal data

Copyright(© 2006 ACM [to be supplied].. . $5.00. structures if clients invoke operations in the wrong order.

Thus, compared to languages like Javal. Bs dynamic mech- tional flexibility into easy-to-use source-level languages is an im-
anisms can be used to express and enforce constraints on the ordeportant area of future work.
ing of method calls in an elegant way. However, becauserSis
dynamically typed, a violation of these constraints will not be de-
tected until the message not understood exception is raised at ru
time.

It is easier to identify the cause of this error than it would be if
the method call succeeded but corrupted the socket’s data structure
(as might happen without the use of dynamic method addition), but
nevertheless it would be nice to detect the possibility of the error .
statically. Static detection of errors is challenging, however, due to 2. Overview of EGO
the changes in an object’s interface when the set of methods in anThis section gives an informal introduction to our language. Af-
object is modified, and due to the possibility that there might be ter giving a brief intuition of its constructs, we show how to en-
aliases to the object being modified. Because of the lack of static code some common object-oriented programming idioms. We then
checking, the potential benefits of dynamic inheritance and method discuss how Eo tackles the important problem of aliasing. That
change at run time are underutilized in practice. forms the basis for a detailed description of how methods are de-

fined. Finally we demonstrated®'’s expressive power with a num-
ber of examples. Throughout the section we highlight the chal-
1.2 Contributions lenges that static typechecking must confront.

Organization. The remainder of this paper is organized as follows.
Section 2 gives an intuitive presentation af&illustrated with a

"humber of examples. Section 3 introduces the core language, its

dynamic semantics, static semantics, and a brief presentation of the

type safety proof. Section 4 summarizes related work, and the last
ection concludes.

The contribution of this paper is a type system that statically en- 2.1 Language Intuition

sures that all accesses to object slots will succeeq at runtime, o program in E50 is a pair of an expression and a mutable store.
even in the presence qf methqd Chaf.‘ges a_nd dynamic |nher|tanceAn expression can be anything from a simple value to a complex
Wﬁ. fﬁr_mally def:ne an |mperaot||v|e,dobfjtect;:c_)rlﬁnteotl IelmgluSagB?t,E 4. Object manipulation. Some kinds of expressions can contain other
which IS a core languageé modeled after Fisher et al. [.]'.W' ad- nested expressions. The store keeps track of the current objects in
ditional SELF-style primitives and typing restrictions sufficient to the system, and allows us to model imperative updates to objects.

elr]surz tyt?e ?afa[/y. (Ijn partn(:glaalr we Ck?erI di’ﬁatm'c tcrtllantges to We use lambda abstractions to define a function and bind a variable
alased objects. Ve designeea in such a way that a stalic type i, s hody expression. Moreover, we use the notation of Fisher et

checker can guarantee that a well typed program will lack “mes- al.'s calculus [15] and introduce also a number of primitives for

sage not understood” errors at run time. The type safety proof for oo ot manipulation that are inspired by the work ar8[25].
Eco directly implies this property. A consequence of type safety

is that the technique of adding and removing methods to an object e cloneduplicates an object.
dynamically can be used to statically enforce message protocols in
EGo.

The type system of &0 blends the features of several previous
type systems in order to achieve soundness. For each object it ® <+ imperatively adds a method to an object (or changes the
keeps track of all methods a client can invoke. The type system implementation of an existing method).
distinguishes between linear (non-aliased) and non-linear (aliased) o changelinearity is a technical primitive used for dealing with
objects [17]. It statically ensures that linear variables are used at jjiasing, as we shall see later.
most once, and that linear functions are called at most once, while
allowing aliasing of non-linear variables and multiple calls to non-

linear functions. _ o The first four primitives yield the object created or manipulated
The use of linearity in typing objects solves crucial aliasing and to be used in the surrounding expression. The last one is used for

typing issues. Dynamic changes to the type of the object (e.g. by method calls and thus yields the body of that method.

adding a method) are only permitted on linear objects. Anew object |n the following sections we will develop a number of examples

has a linear type when it is created and the type system guaranteeghat show these primitives in action.

its linearity during the program unless the client explicitly makes it

an aliased object (on which fewer changes are allowed). 2.2 Elementary Programming Idioms

To our knowledge, our system is the first sound, static type sys- Ego is designed as a core language for expressing dynamic in-
tem that supports imperative method addition, removal, and dy- heritance and method addition. We can define a number of derived
namic changes of an object’s inheritance. Previous systems haveforms for well-known and convenient idioms that will help us write
been limited to adding methods to an object (without supporting more concise programs. That will also help us in presenting more
method removal), or determining an object’s inheritance at run time zqvanced examples in the remainder of the section.

(but not allowing it to be changed), or supporting only functional This section focuses on the notions ofea construct and in-
changes to an object’s interface (where a new object is created andstance fields for objects. We will also discuss how to create new
the original object is left unchanged, as opposed to our imperative objects and how to use them like traits ig$ (or equivalently,
object updates). Our system is also the first (of which we know) |ike classes in languages like Java).

to integrate first-class linear functions into an object-oriented lan- Thelet variable binding construct can be simulated in the stan-
guage. dard way, using a simple lambda expression as reflected in the fol-

Our system can be considered a foundation for research into|owing definition. It also allows us to define sequences of opera-
more flexible typestate systems for objects [9, 10]. As a founda- tjgns.

tional system, it may not be as succinct or easy to use as a source-
level language, but instead is designed to further understanding into
the core mechanisms of typestate and to explore more flexible im-

plementation strategies for typestate, such as dynamic changes to def
the methods and superclass of an object. Incorporating this addi- er;ee = let _=ejines

¢ delegatamperatively changes the super field of an object, thus
determining from whom the object inherits.

e Finally e <= m invokes a method on an object.

. def
letx: T =e1ines < (Az:T.e2) e1

We model instance fields as methods which take a self parame-

ter but no others. Defining a field would look like the following:

e1.f := e def let x = ez in (e1 —+ f = Aself:1.x)

This will also work for reassigning a field value. In this case,
«+ will just redefine the method body. Note that has to be an
object and we use a let binding to evaluatgo a value before the

method body is created. Access of a field then becomes invoking a

parameterless method (with< f, wheree is an object and' the
name of a field).

In fact we can use the above derived form to add or change an
arbitrary method on an object: & is itself a lambda expression
then it simply defines a method body that relies on additional
arguments as well ag:l f. (We will discuss method definitions in
detail below.)

How do we get an object in the first place@&is a prototype-
based language that allows usctoneexisting objects. We assume
that a well-known variabl@®bjectis bound to the first object in

the system. Thus creating a new object, adding two methods, and

invoking the first one can be realized as follows.

clone(Object) <+ m1 = e1 <+ ma = ez >< my

Expressions for a method body have to evaluate to a lambda
abstraction with argumergelf When a method is executed, the
receiver object will be applied to this outermost lambda. Methods

I trait for s
let b = change_linearity(clone(Object)
—+ service = Aselfmp. Az:Nat. x + 1) in

Il now define s itself
let s = change_linearity(clone(Object).delegate(b)) in
/I and finally the clients

let c1 = clone(Object) <+ r =s in

let ¢2 = clone(Object) <+ 1 =s in

. /l'invalid: let_ = s.delegate(a) in
€2 <= r <= service(b)

Figure 2. A server objeck referenced by multiple clients

/ trait for s
let b = clone(Object)
—+ service = Aself:1p. Ax:Nat. x + 1 in

/I now define s itself
let s = clone(Object).delegate(b) in
/I and finally the clients

let c1 = clone(Object) «— r = Aself:7c.s in

let ¢2 = clone(Object) «+ r = Aself:7c.s in

If we now change the configuration efe.g. by changing its
delegate frond to a with s.delegate(a), obviously all clients are
affected. In particular, it is hard to tell whethewill still work the

can refer to their receiver and its (other) methods by accessing theway its current clients expect it to.

bound variableself
We often want to use an object in a class-like manner, meaning

For this reason, we forbid a change of delegation for aliased
objects as well as adding or changing methods for such objects if it

that the object contains instance methods to be used by other obchanges the method’s signature. We allow methods to be modified

jects. Such an object is calledrait in the SELF literature [25]. We
can use thdet construct in combination with delegation to realize
traits as shown below.

let Trait = clone(Object)
— succ = Aself:r.self < f+1 in
(clone(Object).delegate(Trait)
—+ f = Asel f:1.5) < succ

The result of this expression would BeObviously, an arbitrary
number of objects can be defined that inherit their behavior from
the Trait object above by delegation and define their gfvfield.
Another option is to simply clone the trait object, which would
result in simply duplicating all of the methods ®fait rather than
sharing them through delegation. We will present an example of
this more prototype-oriented approach in a later section.

2.3 The Challenge of Aliasing

So far we have ignored a major complication of our system: alias-
ing. An aliased object is (possibly) referred to by multiple names
(references) in a program as opposedittear objects that have
only one name. Aliased objects are also called “non-linear”, and
linear ones are sometimes called “non-aliased”.

In an object-oriented setting, aliasing is almost inevitable be-
cause of the state held in instance fields. A very common notion
is that a server objectis used by multiple clients; that all hold
a reference ta in their fieldsc;.r. The objects is then heavily
aliased as in the following definition.

for aliased objects as long as the new method has the same signature
as the old method. This allows us to model field updates, for
example.

Moreover, we forbid delegation to a linear object (because that
would be just like a second explicit reference to that object). In-
stead, we introduce thehangelinearity primitive mentioned ear-
lier to explicitly convert a linear into an aliased object that can then
be a delegatee. Note that there is no way of turning an aliased object
back into a linear one. Figure 2 shows holhangelinearity must
be added to the code above to typecheck properlydn.E

Intuitively, these restrictions have to do with the typing of ob-
jects. Changing a method signature or the delegation changes the
type of the object. That means that the aliases to that expression
somehow would have to invisibly change their types as well, which
would be difficult or impossible for a static type system to track
in the general case. Conversely, changing a linear object affects
only the type of the expression at hand, which is what a static type
checker tracks anyway.

On the typing level we introduce &nearity flag for ob-
jects and lambdas, which we write as “j” following Wadler [26].
changelinearity explicitly removes this flag for an object, thus al-
lowing it to be aliased. Bodies of linear lambda abstractions have
access to the linear variables defined in the current scope abstrac-
tion. The type system guarantees that such linear variables are
used only once. (We say they are “consumed” on usage.) Fig-
ure 3 gives an example, with pairs written @s y). Non-linear
lambda-abstractions, on the other hand, can only access the non-
linear variables in the context. Non-linear variables can be used
multiple times.

We call a method linear if it is written with a linear lambda ab-
straction. Linear methods are consumed upon invocation, i.e. they

let lin = clone (Object)
let 0o = clone (Object) «+ I = jAself:r.(self,lin) in
//'linis no longer available
let (02,lin2) =0 <= lin
/l instead we can now use lin2
/] 02 replaces o, but does not contain | any more

Figure 3. A linear method consuming a variable on the stack and
its linear receiver

are effectively removed from the receiver object. This guarantees
the linearity of the context variables: If we could call the linear
method! from figure 3 twice, then we would gain two aliases to
lin “through the back door”. As recursive calls to the same linear
method would have the same harmful effect, we have to remove a
linear method from its objedteforethat method’s body is evalu-
ated. Thus the methddn figure 3 is not only no longer available
after] was evaluated, butcannot invoke itself orel f again either.

We forbid cloning of objects with linear methods for the same
reason: That would result into pairs of linear methods accessing

typedef entry = t. < name : t—string,
number : t—string; super :<>>

typedef default = t.j < prepareNew : t—action,
makeFEditable : t—entry—action,
confirmDelete : t—entry—action; super :<>>

typedef action = t.j < prepareNew : default—t,
makeEditable : default—entry—t,
confirmDelete : default—entry—t,
ok : de fault—ode fault; super :<>>

let Entry = clone(Object)
— name = Asel f:entry.
«+ phone = Asel f:entry.

134 /L‘TL
let WebPhonebook = clone(Object)
«+ prepareNew = Aself : default.
let cur Entry = clone(Entry) in
self «+ ok = jAself : default. I* save new entry */
—+ makeFEditable = Aself : default.
Acur Entry : entry.
self <+ ok = jAself : default. [* save edited entry */

the very same variable. However, the object can be linear (because «+ con firmDelete = Aself : default.

it is completely duplicated), and the resulting clone is linear in
any case. Thus all objects are linear in the beginning of their
lifetime and can be converted into a non-linear object explicitly
usingchangelinearity (but not back into a linear object).

An alternative to the solution of consuming linear methods
upon invocation would be to consume the receiver as a whole. We

consider this a bad choice: Only one method could be ever executeda

on a linear object.

Independent of the linearity of a lambda itself, its argument
can be linear or non-linear. A linear lambda argument requires a
linear object. The object applied to such a lambda is no longer
available at the invocation site after that application (again, we say
it is “consumed”). However, the lambda abstraction can return its
argument to the caller as the methadlin figure 3 illustrateso is
no longer available after the last line, but it is passed backdato

2.4 Method Definition

In order to capture the dynamic manipulations of objects statically,
EGo types objects with a recursive record type [1,14] containing
an explicit list of all the methods the object defines together with a
field for its delegate. A linear object containing an integer field as
well as a linear method that takes an integer argument and yields
an integer would be typed as follows. The object delegates to an
empty object likeObject Note that in the body of the type below, t

is bound recursively to the entire type expression.

t.i < field: t — int,linMeth : t — int —o int; super :<>>

We use— for typing linear lambda abstractions and for
non-linear ones. Every method body definition must be an explicit
lambda abstraction foself the receiver object. The type sElf
essentially listall methods expected to be defined for the receiver,
when the method is called. Additional arguments can be captured
with nested lambdas.

The requirement thatelf must be typed with a recursive record

Acur Entry : entry.
self « ok = jAself : default. I* delete selected entry */

Figure 4. Web phonebook business logic

nd delegation changes, different methods in the object become
applicable. Thus the programmer can enforce possible sequences
of method invocations on the object, i.e. the objeptistocol Fig-

ure 4 gives an example of method definitions using typestate. Note
that we givetypedefdor several record types in the beginning to
improve readability. They are not part of the coreddanguage.

We illustrate the business logic of a Web-based phonebook.
Such applications are characterizedtby-phased actiongFirst,
the user indicates the type of action he wants the system to perform
(e.g. create a new entry wigilrepareNew. The phonebook applica-
tion will then present a form to enter the new contact information.
The user can now complete the action by sendinglamessage
(or cancel, which we omit).

Our phonebook therefore hasdefault and anaction state.

We see that objects in thaefaultstate have three methods, while
those inactionhave four. The methods applicable to the respective
states can be easily identified by the types of tlself variables.

The triggers to switch from one state to the other are the business
methods anak, respectively.

The type system ensures that a method can only be called on a
receiver that matches its expected receiver type exaftyr the
method itself has been removed in the case of linear methods
2 Thus, in thedefault state, the business methods can be called
because they expect a receiver of tywfault but theok method
cannot be called because it is not even part ofidfaultstate.

In the action state, the three business methods are still part of the
type, but they cannot be called because these non-linear methods
expect an object in thdefaultstate and the receiver is in thetion

type is essentially not different from typing an object with a class 1Removing the method from the type is necessary to ensure that linear

name in e.g. Java: Since the methods in a Java class cannot b?nethods cannot recursively call themselves. Recursive calls would break
manipulated the class name can be used as a (shorter) synonymhe invariant that no linear method is called more than once.

for a record type containing all methods defined for that class.

In fact, our system is much more flexible in that different meth-
ods of the same object can declare different receiver object types.
This is useful to encode typestate-like examples; as the object's
type changes over time due to method addition, method removal,

2We have chosen to make the type of the receiver reflect the type inside
the method, rather than the type as seen by the caller (before the called
linear method is removed from it). The other choice would be more intuitive
from the client’s perspective, but more confusing from the standpoint of the
implementor.

state, which has the additional methoki On the other hand, the
okmethod is linear, and it can be called in thetionstate because typede f minit = [* initial manager */
once you take thek method out of theaction type, you get the

ke t.j<sec: mwork — u. < doWork : msec — unit >,
defaulttype which is what thek method expects.

:))) setWorker : (t—setWorker) —o worker — mwork >
Note thatok behaves differently depending on the action thatis 1 ,cde f worker = t. < doWork : mwork—unit,

to be performed. Therefore each business method defines its own workerSick : mwork—msec >

okmethod. typedef mwork = /* manager delegating to worker */
Our system tracks the exact type, rather than a supertype, for " . -ccc. ¢ — 4. < doWork : msec — unit >,

linear objects, in order to make sure that changes to the object are myworker : msec — worker;

legal with respect its complete current type. In particular, when super: worker >

changing delegation the type system has to determine the exact New ;e de f msec = /* manager delegating to secretary */

record type of the object, which can only be done on the basis of

the exact old type of the object and its new delegate. Otherwise, myworker : t — worker,

the object could define a method with a name also used in the worker Recover : (t—worker Recover) — mwork;

new delegate but with a different return type. If that method were super :< doWork : t—unit >>

not listed in the object type (which could happen if we allowed

subtyping for linear objects) then the system would expect the et Secretary = change_linearity(clone(Object)

wrong return type (the one defined in the delegate object) from a ., oW ork = Asel f:msec Atask:r....) in

later call to that method.
The restriction of exact type tracking could be relaxed for ;o4 W orker Proto = clone(Object)

aliased objects. Here, subtyping could be introduced to accept ob- ., oW ork — Asel frmwork. Ntask:T. . ..

jects with more methods than expected, because the object type .. yyorkerSick = Asel f:mwork . self.delegate(self < sec)

cannot change in a way that would introduce the problem men- ., 51 ker Recover = jAsel f:msec .

tioned above. Even though subtyping is well defined for record self.delegate(sel f < myworker) in

types, we elide this extension from our formal core system to keep

it as simple as possible.

t.i<sec: mwork — u. < doWork : t — unit >,

let Manager = clone(Object)
«+ sec = Aself : mwork < Secretary
—+ setWorker = jAself : minit.

2.5 Expressive Power i\ newworker:worker.
The examples we have seen so far were mostly intended tollustrate (8¢l <+ myworker =
syntax and semantics ofd®. This section will present higher- Asel f:msec . newworker).

level examples in order to demonstrate the expressiveness of the delegate(”ewwork”), .
language. In fact, one was already given in the previous section < setWorker(change linearity(clone(Worker Proto))) ...
(figure 4) to illustrate the application ofd® to typestates. We will
see typestates again in the examples that follow. The final one will Figure 5. Using delegation to implement workflows
implement the TCP socket from the introduction is &

The examples rely on dynamic inheritance and adding new
methods to objects over time. They are therefore not directly ex-
pressible in languages with static inheritance like Java. They are let PowerSupply = clone(Object).

expressible in BLF, but SELF would not be able to statically guar- «+ generatePower =
antee that the program evaluation will succeed at runtime. Our sys- Asel fit. < generatePower :t — power >
tem does guarantee successful evaluation of the presented examples
by virtue of the type safety proof presented later. let On = change linearity(clone(Object)
Throughout the examples we rely on the intuition of the reader «+ getPower =
to assume the semantics of certain objects to which we merely Asel fit.i<supply, on, of f; super :< getPower >> .
refer by name. Explicitly defining a sufficiently large library for self < supply < generatePower) in
interesting examples is outside the scope of this paper.
Consider the Eo program in figure 5. It models the workflow let Of f = change_linearity(clone(Object)) in

in a company between a manager, her secretary, and her designated

worker. We first implement the secretary who can do some work. let PowerSwitch = clone(Object)

We also define a prototype worker who, no surprise, can also <+ on = Aself:t.j<supply,on,of f; super :<>> .

do some work. We define a concrete secretary as opposed to a < self.delegate(On).

prototype worker for purely pedagogical reasons. Both could be —~off=

prototypes. Also note that we do not use it idiom known from Asel f:t.i<supply, on,of f; super :< getPower >> .

SELF to generate a worker “class”. Instead we define the worker sel f.delegate(Of f) > in

prototype as an object to be cloned to create instances. We feel that

this more closely resembles the real world where different workers let ps = clone(PowerSwitch) « supply =

are different autonomous individuals. Asel fit.i<supply,on,of f; super :< getPower >> .
Finally we implement the manager who has fields for her secre- PowerSupply in

tary and her worker. By default, the manager forwards all the work ~ Ps <= on <= getPower < getPower < of f < on <

she has to do to her worker. We do this simply by delegation. (That ~ getPower < of f

forces the complicated typing afelf in the two doWorkimple-

mentations.) The use of delegation here models delegation in a realFigure 6. A power network using composition and delegation.

company, where work is delegated from one to the other person. Certain types have been abbreviated.

Slightly confusing might be the implication that our manager does

demonstrate that a real socket implementation is a full-blown data
structure. Derived fields, as tpert here, can be added to the object
when they are available ind®, effectively preventing reads from
not yet defined fields.

The call toacceptwill generateread, write, andclosemethods.
The first two can now be called an arbitrary number of times.
They require a lineaself and return it unchanged upon completion
of the call. closealso requires a lineaself but does not give it
back, effectively making the object inaccessible. Lending [2] or
borrowing [6] for the methods returningelf would make this
explicit return unnecessary. We elide this possible extension to
Eco for simplicity.

typedef open = t.j < port : t — (t,int),read : t — (¢,7),
write : t — 7 —o t,close : t —o unit; super :<>>
typedef portt = t.i < port : open — (open, int) >

let Socket = clone(Object)
— bind = jAself : t.j <> ./* bind impl */;
self «+ port = Aself : open.(self,prt)
«+ listen = jAsel f : portt./* listen impl */;
self «+ accept = jAsel f : portt./* acceptimpl *f
self <+ read = Aself : open.(sel f,[* result */)
—+ write = Aself : open.jAdata:T....;self
«+ close = j\sel f:open....;unit

2.6 Summary

Fi 7. ATCP ket object in E0
igure CP socket object in In the preceding sections we gave an informal introductiondo.E

We have seen in detail how programs can be implemented in the
not even “see” the work items she delegates to her subordinate. Butlanguage. We discussed its handling of aliasing as well as the no-
maybe this is not too unrealistic, either. tion of typestates which it naturally supports through its method
erSickmethod on our manager. That causes the manager to dumpPles in EG0. We saw that delegation and dynamic method changes
her work onto her secretary from now on. The secretary can- aré somewhat interchangeable, effectively allowing different pro-
not get sick, so that's a safe guess. But also, the manager ex-gramming styles.))
pects her worker to recover eventually. Thus she defines an addi- The examples were complex enough to imagine that an ad-hoc
tional methodvorkerRecoveto anticipate this event. Note thatthis ~ SELF programmer can introduce bugs that result in runtime errors.
changes the manager’s signature. She is now in a different state, the hat motivates the need for static typechecking for such programs
“worker sick” stateworkerRecoveis defined to be linear and thus i order to make sure that all object manipulations and method
will be consumed on invocation. The method will also redelegate invogat_ions will s_ucceed. Throughout this section we described the
to the now recovered worker, effectively transferring the manager restrictions €0 imposes on the programmer to contratL$’s
back to her original state. As a final remark concerning states we “Power of simplicity”. We have seen that they are loose enough to
point out that the manager is in a sort of initialization state before implement interesting programs ince, and although the current
setWorkeis called. Only then can she do (or rather, delegate) work. tyPe system is somewhat complex we believe this can be simplified

Next we implement a power network in figure 6. It consists of considerably in a practical system. Itis the main result of this paper
a power supply, an on-off-switch and a client that requests power. that these restrictions are also strong enough to enseicsiype
In this example we use delegation to model the different states of Safety. This will be formalized in the next section.
the power switch (on and off). Obviously, only tkén object has
a getPowermethod that forwards the power request to the supply 3, Formal Model
configured for that object. Thus our client first has to connect the , . .
switch to the supply by adding treaipplyfield. Then it can switch W& now introduce the cored language to formalize the intu-
on, get power for a while, switch off, and on again to get more itions given aboye. This section contains the_ full dynamic seman-
power. tics, the full static semantics, and_ a sur_nmarl_zed type safety proof
TheOnandOff objects that implement the two controller states ©f EGO- The full type safety proof is available in [4].
can be aliased by an arbitrary number of switches that all delegate
to one of these two objects. The power supply is unique to each >-1 Syntax
switch (both being physical devices) and therefore represented asFigure 8 presents the syntax of our model. We do not include base
an instance field to the switch. Without that field defined, the switch types, control flow structures, exceptions, and subtyping into the
is not functional as the signatures for treandoff methods do not model as they are well-known from the literature. We omit multiple
match. It can redirect to a different source later, though. inheritance and polymorphism as these are orthogonal to the typing
The power network example uses an implementation strategy issues at hand. Note that an overbar is used to represent a sequence.
that is quite the opposite to the workflow example above. In the An expression is a variablg), a value(v), a clone of an object
power network, we use delegation to express states (on and off)(clone), a method invocatior{<), an object delegation change
and explicit forwarding (similar to composition in object-oriented (delegate) the addition of a new method to an object or the change
programming) to transfer the power from the supply to the con- of a method body«+), a function applicatioiff a) and a change of
sumer. In the workflow example, on the other hand, we added andthe type linearity of an objedchangelinearity) . A method(M)
removed methods to change the state of the manager object. Wds defined as a pair: the name of the metlim) and an expression
used delegation to (implicitly) forward calls from one object to the that reduces to a method body.

other. A method body definition is a lambda expression with a linearity
Finally, we look into the TCP socket example from the introduc- for the function and an explicit type for arguments (type inference
tion section again. Figure 7 gives an implementation GoEWe is future work). We require that the outermost lambda types the

do not use delegation at all but rather manipulate the object with receiver object. Our storéS) is a set of pairs: the location of the
each method call. The implementation relies on linear methods to object and the object descript@@descr)

enforce thabind, listen andacceptare called exactly once. Each An object descriptor is a pair: the location of the super object,
of these generates the following method; therefore a client must and a sequence of methods defined for this object. While our syntax
follow the prescribed call sequence. for methods follows that of functional languages in order to connect

We show as an example hdwnd also generates a field that more directly to previous linear type systems [26], our record-based
contains the port on which the socket is going to listen in order to object encoding is similar to standard object encodings [1,5,14,15].

The primary difference in our encoding is that we must represent
inheritance explicitly—since it might be changed—rather than just (R — Deleg) changes the reference to the super object of
merging inherited methods into the object itself as previous systemsthe receiver object. The result of the reduction is the modified

have done. location of the receiver. Here the overbar represents a sequence of
There are four kinds of types: for variabl@$, for non-linear method bindings\/.

functions (—), for linear functions(—) and finally for objects

(t.R). The object type is a recursive type wheries bound toR. (R — AddM) adds a new method to the receiver object.

The record typ€R) is a list of the types of the metho@B) defined dom(M) represents the set of the methods name for an object

for the object and the type of the super objéatper). In [15] a descriptor. The result returned is the modified location of the

row type is also a row variable, a row lambda abstraction and a receiver.

row application. We omit these row types as we don'’t need them

in our system to express any kind of row polymorphism. The type (R—ChanM Bd) changes the body of meth¢ah) of the receiver.

of a linear object is presented hyWe us€[j] to represent that the

object might be linear or non-linear. Optional syntax is enclosed in (R — ChanLin) does not effect the memory. It changes the

[1. linearity of an object from linear to non-linear. The result of the
Instance variables are represented by parameterless methodseduction is the location passed as argument for the expression.

LocationsL are not part of the source code. We assume to have a

first object(Object) defined when we want to evaluate a program.

R — Appl
. L
(expressions) e = z|v|e<m|ei.delegate(ez) ([iAz : 7-eo)v, § — [v/z]eo, §
| clone(e) |[e <+ m =e mbody(S[L],m) =v v=Az...
| e1 ez LemS_—vL.S R — NInvk
| change_linearity(e)
(values) v = L[] z:T . eo mbody(S[L],m) =v v=j)\z...
(heap) S = Object — super : Object S" = S[L — (S[L]\ m = v)] R — LInvk
| L+ Odescr,S L —m.S .S - Ly
(objectdesc) Odescr = super:L Mo T U
| Odescr <+ M S[L] = Odescr L" ¢ domain(S)
(method desc) M = m=e S" = S[L" — Odescr] R_Cl
(types) T = tlT =7 |tR|T — 1" T — Clone
(records) R = [il<>|lil< B;super:T > clone(L), § — L7, §
. B = 6‘m;7’,B S[Ll]:super:Ll HM
(heap location) L S" = S[L1 +— super : Ly «+ M]|
(variable) x — R — Deleg
(type variable) t Ll.delegate(Lg), S — L1,S
(method name) m S[L) = super : L' «++ M m ¢ dom(M)
Figure 8. Syntax of the language, store, types. §" = S[L — super : L' «+ M «+m = 1] R AddM
Lem=v,S—L,5
3.2 Dynamic Semantics S[L] = super:L' < my:vi... <+ m;v...
The dynamic semantics we defined foe&is a standard small S'=S[L—super:L" <+ my:vi... =+ mi’..] hanMBd
step operational semantics. The std®) is a function from Lemi=v,8—L,S R — Chan
locations(L) to object descriptor§Odescr). Figure 9 summarizes]
the rules for evaluating expressions. We describe each rule in turn. change linearity(L), S — L, S R — ChanLin
(R — Appl) shows how a method is applied to its arguments. We Figure 9. Evaluation rules for expressions

write [v/x]eo for the result of replacing by v in expressions.

(R — LInvk) invokes a linear method on an object. The ; :

method is owned by the receiver and is linear. As the type system 3'_3 Static Semantics)))
does not allow another call to that linear method we remove Figure 11 presents the typing rules for expressions. Every typing
it from the store. The locatiot. is passed as an argument to rule has the standard for; A b e : 7 = list. that contains a
the method becausself is not a free variable in the lambda store type(X), an assumption ligfA or A’) , an expression that is
expression. The type system does not support this in order totyped(e), the type of the expressigm)and the list of linear objects
not have aliasing issues. The result of the reduction is a method (list.) that are used to type the expression. .

apply withL as an argument and a store without the methad it. We use a type storE to store the types of our objects:

(R — NlInvk) invokes a non-linear method. The result of = Object it <> | 25 Lo

the reduction is the same as the one above except that the stordhe assumption list A (or A) contains the types of the bound
is unchanged now: The type system allows the client to invoke a variables in the expressiamthat is typechecked. An assumption
non-linear method more than once . list, A, is defined as:

. . Av=-|Azx:T
(R — Clone) creates a new object from an existing one.
The list of methods and the address of the super object are copiedWe use- to present the empty assumption list. An assumption list
from the cloned object to the newly created location. is non-linear if each assumption:x; in it has a non-linear type;.

Mm] =wv Y(L) = t.i< B;super : t'.R >

— - ; T — Loc
mbody(super Lo+ M’m) = ;- F L:ti< B;super : t'.R >— {L}
m & dom (M) Y(L) =t. < B;super :t'.R > T NLoc
mbody(super : L <+ M, m) = mbody(S[L],m) Y;- b Lt < Bisuper : t'.R>= {}
- SiAz:T Feo: T = {}
Figure 10. Rules for lookup of methods body. z & A, nonlinear A
T—Method
AR Az :Teo) T =7 = {} evHo
Note that linear variables will be removed from the assumption list ~ Z; A,z : 7' Feg: 7" = liste, =€ A T IMethod
upon usage. _ S AR (iMx i 7eo) i T —o 7 = liste, e
The type expression[j]l <mi:71, ..., Mk:Tk; v
super : t'.[il<my:mi,...,mj:7; >> is a type t with the property S I N —— — var
that when we invoke a method, for 1 < ¢ < k or a methodn; L TEETT {}
for 1 <4 < jto any element x of this type, like.m;, the result Sy AR u: U= list, T — Kill
has typer; or 7; with ¢ substituted fot. R. Thust.R is a form of YAz XFu:U— listy

recursively-defined type. .
Let us describe each rule and give a brief justification with YA Xox: XEu: U= listy
examples for selected cases. Note that the word location is used Y;A4,z: X Fu: U = listy
somewhat amblguou_sly be_cause sometimes it refers_to the label of SiAF e t[i] < B;super : T >>— list.
a location and sometimes it is used to refer to the object at that lo- Vmer' € B. 1 — 1" —pt
cation. However, what is meant is always obvious from the context. i S T — Clone
3; A b clone(e) : t.i< B;super : T >>=> list.

T — Copy (nonlinear X)

(T — Loc), (T — NLoc) A location is well-typed if it is
defined inX. The list returned is empty if the location is non-linear
or L if the location is linear.

SiAFe: 7 = list.
mtype(m, 7', 7"y =1 — 7"
7' =t. < B;super: T >

(T — Method) A non-linear method is well-typed if its YAk e < m: [t.<B;super:T>/t]T" = list. T=Invk
body is well-typed. The restriction on the assumption list to be , .
non linear is because we want each variable needed to type the ;A e:ti<...,m:T [f’ / —]r"; super:T >
expression to be non-linear so we can safely call the method more , :f llf}fe
than once. There is no restriction on the arguments of the methods T =ti< .., mer'—=7"/ —]; super : T >
because if they are linear there is no way of duplicating them. SiAke<sm: [ti< ..., [mr =7/ —; T = Lnvk
The returned listis empty as the objects used here are all non-linear. super : T > Jt]t" = list.
(T — LMethod) A linear method, too, is well-typed if its Y, AF er: t.i< B;super : 7' >=> list.,
body is well-typed. However in this rule, there is no restriction on S A ey T = liste, m¢gB
the assumption list. Linear variables can safely be used in a linear S A A — T-AddM

. . . A, €1 <+ MM = €2 !
method because it will be called only once during the program. ti< Bom s 1 super - 7 S— list.. list
The list returned is the one returned from the type rule applied to !)TV 5 T3 SUper - e iTres
the method body. SiAbker i ti< ..,m:7, .. super: T >

= st

(T — Var) The type of a variable is the one that it has in YA bFey:T ; Iste,
the assumption list. The returned list is empty as there are no ob- ; T—LChanMBd
jects used to type it. The assumption list has only the record to type LA AF e om=ea:
the variable. The type system does not need to forget information i< s MUT, s SUpEriT > == Iste, , Iste
in the assumption list during the typing of an expression. SiAFer it <.oom:7, .. super: T >
(T — Kill) This rule is used in the case we have to delete a S A F e TZiZﬁ“T, is nonlinear
record from the assumption list in order to typecheck an expres- T — ChanMBd
sion. We need it in typing cases likag: X \y:Y.z wherey can A A Ferrm=es:
be non-linear. As long as it is not used, — Kill) can remove it ti<..,m: 7' L ssuper : T >== liste,

from the context to type this linear method. The list returned is the

same as the expression that is typed with the new assumption list. Figure 11. Static semantics of expression§} represents the
empty list.

(T — Copy) This rule makes another copy of a non linear variable

in the assumption list. We use it in cases like:Nat . z+x or

Ar:X . (x «+ m = A\y:Y . z) wherez is non-linear. The type order not to copy references to linear objects through the back

system has to explicitly duplicatein order to use it multiple times. door. The new object created has a linear type.

(T — Clone) A clone expression is well-typed & (the prototype (T — Invk) A < m expression is well-typed in the non-
object) is well-typed and the super object @has a non-linear linear case ik (the receiver) and are well-typed, both non-linear
type (which is true automatically by virtue ¢f" — Deleg). The and the argument type of is the same as the type of the object.
methods defined for the cloned object must all be non-linear in Themtype function (see Figure 12) returns the type of the method

that is invoked. The type returned is the type where the type of
self is updated with the type of the receiver of the method. The
type system does not alloself as a free variable for aliasing

YAk er : t1.i< Bi;super i t'.Ry >=> liste,
Y A’k es i to. < Bajsuper : t".Ry >= list.,

T — Dele
issues. Instead it requires an explicit lambdasklf. The following 3, A, A’ F eg.delegate(es) : &
example will help clarifying the problem t1.i< Bui; super : (ta. < Bajsuper : t". Ry >)[t1/t2] >

= liste,, liste,
let o = clone(Object) .
—m = _: unit.sel f Ak e tiR = list. .
r oy . . . - - - T — ChanLin
—+m' = A_:unit.self < min Y; Ak change linearity(e) : t.R = list.

(o <= m) < m' *method m is invoked twice*/

S;Abker T [—) o)t = list,
(T — LInvk) The difference of this rule from the one above S A ez 7 = liste,
is thate (the receiver) is linear anth can be either linear or SiA A b eren s 7 = liste,, liste,
non-linear. The new type af does not allow the client to cath
again ifm is linear. This is expressed in the rule by the annotation
[m:r'—7"/ —]. We do that by deleting the record for from the meB B=<..m:7T,..>
record type of the object. This prevents aliasing of linear objects in mtype(m, t.[i] < B, super : t'.R >,t".R") = 7[t".R" /1]
the assumption list (the stack). The following example illustrates

T — Appl

the idea m¢ B
_ ') _ mtype(m, t.[i] < B, super : t'.R >, t.[i] < B, super : t'.R >)
let obj = clone(Object) <+ m =j\.unit.self in = mtype(m,t'.R,t.[j] < B, super : t'.R >)
let 0bj2 = obj <= min
let obj3 = obj2 < m [*we have two references to obj*/ Figure 12. Rules for expressions, continued, and rules for looking

up a method'’s type in a record type.
(T — AddM) The type-system adds new methods only to

linear objects because aliases to an object would not be aware of

the new method. The assumption list used to type the expression is _ . N _ _—

split to type the two different expressions, ande, in order to VLi € dom(%).%; - S(Ls) : B(Ls) = lists T — Store
track the linearity of the objects. The list returned is the concatena- ;- = 8 ¥ = concat(list;)

tion of the lists returned from the typing rulese@&ndm.

Y(L)=t"R Vm;:e. ;e = liste,

(T — LChanM Bd) This rule checks if the object is linear Si-F< super:L,mi:er, ..., My ey >: T = Odeser
and then checks if the new method body is well-typed. We can t.[i] < 7i; super : t'.R >= concat(list.,)

change the type of the method when the receiver is linear just like

we can add new methods. Figure 13. Static semantic of Store

(T — ChanMBd) This rule checks if the object is non-

linear and that the new method body has the same type as thethe key lemmas needed for proving preservation and progress. We
existing one. We do that for the same typing problem we can have also briefly consider the most interesting cases of the progress and
intheT — AddM orT — Deleg. preservation proofs. The full type safety proof is available in [4].

Preservation Preservation ensures that the type of an expression
is preserved during its evaluation.
The most interesting issue in type preservation is ensuring that
ear references are not duplicated. For example, in an untyped
version of B0 consider an objectl that contains a linear method
M, which in turn contains a reference to a linear objecif we
could cloneA, then we would get a copy ao¥/ in the clone, and
we could invoke both versions df/ to extract two references to
L. Our type system prohibits this by checking that clone is never
called on an object with linear methods.

For the proof of preservation, we need two standard properties
about the substitution operation as it occurs in function application.

(T — Deleg) This rule permits only to change delegation
for a linear object for the same reason the type-system only permits
new methods for linear objects. The rule assures also to delegate tqin
a non-linear object because if the type system allows the client to
delegate to linear objects then we effectively have more than one
reference to it.

(T — ChanLin) This rule changes the linearity of an object
from linear to non-linear. The super object is non-linear anyway.

(T — Appl) This rule checks if the first expressia has a
function type and that the second express@gmas the same type
of the argument oé; .

Figure 13 contains the rules for type-checking the s®igst;
is a list of all linear objects used to type the locatiSfi;]. The

Lemma 1 (Properties of Typing)
(i) (Weakening) If¥; A, A’ e’ : 7/ = list,s and T is non-linear

storeSis well-typed if every location in the store is well-typed. A then X3 A, 2 7, A"k e 1 7 = list.

locationL is well-typed if the super object which it inherit is well- (i) (Substitutio)If 33; A,a : 7, A" &€’ : 7/ == list. and ;- -
typed and each method’s body defined for that location is well- € : 7 == listc then 3, A, A" = {e/x}e’ : 7" = lister, liste
typed.list., is a list of linear objects used during the typing of the

The first property follows from rule T-Kill, the second is proved
by rule induction on the typing judgment fef.

As a program executes, the number of locations in the store
can expand aslone operations are performed, and the types of
In this section we describe the approach taken for proving type locations can change as a result of method addition or delegation
safety for our system. We define important conditions and present changes. We formalize the way the store type can change as a store

expressiore.

3.4 Soundness

extension operatioR’ >, . This judgment means thal differs Y > 8, Y- kel tii< By super 1 t' Ry >=—> list,; Byi.h.

from X because of in one of two cases : Yok S Y = listy By i.h.
1.3’ may have an additiondl in its domain No duplicatelist,; , lists: Byi.h.
L € list,; , listss By definition of S’ >, &
dom(Z") = dom(Z)U{L} VL' €dom(X).X(L')=X'(L")
Y>>y No duplicates in listea,list@,lists, because if
liste,,liste1,lists has no duplicates then from lemma 3
2. L was linear inx but is non-linear s>’ andL ¢ list., we know thatlisteQ,listell,listS/ has no dupli-
dom(¥') = dom(X) VL' € {dom(Z) — L}.3(L)) = ¥'(L) cates.
>3
The first differ case of2’ and X is introduced by theelone X% ez e < Byjsuper . Ry >== liste, Bylemma2
typing rule and the second case is introduced byatthéMethod, DR F ey.delegate(es) : .)
delegateor changelinearity typing rules. This lemma is used for t1.i< Buj super : t2. Ry >== listc;, liste, By rule

the proof of T-AddM, T-Deleg and T-Appl.
Next, we define two lemmas that are useful in ensuring that lin-

ear methods and objects remain unaliased as the program execute -ase o o
S[L1] = super : L «+ M S’ = S[L1 + super : Ly «+ M]
Lemma 2 , , Ly.delegate(Ls),S — L1, S’
IfFY;A F e 7 = liste, Y >1 Y and L ¢ list. then
YiAke: T = list.. 5;- & Li.delegate(Lz) :
t1.i< Bi; super : ta. < Ba; super : t''.Ry >>

This lemma is used to proof that if the old I{tst., , liste,, lists) = {L1} Assumption
of linear objects has no duplicates and part of thaflist., , lists) ;- F S ¥ = listg Assumption
has change(iliste/1 ,list's) because of an evaluation rule then the No duplicateL1, lists Assumption*
modified list (list.; , list.,, lists) has no duplicates. This is be- - Lu @ t1.i< Bu; super : t.Ry >= {Li} Byinversion
cause if there are no duplicates in the bigger list there could not 3 = Lz : t2. < Ba; super : t". Ry >= {} By inversion
possibly be duplicates in the smaller one. lety = X[L1 — t1.i< Bui;super : ta. < Bajsuper : t" Ry >>]

The proof is by rule induction on the typing judgment for then'; - b= Ly : t1.i< Bi;super : t2.R2 >= {L1} Byrule

¥ F Lot to. < Bajsuper : t'.Re >=> {} By lemma 2

Lemma 3 VL' € dom(Z).X(L") = ¥'(L) By definition of X' >, &
For any rule, e,S — ¢€',S’, where &;- + e : 7 = list., VL' € {dom(S) — L1} andvm € S(L') then
;- F S ¥ = lists and no duplicates liste,lists, and for Yok M(m) T = listm By Assumption* and lemma 2
Y > Sand ¥ ke i r = listy, Y F S Y = Xk S X = lists By rule
lists: and no duplicate in listgs, list.s then {listg } U {liste } C No duplicateL1, lists By assumption*
{lists} U {list.} U{L}. n

The proof is by rule induction on the evaluation judgment.
Progress Progress asserts that the evaluation of closed well-typed

Theorem 4 (Preservation) expressions will never get stuck, i.e. the expression is a value or can
ItY;-Fe: 7= liste and ¥;- - S : ¥ = lists and there make an evaluation step.

are no duplicates in lifte,list/s and e, S — e, s the/n for some The critical observation behind the proof is that a value of
E/ >r ¥ we have ¥ = € 1 7 == lister and 75 = 57 ¢ function type will indeed be a function and a value of object type
Y = listgs and there are no duplicate in list, lists. be an object. We state these critical properties in inversion lemmas,

Proof: By rule induction on the derivation af § — ¢’, 5" because they are not immediately syntactically obvious.

To give an idea of the preservation proof we present the case -€mmas5 (Value inversion)

wheree is typed with rule T-Deleg. There are three subcases, two () If¥i-Fv: t.R = list, thenv = L.

for congruence rules (of which we show the first; the second is (i) If ;- F v : 7'[— / —o]7" == list, thenv = [j]Az : T".e0.
symmetric) and one for the evaluation rule:

Theorem 6 (Progress)

ItY;-Fe: 7= liste and ;- = S : ¥ = listg then either

Case
e1,S — ey, S @i e, S — e, S’ forsome S’ ande’, or
e1.delegate(es), S — €}.delegate(ez), S’ (i) e is a value v

er,S — ey, 8 Subderivation proof: By induction on the derivation of the typing judgment,
¥; -k er.delegate(ez) : analyzing all possible cases. [

t1.i< Bi;super : ta. < Bajsuper : t'. Ry > [t1/t2] >

= list. Assumption
¥oF S Y = lists Assumption
No duplicatelist., lists Assumption 4. Related work
-k eyt t.j< Bu;super : t'.Ry >= list., By inversion This section summarizes related work in language foundations,

;- Fes: ta. < Bosuper : t”.Ro >= list., By inversion aliasing, and state-based method dispateh.F§25] was the first

prototype-based language and also defined mechanisms for dy{20] as refinement types that layer additional, changing resources
namic modifications of object definitions. In this paper, our goal on a conventional static type system. All these approaches do not
is to statically typecheck many uses @&L$'s mechanisms for dy- consider inheritance and effectively only allow linear types. Thus
namic object updates. they are unsuitable for object-oriented languages.

Abadi and Cardelli [1] use prototype-based object calculi to The State design pattern in [16] allows implementing different
study issues of subtyping, quantification, and the typing of the behavior for a method depending on the main object’s state. How-
receiver objecself Our work builds on this foundation, but because ever, there is no way of statically restricting the available methods
we incorporate first-class functions and linearity we use a notation for a state. [10] defined a model for statically tracking typestates in
taken more from the lambda calculus. Our calculus also differs object-oriented languages. In particular, they address the issue of

from previous work in that we must model thaperfield directly typestates in the presence of subtyping. In our work, objects have a
because its value may change, whereas previous systems generallgynamically changing type instead of a changing typestate layered
compile inheritance away once an object is created. on top of a fixed type. Our work also differs in supporting method

Variants of the Abadi-Cardelli object calculus taking into ac- addition, removal, and delegation change, rather than simply pro-
count object extensions are presented in [19, 22, 23]. In [15] Fisher, hibiting calls to methods not applicable in the current typestate.
Honsell and Mitchell describe a delegation-based object calculus
and method specialization where method extension represents del5. Conclusions

egation. Furthermore, in [14] they add a limited form of subtyping .) .
and type inference to their calculus. Compared to these systems ECO IS @ prototype-based language that has expressiveness, sim-
our work focuses on the orthogonal issue of statically checking the Plicity and a static typechecker. The expressiveness follows from

type safety of operations such as adding and removing methods ordynamic inheritance, adding methods, changing method bodies,
changing inheritance. and even changing method types dynamically. Its simplicity fol-

Re-classification in Fickle [12] allows an object to change its 0WS from the lack of the class concept, from the concept of cloning
class at runtime in class-based OO languages. In this manner C|ass|_nstead of instantiation, and from the unification of fields and meth-

based OO languages can achieve the same effect as changing defCS-) . .
egation at runtime. Fickle is more limited than our system because _ EGO imposes restrictions on the programmer in order to con-
it restricts re-classification to a fixed set of state classes rather than{fo! SELF'S “power of simplicity”. These are loose enough to allow

supporting arbitrary changes to the methods and inheritance hierar-Nt€resting programs usingd®'s dynamic features. But these re-
chy of an object. Furthermore, because it does not track aliasing of Srictions are also strong enough to ensue®E static type safety.

fields, Fickle cannot track the state of an object in a field apE IS Static typechecker provides a safer and more efficient paradigm
does. than SLF: EGo programs will only contain valid method invoca-

Our work builds on Philip Wadler's linear type system [26], tons. _) . .
which in turn builds on a foundational linear logic developed by e are currently implementing an interpreter fos& which
Girard [17]. The concept of linear types in [26] is used for re- Will allow us to write and execute simple examples in the language,
sources that should not be duplicated or lost. In contrast, our Sys_and test whether the restrictions on aliasing are reasonable in prac-
tem uses linear types to allow programs to safely change the typeliC€: In future work, we plan to investigate adding more advanced
of an object, thus enabling highly dynamic language features for object-oriented language features to the system, including multiple
non-aliased objects. In the area of linear type systems, the primary/nheritance, parametric polymorphism, and multiple dispatch. Our
contribution of this paper is showing how to naturally meld method SYStém can easily be extended to support subtyping for non-linear
or function linearity with object linearity. This issue is challenging ©PI€Cts, but in the presence of dynamic type updates on linear ob-
due to the subtle interactions between method and object linearityJECtS; Subtying is more challenging. Recent developments in types-
in the presence of inheritance, method update, and method execu!ate Systems may provide a path forward here [10].
tion.

Linear logic is used as a tool for modeling OO programming in Acknowledgments

logic [3, 7, 11, 18]. In [7] methods are characterized as resources s work was supported in part by the High Dependability Com-
that reside within objects, and are consumed right after having bee”puting Program from NASA Ames cooperative agreement NCC-
selected for evaluation upon invocation. We apply the intuition 5 1598 NSE grant CCR-0204047, and the Army Research Office

from this technique in a more concrete setting (i.e., operational grant number DAAD19-02-1-0389 entitled "Perpetually Available
semantics instead of an encoding in logic) in order to control ;.4 secure Information Systems.”

aliasing for linear methods.

Predicate classes [8] and their more general form, predicate dis-R f
patch [13] support method dispatch based on predicates over the elerences
run-time state of the object. When a message is sent in these sysfl] M. Abadi, L. Cardelli. A theory of objects. Springer, 1996.
tems, the predicates of all relevant methods are evaluated, and thgz] 3. Aldrich, V. Kostandinov, C. Chambers. Alias Annotations for
method chosen is the one with the most specific predicate that eval- ~Program Understanding. Proc. Object-Oriented Programming, Systems,
uates to true. Dynamic inheritance and dynamic method modifi- Languages, and Applications, November 2002.
cation are complimentary ways to get similar behavior: instead of 31 3 M. Andreoli, R. Pareschi. Linear objects: Logical Processes with
dispatching indirectly based on the state of an object, the state is™ "gyiit-In Inheritance. New Generation Computing, 9:445-473, 1991.
encoded through the dispatch hierarchy. These mechanisms eack[14] A. Bejleri. A Type Checked Prototype-based Model with Linearity.

_alpprop_riate in different situations; one _advantage of our approz_ich Draft senior thesis, published as Carnegie Mellon Technical Report
is that it can change the type of an object, rather than just which ~\1uU-1SRI-04-142. December 2004,

method is selected at run time. [5] V. Bono, K. Fisher. An Imperative, First-Order Calculus with Object
Typestates were initially introduced by [24] for procedural pro- Extension. In Proceedings of the European Conference on Object-

gramming languages. [9] defines a resource-controlling system for Oriented Programming (ECOOP), 1998
such languages based on keys. Keys can optionally be parameter- ' '

ized with typestates. This class of systems is formally modeled in [6] J. Boyland. Alias burying: Unique variables without reads. Journal :
Software—Practice and Experience 31(6):533-553, May 2001.

[7] M. Bugliesi, G. Delzanno, L. Liquori, M. Martelli. Object Calculi in
Linear Logic. Journal of Logics and Computation, 10(1): 75-104, 2000.

[8] C. Chambers. Predicate classes. Proc. European Conference on Object-
Oriented Programming, 1993.

[9] R.DeLine, M. FRahndrich. Enforcing High-Level Protocols in Low-
Level Software. Proc. Programming Language Design and Implementa-
tion, June 2001.

[10] R. DeLine, M. Rahndrich. Typestates for Objects. Proc. European
Conference on Object-Oriented Programming, 2004.

[11] G. Delzanno, M. Martelli. Objects in Forum. ILPS 1995.

[12] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, P. Giannini.
More Dynamic Object Reclassification: Fickle. ACM Transaction on
Programming Languages and Systems 24(2):153-191 (2002).

[13] M. D. Ernst, C. Kaplan, C. Chambers. Predicate Dispatching: A
Unified Theory of Dispatch. Proc. European Conference on Object-
Oriented Programming, 1998.

[14] K. Fisher, J. C. Mitchell. A Delegation-based Object Calculus with
Subtyping. Proc. Fundamentals of Computation Theory, 1995.

[15] K. Fisher, F. Honsell, J. C. Mitchell. A lambda calculus of objects
and method specialization. Nordic J. Computing (formerly BIT), 1:3-37,
1994.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
October 1994.

[17] J.-Y. Girard. Linear logic. Theoretical Computer Science 50(1):1-102,
1987.

[18] N. Kobayashi, A. Yonezawa. Type-Theoretic Foundations for
Concurrent Object-Programming. In Proceedings of the Ninth ACM-
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications, 31-45, 1994.

[19] Luigi Liquori. An Extended Theory of Primitive Objects: First Order
System. Proc. ECOOP’97.

[20] Y. Mandelbaum, D. Walker, R. Harper. An effective theory of type re-
finements. Proc. International Conference on Functional Programming,
2003.

[21] R. Milner, M.Tofte, R. Harper, D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[22] D. Rémy. From Classes to Objects via Subtyping. In ESOP’98.
[23] J.C. Riecke, C.A. Stone. Privacy via Subsumption. FOOL'98 1998.

[24] R. E. Strom, S. Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Software Engineering
12(1):157-171, January 1986.

[25] D. Ungar, R. B. Smith. Self: The power of simplicity. Proc. Object-
Oriented Programming Systems, Languages, and Applications, 1987.

[26] P. Wadler. Linear types can change the world! In M. Broy and C.
Jones, editors, Programming Concepts and Methods, North Holland,
1990.

12

