
 1

Language Support for Connector Abstractions

Jonathan Aldrich Vibha Sazawal Craig Chambers David Notkin

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, Washington, USA 98195-2350

+1 206 616-1846
{ j onal , v i bha, chamber s, not k i n} @cs. washi ngt on. edu

Abstract. Software connectors are increasingly recognized as an important
consideration in the design and implementation of object-oriented software
systems. Connectors can be used to communicate across a distributed system,
coordinate the activities of several objects, or adapt one object’s interface to the
interface of another. Mainstream object-oriented languages, however, do not
provide explicit support for connectors. As a result, connection code is
intermingled with application code, making it difficult to understand, evolve,
and reuse connection mechanisms.

In this paper, we add language support for user-defined connectors to the
ArchJava language. Our design enables a wide range of connector abstractions,
including caches, events, streams, and remote method calls. Developers can
describe both the run-time semantics of connectors and the typechecking
semantics. The connector abstraction supported by ArchJava cleanly separates
reusable connection code from application logic, making the semantics of
connections more explicit and allowing engineers to easily change the
connection mechanisms used in a program. We evaluate the expressiveness and
the engineering benefits of our design in a case study applying ArchJava to the
PlantCare ubiquitous computing application.

1. Introduction

The high-level design of a software system is often expressed as a software architecture,
consisting of a set of components and the connections through which the components interact
[GS93,PW92]. Object-oriented languages provide a natural object abstraction for components,
and encourage developers to compose systems out of interacting objects. However,
mainstream object-oriented languages do not provide explicit support for connections. Instead,
connections are implicit in the object references in the heap, or are expressed indirectly using
design patterns such as Proxy and Adaptor [GHJ+94].

Despite this lack of language support, connections are increasingly recognized as a crucial
element of software systems. The software architecture literature has proposed a connector
abstraction for connections, complementing the class abstraction for components. In this
context, a connector is a reusable design element that supports a particular style of component
interactions. In a comprehensive taxonomy of connectors, Mehta et al. describe the wide
variety of connectors used in software, including method calls, events, shared variables,
adaptors, streams, semaphores, and many others [MMP00]. Connectors are particularly
important in the context of distributed systems, where connector attributes such as bandwidth,

 2

synchronicity, security, reliability, and the wire protocol used may be crucial to the
functionality and performance of the application.

Implementation Approaches. Because of the lack of language abstractions for connectors,
developers are forced to make engineering compromises when implementing them. One
approach integrates connector code into the interacting components. Unfortunately, this tightly
couples the component and connector, making each of them harder to evolve or reuse.
Alternatively, connectors can be written as reusable libraries. However, these libraries must
often be written to a generic interface (perhaps based on type Obj ect), giving up many of the
advantages of static typechecking. Furthermore, even if a connector library is reusable,
dependencies on the connector often pervade a component’s implementation, making it
difficult to understand the component in isolation or reuse it with other connectors. Our
discussion of the PlantCare application in sections 4.2-4.4 illustrates many of these issues.

Tool Support. Communication infrastructures such as RMI [Jav97], CORBA [OMG95], and
COM [Mic95] address these challenges by using tools to automatically generate proxies for
communication with remote objects. These proxies encapsulate the connector code in a
distributed system, allowing application components to make remote method calls using the
same syntax as local calls. Many CASE tools and code generation tools provide similar
benefits. However, these infrastructures and tools fix a particular semantics for distributed
communication—semantics based on synchronous method calls using particular encodings and
wire protocols. While such tools may be ideal for applications that can leverage the built-in
semantics, they are inappropriate for applications that need different connector semantics. For
example, the PlantCare application discussed in our case study uses a custom message-passing
library designed to support the very lightweight and adaptive communication style that is
required in the ubiquitous computing domain. Although tools play an important role in
implementing connectors, we believe that no single connection infrastructure will be sufficient
for the diverse needs of all applications in the foreseeable future.

Our Approach. In this paper, we propose explicit language support for user-defined
connectors. It is difficult to integrate user-defined connectors directly in a conventional object-
oriented language such as Java, because connections between objects are not explicit in the
source code, but are expressed implicitly through the run time structure of references. Instead,
we present our design in the context of ArchJava, an extension to Java that allows developers to
specify the software architecture of a system within the implementation [ACN02a]. Because
ArchJava already supports explicit connections between component objects, it can be easily
extended to enable user-defined connectors that override the built-in connection semantics.

Our design allows developers to implement connectors using arbitrary Java code, supporting
a very wide range of connector types. We evaluate the expressiveness of our design by
implementing a representative subset of the connectors from Mehta et al.’s catalogue
[MMP00]. A novel feature of our approach is that connectors define not just the run-time
semantics of the connector, but also the typechecking strategy that should be used. Thus,
connectors can be used to link components with interfaces that would not match using the
normal Java semantics. As long as connector developers implement typechecking correctly for
the domain of their connectors, our system provides a static guarantee of type safety to
connector clients.

Our approach provides a clean separation of concerns. Each connector is modularly defined
in its own class. Components interact with connectors in a clean way using Java’s existing
method call syntax. In our approach, the connector used to bind two components together is
specified in a higher-level component, so that the communicating components are not aware of
and do not depend on the specific connector being used. Due to this design, it is easy to change

 3

the connectors in a system. In contrast, changing connectors may be more difficult in
languages without explicit support for connector abstractions.

Organization. The rest of this paper is organized as follows. In the next section, we review
the ArchJava language design through a simple peer-to-peer system example. Section 3
extends ArchJava with explicit support for connector abstractions, describing by example how
they can be defined and used. We evaluate the expressiveness and the engineering benefits of
our system in section 4, both by implementing a wide range of connectors and by applying
ArchJava to part of the PlantCare ubiquitous computing application. We discuss related work
in section 5 before concluding in section 6.

2. The ArchJava Language

ArchJava is an extension to Java that allows programmers to express the architectural structure
of an application within the source code [ACN02a]. ArchJava’s type system verifies
communication integrity, the property that implementation code communicates only along
connections declared in the architecture [MQR95,LV95,ACN02b]. This paper extends
ArchJava by supporting much more flexible kinds of interactions along connections.

We illustrate the ArchJava language through PoemSwap, a simple peer-to-peer program for
sharing poetry online. To allow programmers to describe architectural structure, ArchJava adds
new language constructs to support components, connections, and ports. The next subsection
describes ArchJava’s features for representing components and ports, while subsection 2.2
shows how developers can specify an architecture using components and connections. These
sections review an earlier presentation of ArchJava [ACN02a].

2.1. Components and Ports

A component in ArchJava is a special kind of object that communicates with other components
in a structured way. Components are instances of component classes, such as the PoemPeer
component class in Figure 1. The PoemPeer component represents the network interface of
the PoemSwap application.

Components in ArchJava communicate with each other through connected ports. A port
represents a logical communication channel between a component and one or more components
that it is connected to. For example, PoemPeer has a sear ch port that provides search
services to the PoemSwap user interface, and it has a poems port that it uses to access the local
database of poems.

Ports declare two sets of methods, specified using the requires and provides
keywords. A provided method is implemented by the component and is available to be called
by other components connected to this port. For example, the sear ch port provides searching
and downloading methods that can be invoked from the user interface. Provided methods must
be given definitions in the surrounding component class, as shown by the implementation of
downl oadPoem in Figure 1.

Conversely, each required method is provided by some other component connected to this
port. In Figure 1, the poems port requires methods that get descriptions of all the poems in the
database, retrieve a specific poem by its description, and add a poem to the database. A port
may have both required and provided methods, but as shown in the example, it is common for a
port to have only one or the other.

 4

A component can invoke a required method declared in one of its ports by sending a
message to the port. For example, in Figure 1, after downloading a new poem from a peer, the
downl oadPoem method adds the new poem to the poem database with the call
poems. addPoem(newPoem) . As this example shows, ports such as poems are concrete
objects, and required methods can be invoked on ports using Java’s standard method call
syntax.

If a component communicates with multiple different components using the same interface,
it can declare a port interface and then create a port of that interface type for each component it
needs to communicate with. A port interface defines the type of a port, just as a class defines
the type of an object. In fact, concrete port declarations such as public port sear ch {
. . . } are a convenient shorthand for declaring a port interface together with a single instance
of that interface type. In the example, PoemPeer must communicate with many other
PoemSwap peers through its cl i ent port interface, and it may serve requests from many
peers through its ser ver port interface. The two interfaces are symmetric, as each peer may
act as both a client and a server.

public component class PoemPeer {
 public port sear ch {
 provides PoemDesc[] sear ch(PoemDesc par t i al Desc) throws I OExcept i on;
 provides void downl oadPoem(PoemDesc desc) throws I OExcept i on;
 }

 public port poems {
 requires PoemDesc[] get PoemDescs() ;
 requires Poem get Poem(PoemDesc desc) ;
 requires void addPoem(Poem poem) ;
 }

 public port interface cl i ent {
 requires cl i ent (I net Addr ess addr ess) throws I OExcept i on;
 requires PoemDesc[] sear ch(PoemDesc par t i al Desc, int hops, Nonce n) ;
 requires Poem downl oad(PoemDesc desc) ;
 }

 public port interface ser ver {
 provides PoemDesc[] sear ch(PoemDesc par t i al Desc, int hops, Nonce n) ;
 provides Poem downl oad(PoemDesc desc) ;
 }

 void downl oadPoem(PoemDesc desc) throws I OExcept i on {
 c l i ent peer = new cl i ent (desc. get Addr ess()) ;
 Poem newPoem = peer . downl oad(desc) ;
 if (newPoem ! = null) {
 poems. addPoem(newPoem) ;
 }
 }
 // other method definitions...
}

Figure 1. The PoemPeer class represents the network interface of the PoemSwap
application. PoemPeer communicates with other components through its ports. It provides a
network search service to the rest of the application through the sear ch port, and it accesses
the poem database through the poems port. Finally, it communicates with other PoemSwap
applications over a wide-area network using complimentary cl i ent and ser ver ports.

 5

The cl i ent port interface contains a required connection constructor, named cl i ent
after the surrounding port interface, which the PoemPeer can invoke in order to create a
connection to a peer at the given I net Addr ess . The downl oadPoem method instantiates a
port of type cl i ent with the same new syntax used to create objects in Java. The method can
then call the required method downl oad on the newly created port instance.

The goal of ports is to specify both the services implemented by a component and the
services a component needs to do its job. Required interfaces make dependencies explicit,
reducing coupling between components and promoting understanding of components in
isolation. For example, the PoemPeer component is implemented without any knowledge of
what connection protocol will be used to connect it to its peers. PoemPeer expects a
connector that has synchronous method call semantics, but any connector that conforms to this
constraint can be used.

2.2. Software Architecture in ArchJava

In ArchJava, a hierarchical software architecture is expressed with a composite component,
which is made up of a number of subcomponents connected together. A subcomponent is a
component instance nested within another component. For example, Figure 2 shows how
PoemSwap, the main component of the PoemSwap application, is composed of three
subcomponents: a user interface, a poem database, and a PoemPeer instance. The
subcomponents are declared as fields within PoemSwap.

In ArchJava, architects declare the set of permissible connections in the architecture using
connect patterns. A connect pattern specifies two or more port interfaces that may be
connected together at run time. For example, the first three connect patterns in Figure 2 specify
that both the user interface and the network interface connect to the poems port interface of the
PoemSt or e, and that the sear ch port interface of the user interface connects to the
corresponding port interface of the network peer. The default typechecking rule for connect
patterns ensures that for every method required by one or more of the connected port interfaces,
there is exactly one corresponding provided method with the same name and signature.

Actual connections are made using connect expressions that appear in the methods of a
component. A connect expression specifies the concrete component instances to be connected
in addition to the connected ports. In the example, the PoemSwap constructor makes three
connections, one for each of the connect patterns declared in the architecture. A static check
ensures that the types of the connected ports conform to the types declared in one of the
connect patterns.

The built-in semantics of ArchJava connections binds required methods to provided
methods, so that when a required method is called on one port, the corresponding provided
method of the other port is invoked. For example, when the PoemPeer in Figure 1 invokes
addPoem on its poems port, the invocation will be forwarded across the connection created in
the PoemSwap constructor. The addPoem method implementation provided by the poems
port of the PoemSt or e (not shown) will be invoked.

 6

Connection Constructors. Each connect pattern must provide a connection constructor for
each of the required connection constructors declared in the connected ports. A connection
constructor is named after the port that required the constructor, and the first argument is the
component that requested the connection. The other arguments match the ones declared in the
corresponding required connection constructor. For example, the cl i ent port interface in
PoemPeer declares a required connection constructor that accepts an I net Addr ess .
Therefore, the last connect pattern in Figure 2 declares a connection constructor with two
arguments—the PoemPeer that requested the connection and an I net Addr ess . The body
of a connection constructor must contain exactly one connect expression that matches the
surrounding connect pattern. The connect expression must include the port interface through

poems

PoemSwap
sear ch sear ch

store

ui peer

poems
poems

cl i ent

ser ver
network

public component class PoemSwap {
 private final SwapUI ui = new SwapUI () ;
 private final PoemSt or e st or e = new PoemSt or e() ;
 private final PoemPeer peer = new PoemPeer () ;

 connect pattern SwapUI . poems, PoemSt or e. poems;
 connect pattern PoemPeer . poems, PoemSt or e. poems;
 connect pattern SwapUI . sear ch, PoemPeer . sear ch;

 public PoemSwap() {
 TCPConnect or . r egi st er Obj ect (peer , POEM_PORT, “ ser ver ”) ;

 connect(ui . poems, st or e. poems) ;
 connect(peer . poems, st or e. poems) ;
 connect(ui . sear ch, peer . sear ch) ;
 }

 connect pattern PoemPeer . cl i ent , PoemPeer . ser ver with TCPConnect or {

 c l i ent (PoemPeer sender , I net Addr ess addr ess) throws I OExcept i on {
 connect(sender . cl i ent , PoemPeer . ser ver)
 with new TCPConnect or (addr ess, POEM_PORT, “ ser ver ”) ;
 }
 } ;
}

Figure 2. A graphical and textual description of the PoemSwap architecture. The PoemSwap
component class contains three subcomponents—a user interface, a poem store, and the
network peer. Connect patterns show statically how these components may be connected, and
the connect expressions in the constructor link the components together following these
patterns. A final connect pattern shows how peers on different machines communicate via a
TCPConnect or . The cl i ent connection constructor creates a connection when the
PoemPeer requests one.

 7

which the sender component requested the connection (sender . c l i ent in the example).
We explain the with keyword in the next section.

3. Connector Abstractions in ArchJava

In this section, we describe the new language features and libraries that support connector
abstractions in ArchJava. We extend the syntax of connect patterns and connect expressions to
describe which connector abstractions should be used to typecheck and implement the
connections. Subsection 3.1 demonstrates these language features by examples, showing how a
user-defined TCP/IP connector can be used to connect different PoemSwap peers across a
wide-area network. New connectors can be written using the ar chj ava. r ef l ect library,
described in Subsection 3.2, which reifies connections and required method invocations.
Subsection 3.3 shows how the TCP/IP connector can be implemented using this library.
Finally, subsection 3.4 discusses the use of connector abstractions, identifying when connector
abstractions are beneficial and when a more conventional connector implementation may be
appropriate.

3.1. Using Connector Abstractions

Connector Typechecking. Instead of using ArchJava’s default typechecking rules, connect
patterns can specify that a user-defined connector class should be used for typechecking
instead. For example, the connect pattern at the end of Figure 2 specifies a user-defined
connector class to be used for typechecking using the syntax with <connector class>. Every
connector class has a static t ypecheck method that defines the typechecking semantics of
that connector (see Figure 3 below). In the example, when the PoemSwap component class is
compiled, the compiler loads the TCPConnect or class and invokes the t ypecheck method
to check the validity of the connect pattern (see Figure 5 and the discussion in subsection 3.3).
This typechecking replaces the default ArchJava typechecking semantics, allowing the
connector abstraction to define arbitrary typechecking rules.

In the case of TCPConnect or , the t ypecheck method first invokes the standard
ArchJava typechecker, and then additionally checks that all arguments and results of all
methods in the connection are subtypes of the Ser i al i zabl e interface. Because the
TCPConnect or uses Java’s serialization mechanism to send method arguments and results
across a network, a run-time error will result if the method arguments and results are not
serializable. By defining its own typechecking semantics to extend those of ArchJava, the
TCPConnect or can detect this error at compile time1.

Instantiating Connectors. Connectors are instantiated whenever a connect expression that
specifies a user-defined connector object is executed at run time. A connect expression uses
the syntax with <expression> to specify the connector instance that should be used for the
connection it is creating. For example, the connection constructor in Figure 2 executes a
connect expression when it is called, and the connect expression creates a user-defined
TCPConnect or object, passing the address, TCP/IP port, and the name of the remote peer to
the constructor of the connector. The expression in the with clause must be have a type that is

1 This check would have been handy when testing the PoemSwap application. Before

customized typechecking was implemented, we got run time errors because we forgot to
make class Poem serializable.

 8

a subclass of the connector type declared in the corresponding connect pattern, to ensure that
the connector implementation used at run time matches the connector that was used to
typecheck the connection statically.

In the case of PoemSwap, the component to be connected to the PoemPeer is a peer on a
remote machine, and so we cannot use a direct reference to it in the connect expression.
ArchJava allows developers to specify connections to remote components (to which they
cannot have a direct reference) by specifying the type of the connected component rather than
an actual concrete instance. This type allows the compiler to check the connect expression
against the surrounding connect pattern. The TCPConnect or is responsible for identifying
and communicating with the remote component, and it does this using the I net Addr ess
passed to the constructor.

public class Connect or {
 public static Er r or [] t ypecheck(Connect i on c) ;
 public Obj ect i nvoke(Cal l c) throws Thr owabl e;

 public Connect or () ;
 protected Connect or (Obj ect component s[] , St r i ng por t Names[]) ;

 public final Connect i on get Connect i on() ;
}

public final class Connect i on {
 public Por t [] get Por t s()
 public Connect or get Connect or ()
}

public final class Por t {
 public St r i ng get Name() ;
 public Met hod[] get Requi r edMet hods() ;
 public Met hod[] get Pr ovi dedMet hods() ;
 public Obj ect get Encl osi ngObj ect () ;
}

public final class Met hod {
 public St r i ng get Name() ;
 public Type[] get Par amet er Types() ;
 public Obj ect i nvoke(Obj ect ar gs[]) throws Thr owabl e;
}

public final class Type {
 public St r i ng get Name() ;
 public boolean i sAssi gnabl eFr om(Type ot her) ;
 public static Type f or Name(St r i ng qual i f i edName) ;
}

public final class Cal l {
 public Met hod get Met hod() ;
 public Obj ect [] get Ar gument s() ;
}

Figure 3. The ar chj ava. r ef l ect library includes classes reifying connectors,
connections, ports, methods, types, and calls. User-defined connector classes extend the
Connect or class, overriding the i nvoke method to define customized dynamic semantics
and providing a t ypecheck method that implements typechecking.

 9

3.2. The archjava.reflect Library

Connector abstractions are defined using the ar chj ava. r ef l ect library, whose most
important classes and methods are shown in Figure 3. This library defines a Connect or class
that user-defined connector classes extend, as well as classes that reify connections, ports, and
methods.

Class Connect or provides a hook for defining customized connectors. Connector
abstractions can define custom typechecking semantics by defining a static t ypecheck
method, which is called at compile time to typecheck a connect pattern, returning a possibly
empty array of errors. For example, the default implementation of t ypecheck returns an
error for each required method that has no matching provided method, or has more than one
matching provided method. If a connector defines no t ypecheck method, the compiler looks
in that connector’s superclass for a t ypecheck method, and so on until the compiler gets to
the default t ypecheck method in class Connect or .

Run-time connection behavior can be defined by overriding the i nvoke method, which
accepts a Cal l object reifying an invocation on a required method. The default
implementation finds the corresponding provided method and invokes it, passing the resulting
return value or exception back to the caller.

Connect or provides a default public constructor that is used by all direct clients and most
subclasses. A second constructor creates a connection programmatically (i.e., without a
connect expression) from the specified arrays of components and corresponding port names.
This constructor is provided since some connectors (including TCPConnect or) must be able
to create a connector object that represents the “ local end” of a connection that was originally
made on a remote machine. Since this constructor allows connections to be created
dynamically without being typechecked statically, it is accessible only to Connect or
subclasses, not to clients.

Classes Connect i on, Por t , Met hod, and Type reify the connection that is associated
with the connector, along with its ports and method signatures. Figure 3 shows only a fraction
of the interface of these classes. User-defined connectors do not extend these classes, but
instead may use them as a library for getting information about the current connection. This
information, accessible through the get Connect i on method of Connect or , can be used
statically when typechecking or dynamically when dispatching a required method invocation.
For example, the connector can invoke provided methods at run time by calling i nvoke on the
relevant Met hod object.

3.3. Implementing Connector Abstractions

Figure 4 shows how the run-time semantics of TCPConnect or can be defined in Java code.
The example shows primarily the interface of the connector and how it uses the
ar chj ava. r ef l ect library. We omit the code in two helper classes: TCPDaemon, which
listens for incoming network connections on a TCP/IP port, and TCPEndpoi nt , which
serializes and deserializes data going through a connection endpoint.

When the downl oadPoem method in Figure 1 creates a new instance of the cl i ent port
interface, the corresponding connection constructor links the cl i ent port instance to a remote
server by creating a TCPConnect or object, passing the Internet address of the remote
machine together with a port and string identifying the server. The TCPConnect or
constructor shown in Figure 4 creates a TCPEndpoi nt object that opens a network
connection to the remote host.

 10

When a required method is called on the cl i ent port instance, the runtime system reifies
the call and redirects it to the i nvoke method on the TCPConnect or . TCPConnect or ’ s
i nvoke method determines which required method was called, and then passes the name of
the method, its parameter types, and the actual call arguments to the TCPEndpoi nt . The
TCPEndpoi nt sends this data over the TCP/IP network connection.

At the other side of the network, the PoemSwap application uses r egi st er Obj ect to
register a PoemPeer component under the name “server” (see Figure 2). The
r egi st er Obj ect method starts a TCPDaemon listening at the assigned TCP/IP port.
When the daemon receives an incoming connection, it creates a TCPEndpoi nt object
representing that TCP/IP connection and creates a TCPConnect or object to represent the

public class TCPConnect or extends Connect or {
 // data members
 protected TCPEndpoi nt endpoi nt ;

 // public interface
 public TCPConnect or (I net Addr ess host , int pr t , St r i ng obj Name)
 throws I OExcept i on {
 endpoi nt = new TCPEndpoi nt (this, host , pr t , obj Name) ;
 }

 public Obj ect i nvoke(Cal l cal l) throws Thr owabl e {
 Met hod met h = cal l . get Met hod() ;
 return endpoi nt . sendMet hod(met h. get Name() , met h. get Par amet er Types() ,
 cal l . get Ar gument s()) ;
 }

 public static void r egi st er Obj ect (Obj ect o, int pr t , St r i ng obj Name)
 throws I OExcept i on {
 TCPDaemon. cr eat eDaemon(pr t) . r egi st er (obj Name, o) ;
 }

 // interface used by TCPDaemon
 TCPConnect or (TCPEndpoi nt endpoi nt , Obj ect r ecei ver , St r i ng por t Name) {
 super(new Obj ect [] { r ecei ver } , new St r i ng[] { por t Name }) ;
 this. endpoi nt = endpoi nt ;
 endpoi nt . set Connect or (this) ;
 }

 Obj ect i nvokeLocal Met hod(St r i ng name, Type par amet er Types[] ,
 Obj ect ar gument s[]) throws Thr owabl e {
 // find method with parameters that match parameterTypes
 Met hod met h = f i ndMet hod(name, par amet er Types) ;
 return met h. i nvoke(ar gument s) ;
 }

 // typechecking semantics defined in Figure 5
}

Figure 4. The TCPConnect or class extends the ar chj ava. r ef l ect . Connect or class
to define the dynamic semantics of a connector based on a TCP/IP network connection. The
i nvoke method passes the method name, parameter types, and arguments to a daemon that
uses Java’s serialization facilities to send them over a TCP/IP network connection. The
daemon at the other end of the connection, created when the other peer called
r egi st er Obj ect , calls i nvokeLocal Met hod on a TCPConnect or object, which
identifies the right method to call and invokes it.

 11

connector locally. The daemon uses the non-public TCPConnect or constructor, passing the
local TCPEndpoi nt object as well as the object to be connected and the name of its
connected port to the constructor. Since the originating connection was created on the other
machine, there is no information about this connection in the runtime system, and so it is
necessary to specify the components and ports to be connected when calling the protected
constructor of the Connect or superclass.

When the TCPEndpoi nt receives an incoming method, it calls i nvokeLocal Met hod
on the TCPConnect or associated with the receiver object. i nvokeLocal Met hod uses the
f i ndMet hod helper function (not shown) to identify the matching provided method, and then
invokes the method through a reflective call. The result, or any exception that is thrown, will
be packaged back up by the TCPEndpoi nt , sent back over the network, returned to the
implementation of i nvoke in the source TCPConnect or , and returned to the caller.

User-Defined Typechecking. For each connect pattern in the system, the compiler loads the
appropriate connector class and calls its t ypecheck method at compile time. The compiler
passes t ypecheck a Connect i on object that reifies the port interfaces in the connect
pattern, so that the typechecker can examine the methods and types in the connected port
interfaces.

The t ypecheck method returns a possibly empty array of Er r or objects describing any
semantic errors in the connect pattern. The Er r or class encapsulates a St r i ng describing
the problem as well as a syntax element (a Connect i on, Por t , or Met hod) that describes
where the error occurred, allowing the compiler to determine an accurate line number for the
reported error.

Figure 5 shows the definition of the t ypecheck method of TCPConnect or . The code
begins by running the standard t ypecheck method defined in class Connect or , which
ensures that for each required method there is exactly one provided method with an identical
name and signature. It returns any errors found by this method. If standard typechecking
succeeds, the TCPConnect or visits every required and provided method in the connection,

public class TCPConnect or extends Connect or {
 public static Er r or [] t ypecheck(Connect i on c) {
 // First invoke the default Java typechecker
 Er r or [] er r or s = Connect or . t ypecheck(c) ;
 if (er r or s. l engt h > 0)
 return er r or s;

 // ensure all arguments and results are Serializable
 Type ser i al i zabl e = Type. f or Name(“ j ava. l ang. Ser i al i zabl e”) ;
 for (int pI = 0; pI < c. get Por t s() . l engt h; ++pI) {
 for (int mI = 0; mI < c. get Por t s() [pI] . get Met hods() . l engt h; ++mI) {
 Met hod met hod = c. get Por t s() [pI] . get Met hods() [mI] ;
 Type r et ur nType = met hod. get Ret ur nType() ;
 if (! ser i al i zabl e. i sAssi gnabl eFr om(r et ur nType))
 return new Er r or [] { new Er r or (“ t ype not ser i al i zabl e” , c) } ;
 // similar check for method arguments
 }
 }
 }

 // dynamic semantics defined in Figure 4
}

Figure 5. The t ypecheck method in the TCPConnect or class ensures that method
arguments and results are serializable.

 12

making sure that all method arguments and results are Ser i al i zabl e, so that the
TCPEndpoi nt will be able to serialize them successfully at run time.

3.4. Connector Implementation.

Connectors can be implemented in a wide variety of ways, each with its own benefits and
drawbacks. For example, in addition to our connector abstractions, connectors could be built
into the language, expressed idiomatically through a design pattern, or described using
ArchJava’s component construct.

The key benefit of using connector abstractions is that the same connector can be reused to
support the same interaction semantics across many different interfaces, while still providing a
strong, static guarantee of type safety to clients. For example, the TCPConnect or can
connect any two ports with matching signatures, as long as the arguments to methods in those
ports are Ser i al i zabl e. Other solutions that guarantee type safety require separate stub
and skeleton code to be written for each interface, causing considerable code duplication and
hindering reuse and evolution. Alternatively, a standard library for sending objects across a
TCP/IP connection could be used, but this solution does not guarantee that the messages sent
and received across the connection have compatible types, so run time errors are possible.

The main drawback of using connector abstractions is that they are defined using a reflective
mechanism. Although connectors can define typechecking rules for their clients, there is no
way to statically check that a connector’s implementation performs the communication in a
type-safe way. Also, there is some run-time overhead associated with reifying a method call so
that a connector can process it dynamically. Thus, in situations where a connector is not reused
across different interfaces, it may be better to use objects or components to implement the
connector.

4. Evaluation

We have implemented language support for connector abstractions in the ArchJava compiler,
which is available for download at the ArchJava web site [Arc02]. Thus, all examples in this
paper, including PoemSwap and PlantCare, are simplified versions of working code.

We evaluate our design in two ways. In the next subsection, we evaluate the expressiveness
of our connector abstraction mechanism by describing how a wide range of connectors can be
implemented. In the following subsection, we evaluate the engineering benefits of connector
abstractions with a small case study on the PlantCare ubiquitous computing application.
Subsection 4.3 discusses the case study and reports feedback from the developers of PlantCare.
Finally, subsection 4.4 compares our connector abstraction approach to an alternative approach
using design patterns in the PlantCare system.

4.1. Expressiveness

In order to evaluate the expressiveness of our connector abstraction mechanisms, we use Mehta
et al.’s taxonomy of connectors as a benchmark for our design [MMP00]. The taxonomy
describes eight major types of connectors: procedure call, event, data access, linkage, stream,
arbitrator, adaptor, and distributor connectors. We discuss each connector type in turn,
describing which species of that connector can benefit from using connector abstractions. All

 13

of the connector abstraction examples described here are available for download as part of the
ArchJava distribution [Arc02].

Procedure Call. Procedure call connectors enable the transfer of control and data through
various forms of invocation. Although most programming languages provide explicit support
for procedure calls, there are a number of semantic issues that justify user-defined procedure
call connectors. For example, parameters could be passed by reference, by value, by (deep)
copy, etc.; calls could be synchronous or asynchronous; calls could use one-to-many broadcast
semantics, many-to-one collecting semantics, or conceivably even a many-to-many semantics.

ArchJava’s connector abstractions are well suited to implementing procedure call connectors
because the interface for defining connectors reifies method calls on ports. As an example, we
have implemented an Asynchr onousConnect or that accepts incoming required method
calls, returns to the sender immediately, and then invokes the corresponding provided method
asynchronously in another thread.

We have also implemented a Summi ngBr oadcast Connect or that accepts an incoming
method call, broadcasts it to all connected components, and sums the results of all the
invocations before returning the sum to the original caller. This second connector relies on
ArchJava’s multi-way connections, which can connect more than two ports. Both connectors
implement appropriate typechecking; for example, the Asynchr onousConnect or ensures
that all methods in connected ports return void, while the
Summi ngBr oadcast Connect or ensures that all of the methods return an integer. The
TCPConnect or shown in Figure 4 above is a procedure call connector that connects
components running on different virtual machines.

Event. Event connectors support the transfer of data and control using an implicit mechanism,
where the producer and consumer of an event are not aware of each other’s identity. Semantic
issues with event connectors include the cardinality of producers and consumers, event priority,
synchronicity, and the event notification mechanism.

Events are often implemented as inner-class callback objects in languages such as Java, but
this technique can make programs very difficult to reason about and evolve, as it is hard to see
which components might be communicating through an event channel. In contrast, using a
custom ArchJava event connector may aid in program understanding, because the connection
between components is explicit in the software architecture of the system. Connector
abstractions provide additional benefit by allowing components to communicate using different
event semantics. For example, we have implemented an Event Di spat chConnect or that
enqueues event notifications and dispatches them asynchronously to consumers.

The PlantCare application, described below in subsection 4.2, uses a user-defined connector
to support asynchronous event-based communication across a loosely coupled ad-hoc network.

Data Access. Data access connectors are used to access a data store, such as a SQL database,
the file system, or a repository such as the Windows registry. Issues in data access components
include initialization and cleanup of connections to data sources, and the conversion and
presentation of data. Conventional library-based techniques are appropriate for implementing
many kinds of data access connectors. However, connector abstractions can be used to provide
a convenient view of the data source, or adding semantic value to a data source in a reusable
way. For example, one could imagine a connector that provides an object-oriented view of a
relational database, translating each row of each table into an object and providing a collection-
like access to clients. As a more concrete example, Figure 6 shows a Cachi ngConnect or
that caches the results of method calls to a data store and returns the same result if the method
is called again with identical arguments.

 14

Linkage. Linkage connectors bind a name in one module to the implementation provided by
another module. Examples of linkage connectors include imported names and references to
names defined in other source files. ArchJava’s connector abstractions are intended to connect
object instances at run time, not link names at compile time. Therefore, Linkage connectors are
outside of the scope of ArchJava’s connector abstraction design.

Stream. Stream connectors support the exchange of a sequence of data between loosely
coupled producer and consumer components. Semantic issues with streams include buffering,
bounding, synchronicity, data types, data conversion, and the cardinality of the producers and
consumers. Many of these issues can be encapsulated within a reusable connector abstraction.
For example, we have developed a Buf f er edSt r eamConnect or that implements a stream
with a bounded buffer size, supporting one producer but an arbitrary number of consumers.
The Buf f er edSt r eamConnect or is reusable for streams of many different data types, but
checks that the types of data produced and consumed match. A plain Java implementation
would either sacrifice reusability or use Obj ect as the data type, giving up the checking
benefits of a typed stream. Here connector abstractions provide an advantage similar to
generics proposals for Java such as GJ [BOS+98].

Arbitrator. Arbitrator connectors provide services that coordinate and facilitate interactions
among components. Examples of arbitrators include semaphores, locks, transactions, fault
handling connectors with failover, and load balancing connectors. Semaphores and locks
typically have the same interface no matter which components they connect, and so they are
probably best implemented using ordinary objects or as ArchJava components. However, more
sophisticated arbitrators can benefit from ArchJava’s connector abstraction mechanism. For
example, we have built a LoadBal anci ngConnect or that accepts incoming method calls
from a client and distributes them to a bank of server components based on the current server
loads. The LoadBal anci ngConnect or is reusable across any client interface, while still
providing typechecking between clients and services.

We have also implemented a Bar r i er Synchr oni zat i onConnect or . Components
invoke a different method on the barrier after each stage of work, and the barrier ensures that
all its clients have called a given barrier method before it allows any of the method calls to
return.

Adaptor. Adaptor components retrofit components with different interfaces so that they can
interact. Adaptors may convert data formats, adapt to different invocation mechanisms,

public class Cachi ngConnect or extends Connect or {
 protected Map cache = new Hasht abl e() ;

 public Obj ect i nvoke(Cal l cal l) throws Thr owabl e {
 Li st ar gument s = Ar r ays. asLi st (cal l . get Ar gument s()) ;
 Obj ect r esul t = cache. get (ar gument s) ;
 if (r esul t ! = null)
 return r esul t ;

 r esul t = super. i nvoke(cal l) ;

 if (r esul t ! = null)
 cache. put (ar gument s, r esul t) ;
 return r esul t ;
 }
}

Figure 6. A Cachi ngConnect or that caches method invocations to avoid recomputation.

 15

transform protocols, or even make presentation changes like internationalization conversions.
Well-known design patterns such as Adaptor, Wrapper, and Façade are often used to implement
adaptors [GHJ+94]. However, connector abstractions can be useful for performing similar
adaptations to different interfaces. For example, the Rai nConnect or in section 4.2 below
adapts data types using structural subtyping, so that two components can communicate with
different datatypes as long as the data sent in a message has a superset of the information
expected by the receiver.

Distributor. Distributor connectors identify paths between components and route
communication along those paths. Distributors are not first-class connectors, but provide
routing services to other connectors. Both the Event Di spat chConnect or described
above and the Rai nConnect or described below include distributor functionality.

Summary. As the discussion above makes clear, ArchJava’s connector abstractions are very
flexible, supporting a wide range of different connector types. Some kinds of connectors are
most clearly expressed using conventional mechanisms such as objects and components.
However, connector abstractions provide a unique level of reusability across port interfaces
while still providing clients with a strong static guarantee of type safety.

4.2. PlantCare Case Study

In order to evaluate the engineering benefits of user-defined connector abstractions, we
performed a small case study with the PlantCare ubiquitous computing application [LBK+02].
PlantCare is a project at Intel Research Seattle that uses a collection of sensors and a robot to
care for houseplants autonomously in a home or office environment. This application
illustrates many of the challenges of ubiquitous computing systems: it must be able to configure
itself and react robustly to failures and changes in its environment.

The Gardening Service. Figure 7 shows the architecture of the gardening service, one of
several services in the PlantCare system. The gardening service consists of a central gardener
component that uses three external services as well as a client for a well-known discovery
service. The gardener periodically executes a cycle of code that cares for plants as follows.
First, the gardener requests from the Pl ant St or e a list of all the plants in the system and the
sensor readings from each plant. For each plant, it queries the Encycl opedi a to determine
how that plant should be cared for. After comparing the recommended and actual plant
humidity levels, it adds or removes watering tasks from the TaskSer ver so that each plant
remains in good health.

We have chosen to include the interfaces of relevant external services as part of the
gardening service architecture, because then we can use the connectors in the architecture to
reason about the protocols used to communicate with these services. A more conventional
architectural depiction would represent these protocols as connectors in an enclosing
architecture. However, in ubiquitous computing systems, there is no way to statically specify
the entire enclosing architecture, because the services available in a system may change
frequently as devices move and connections fail. Instead, the gardening service architecture
includes a partial view of the surrounding architecture, including the external components with
which the gardener communicates.

Below the visual architectural diagram in Figure 7 is the ArchJava code describing the
architecture (the complete gardener service code is about 500 lines long). The concrete
Gar dener and Di scover yCl i ent component instances are declared with final fields. The

 16

connect declaration linking the di scover y ports of the cl i ent and the gar dener is
syntactic sugar for a connect pattern and a corresponding connect expression.

The connect pattern links the Pl ant I nf o port interfaces of the gardener and the plant
store. When the gardener requests a new connection, the provided connection constructor
specifies that it should be connected with a Rai nConnect or , using a Ser vi ceI D to
identify the location of the remote Pl ant St or e component. The other connect patterns,
although omitted from this diagram, are similar.

 The Rai nConnect or class implements the Rain communication protocol used in the
PlantCare system. When methods are invoked through connections of type
Rai nConnect or , the user-defined connector code will package the method name and

Gardener DiscoveryClient

TaskServer

GardeningService

Encyclopedia

PlantStore

public component class Gar deni ngSer vi ce {
 private final Gar dener gar dener = new Gar dener (get Ser vi ceI D()) ;
 private final Di scover yCl i ent c l i ent = new Di scover yCl i ent () ;

 connect cl i ent . di scover y, gar dener . di scover y;

 connect pattern Gar dener . Pl ant I nf o, Pl ant St or e. Pl ant I nf o
 with Rai nConnect or {
 Pl ant I nf o(Gar dener sender , Ser vi ceI D i d) {
 connect(sender . Pl ant I nf o, Pl ant St or e. Pl ant I nf o)
 with new Rai nConnect or (i d) ;
 }
 }
 // other architectural connections not shown
}

public component class Gar dener extends St at eMachi neNode {
 public port di scover y {
 requires Ser vi ceI D f i nd(St r i ng ser vi ceType) ;
 }
 public port interface Pl ant I nf o {
 requires Pl ant I nf o(Ser vi ceI D i d) ;
 requires void st at usQuer y() ;
 provides void st at usRepl y(Pl ant St at us dat a) ;
 }
 private Pl ant I nf o pl ant I nf oPor t ;

 public st ar t St at eCycl e() {
 Ser vi ceI D I D = di scover y. f i nd(“ Pl ant St or e”) ;
 pl ant I nf oPor t = new Pl ant I nf o(I D) ;
 pl ant I nf oPor t . st at usQuer y() ;
 . . .
 // remaining Gardener implementation not shown
}

Figure 7. The architecture of the PlantCare gardening service

 17

arguments as an XML message, send them over a HTTP connection, and call the appropriate
provided method on the other side. Since Rain messages are asynchronous and do not return a
response, Rai nConnect or also defines a custom typechecker that verifies that methods in
the connected ports have a void return type. Although Rai nConnect or is similar to
TCPConnect or in that both connect components that may be located on different hosts, it
provides very different semantics (asynchronous messages vs. synchronous method calls),
demonstrating the versatility of ArchJava’s connector abstractions.

The Rai nConnect or implementation is similar to the TCPConnect or defined earlier.
The connector uses the name of the method called as the name of the XML message to be sent.
The method arguments are serialized and sent over the network using the same Rain library that
is currently used by the PlantCare application. Because Rain messages are asynchronous, the
Rai nConnect or returns immediately after sending a message, without waiting for an
acknowledgement or response.

The Gar dener class has a concrete port for discovery, but port interfaces for
communicating with other components. This is a natural choice, because discovery is a
fundamental service that must be in place in order for the Gar dener to dynamically discover
other available services. The discovery interface allows the Gar dener to look up a service by
its type. It returns a Ser vi ceI D data structure that can then be used in a connection
constructor to connect to other components.

The code in st ar t St at eCycl e shows the beginning of the cycle of code that the
Gar dener executes when caring for plants. The code uses the discovery service to find the
Ser vi ceI D of an available Pl ant St or e service. It then allocates a new Pl ant I nf o port
instance and stores it in a variable. The final line of code shown sends an asynchronous
message through the newly allocated port, querying the status of the plants in the system. The
Pl ant St or e will reply with another asynchronous message, which will be translated by the
Rai nConnect or into a call to the st at usRepl y method, which carries out the next stage
in the cycle. If an internal timer (not shown) expires before the st at usRepl y message is
received, the gardener assumes that the Pl ant St or e component (or an intervening network
link) has failed, and restarts the state cycle, using the discovery service once again to connect to
a functioning Pl ant St or e.

4.3. Discussion

In this section, we analyze the results of our case study according to three criteria: program
understanding, program correctness, and software evolution. Finally, we report feedback from
the developers of the PlantCare application.

Program Understanding. The ArchJava version of the gardening service code has a number
of characteristics that make it easier to understand the service’s implementation. In the Java
version, the information about which messages are sent and received is spread throughout the
source code. Figure 7 shows how the ArchJava architecture documents the sent and received
messages explicitly as required and provided methods in the ports of Gar dener , making it
easier to understand the interactions between the gardener and other services.

Figure 7 also shows how the ArchJava source code documents the architecture of the
service, showing which other services the gardener depends on. This information is obscured
in the original gardener source code; it would have to be deduced from the types of messages
exchanged. Another benefit is that the connector specification explicitly documents that the
Rain communication protocol is used between components. This would be especially valuable

 18

if the gardener used different protocols to communicate with different external services, as may
often be the case in heterogeneous ubiquitous computing systems.

Figure 8 compares the Java and ArchJava versions of the code that responds to a
Pl ant I nf oRepl y message from the encyclopedia. Here, ArchJava’s abstraction
mechanisms for inter-component communication make the application logic of the gardener
clearer. In the original Java code, a single handl eMessageI n method responds to all
incoming messages. The Pl ant I nf oRepl y message is one case in a long list of messages;
the code stores the plant care information in an internal data structure and then calls a separate
sendTasksRequest function to send out the next batch of messages. In the ArchJava
version, this response code is more cleanly encapsulated in a single method, which responds to
the original message and then sends the next set of messages through the task port. The process
of sending a message is also simpler and cleaner in ArchJava. The programmer simply calls a

Java Version:

 protected void handl eMessageI n(Message m) {
 if . . . { . . . // cases for plant status messages above...
 } else if (msg instanceof Pl ant I nf oRepl y) {
 // case for plant info message
 Pl ant I nf oRepl y p = (Pl ant I nf oRepl y) msg;
 car eMap. put (p. name, p) ;
 st at e = AWAI TI NG_TASKS;
 sendTasksRequest () ;
 return;
 } else if (msg instanceof TaskLi st Repl y) {
 // case for task reply message below...
 }

 protected void sendTasksRequest () {
 try {
 TaskLi st Quer y q = new TaskLi st Quer y() ;
 q. l i st = " Wat er Pl ant s" ;
 sendMessage(t askSer ver , q, newCl osur e()) ;
 } catch (Except i on ex) {
 // an error occurred, restart the cycle
 ex. pr i nt St ackTr ace() ;
 r eset St at e() ;
 }
 }

ArchJava Version:

 void i nf oRepl y(Pl ant I nf oRepl y dat a) {
 car eMap. put (dat a. name, dat a) ;
 st at e = AWAI TI NG_TASKS;
 try {
 t askPor t . t askQuer y(" Wat er Pl ant s") ;
 } catch (Except i on ex) {
 // an error occurred, restart the cycle
 ex. pr i nt St ackTr ace() ;
 r eset St at e() ;
 }
 }

Figure 8. A comparison of the old and new versions of the Gar dener code that responds to
the Pl ant I nf oRepl y message.

 19

method in the t askPor t , rather than constructing a custom message and sending it using the
Rain library.

Correctness. The ArchJava language performs a number of checks that help to ensure the
correctness of the Gar deni ngSer vi ce implementation. For example, the
Rai nConnect or typechecker verifies interface compatibility between the ports of
Gar dener and the connected ports of the external services at compile time. In the original
Java code, this problem would show up as a run time error when a component does not
recognize a message that was sent to it.

ArchJava also verifies communication integrity [MQR95,LV95,ACN02b], a property which
guarantees that the Gar dener only communicates with the services declared in the
Gar deni ngSer vi ce architecture (We assume that the gardener does not directly use Java’s
networking library, a property that could also be checked in a straightforward way). This
property guarantees that the architecture can be relied on as an accurate representation of the
communication in the system, increasing the program understanding benefits of architecture.

Software Evolution. Because of ArchJava’s explicit abstractions for ports and connectors,
some evolutionary steps are easier to perform. For example, if a service needs to interact with a
device that cannot generate XML messages, we can replace Rai nConnect or with a new
connector type that can communicate with the more restricted device. Also, we can reuse an
existing service in a new environment by simply inserting adaptor components or connectors
that retrofit the old service to the message protocol expected by the new environment. In both
cases, ArchJava’s explicit descriptions of component interfaces and connections make
architectural evolution easier.

An important criterion to consider in the evolvability of a system is the degree to which the
system’s modularization hides information within a single module. One benefit of the
ArchJava version of the gardening service is that the gardener’s functionality is encapsulated in
Gar dener while the communication protocol used is encapsulated in Gar deni ngSer vi ce.
The ports of Gar dener serve as the interfaces used to hide this information. Thus, in the
ArchJava code, the gardening functionality can be changed independently of the
communication protocol, facilitating evolution of this service.

Developer Feedback. Perhaps the most important evaluation criterion is feedback from the
developers of PlantCare. We found that the developers were able to understand the ArchJava
notation fairly quickly. They said that the Gar deni ngSer vi ce architecture captured their
informal architectural view of the system well. Finally, they agreed that ArchJava was able to
provide the benefits describe in the analysis above. We are currently working with them to put
ArchJava to production use in a future ubiquitous computing system.

4.4. Design Pattern Alternatives to Connector Abstractions

In this section, we compare the connector abstraction technique we used in the PlantCare
application to an alternative solution using conventional object-oriented design techniques.
Many design patterns are intended to provide benefits like separation of concerns and ease of
change, similar to the benefits provided by connectors [GHJ+94]. In order to be concrete, our
comparison focuses on the PlantCare application.

For example, Figure 9 shows the PlantCare code for responding to the Pl ant I nf oRepl y
message, rewritten using the Proxy design pattern. In this example, the application-defined
response code is contained in an i nf oRepl y method that is similar to the i nf oRepl y
message in the ArchJava example. Instead of invoking the t askQuer y method on the

 20

t askPor t , as in ArchJava, it invokes the method on a proxy that sends the message on to the
task server. Like the ArchJava version, this solution cleanly separates communication code
from application logic.

The main difference between the design pattern code and the ArchJava code is that in the
design pattern solution, custom code must be written to dispatch each message to the handler
function (i nf oRepl y in this example) and to send each message using the Rain library
(t askQuer y in this example). By comparison, in ArchJava the dispatch code and the
message sending code are written once in the connector, and can then be reused for each
connection in the system.

Analysis. The primary disadvantages of our approach, relative to design patterns, are twofold.
First, our approach involves a new language construct. Although it is a very tiny addition to the
ArchJava language, it does increase the complexity of the language, and this comes on top of
the (more substantial) ArchJava additions to Java. Second, our approach uses reflection,
thereby losing some understandability and efficiency relative to custom-written object-oriented
code.

On the other hand, our approach offers key advantages over conventional object-oriented
solutions. Perhaps the most significant advantage is that connector abstractions can define
typechecking rules that verify different properties than the default Java rules. Thus, connectors
can statically verify that certain classes of connector-specific errors will not occur at run time.

Design Patterns Version:

 protected void handl eMessageI n(Message m) {
 if . . . { . . . // cases for plant status messages above...
 } else if (msg instanceof Pl ant I nf oRepl y) {
 // case for plant info message
 i nf oRepl y(msg) ;
 } else if (msg instanceof TaskLi st Repl y) {
 // case for task reply message below...
 }

 void i nf oRepl y(Pl ant I nf oRepl y dat a) {
 car eMap. put (dat a. name, dat a) ;
 st at e = AWAI TI NG_TASKS;
 try {
 t askPr oxy. t askQuer y(" Wat er Pl ant s") ;
 } catch (Except i on ex) {
 // an error occurred, restart the cycle
 ex. pr i nt St ackTr ace() ;
 r eset St at e() ;
 }
 }

 protected class TaskPr oxy {
 public void t askQuer y(St r i ng t ask) {
 TaskLi st Quer y q = new TaskLi st Quer y() ;
 q. l i st = t ask;
 sendMessage(t askSer ver , q, newCl osur e()) ;
 }
 // methods for other TaskServer messages...
 }

Figure 9. The response code for the Pl ant I nf oRepl y message, written using design
patterns to separate communication code from application logic.

 21

In many cases, connector abstractions allow programmers to reuse connector code that
would be duplicated in a conventional solution using adaptors or proxies. Since code does not
have to be duplicated or customized for each communication interface, the resulting system is
easier to evolve when connector abstractions are used. For example, changing the connector
used takes only one line of code in ArchJava, but in the design pattern solution, a new Proxy
class must be written that adapts the communication interface to the new connection protocol.
Our design also expresses the intent of a connector directly through the abstraction, rather than
indirectly through a design pattern. Finally, ArchJava explicitly documents the software
architecture of the system, providing benefits for reasoning about and evolving code.

Our design shares many benefits with the design-pattern solution described above.
Connector code is isolated from application code, and the interfaces used to communicate
between objects are documented and checked. However, in the design-pattern case, these
benefits only accrue if the developer anticipates the need to evolve the connectors in a system,
and chooses to use the appropriate design pattern in the system. An important advantage of
language support for connector abstractions is that it encourages developers to think and
program in terms of connectors, gaining all of the benefits described above. In contrast,
developers may balk at implementing design patterns that may result in duplicated code if they
seem unnecessary at the time, discovering only later that the system would have been easier to
understand or evolve had design patterns been used.

5. Related Work

Software Architecture. Most architecture description languages (ADLs) support the
specification or implementation of software connectors [MT00]. For example, Wright specifies
the temporal relationship of events on a connector and provides tools for checking properties
such as freedom from deadlock [AG97]. SADL formalizes connectors in terms of theories and
describes how abstract connectors in a design can be iteratively refined into concrete
connectors in an implementation [MQR95]. Rapide specifies connectors within a reactive
system using event traces [LV95].

Several ADLs provide tools that can generate executable code from an architectural
description. UniCon’s tools use an architectural specification to generate connector code that
links components together [SDK+95]. C2 provides runtime libraries in C++ and Java that
implement C2 connectors [MOR+96]. Darwin provides infrastructure support for
implementing distributed systems specified in the Darwin ADL [MK96]. These code
generation tools, however, support a limited number of built-in connector types, and developers
cannot easily define connectors with custom semantics.

User-Defined Connectors. The work most similar to our own is a specification of how user-
defined connector types can be added as plugins to the UniCon compiler [SDZ96]. UniCon
connector plugins are fairly heavyweight, as connector developers must understand the details
of several phases of the compiler. However, this design allows new connectors to be tightly
integrated into the compiler system, permitting new kinds of architectural analysis to be defined
over these connectors. In contrast, ArchJava’s connector abstractions are lightweight, and a
wide range of connectors can be implemented with knowledge of a small library interface.

Dashofy et al. describe how off-the-shelf middleware can be used to implement C2
connectors [DMT99]. Their work differs from ours in that the semantics of the connectors is
fixed by the C2 architectural style, while our connector abstractions are intended to support a
wide range of architectural styles.

Mezini and Ostermann describe language support for adaptor connections that allow
components with different data models to work together [MO02]. Their language makes
wrapper code less tedious to write, and provides support for the difficult problem of

 22

maintaining consistent wrapper identity. ArchJava’s connector abstractions provide weaker
support for adaptors, but facilitate a range of connector types beyond adaptors.

Object-Oriented Languages. A number of proposals have added connection support to
object-oriented languages such as Java. For example, ComponentJ [SC00] and ACOEL
[Sre02] as well as the original design of ArchJava [ACN02a] all provide primitives for linking
components together with connections. However, these languages all fix the semantics of
connections to the same synchronous method call semantics used by Java.

Aspect-Oriented Programming. Aspect-oriented programming (AOP) languages allow
programmers to more effectively separate code that implements different application concerns.
For example, Soares et al. showed how the AspectJ language can be used to implement
distribution and persistence in a health complaint system [SLB02]. Aspect-oriented
programming developed out of meta-object protocols, which allow programmers to define how
an object should react to events like method calls [KRB91]. Relative to languages such as
AspectJ and the more powerful meta-object protocol technique, ArchJava’s connector
abstractions provide a more limited kind of separation of concerns, restricted to the semantics
of connectors. However, because connectors are bound in the surrounding architecture of a
component, they support more local reasoning about connector aspect code.

Composition filters is the aspect-oriented approach most similar to ArchJava’s connector
abstractions. In this technique, developers interpose filter objects that can inspect incoming
method calls and perform operations like translation, adaptation, and forwarding on the
messages [BA01]. ArchJava’s connector abstractions are similar to composition filters, but
instead of processing all messages called on a single object, they process messages exchanged
between two component objects in an architecture.

Distributed System Infrastructures. A number of libraries and tools have been defined to
support distributed programming. Commercial examples include RPC [BCL+87] as well as
COM [Mic95], CORBA [OMG95], and RMI [Jav97]. These systems offer a convenient
method-call interface for remote communication, much like the interface provided by
ArchJava’s connector abstractions. Furthermore, these systems check statically that
communication through their connections is well typed. Infrastructures support some
flexibility—for example, RMI allows the developer to specify the wire protocol to be used, and
CORBA provides an event service that can be used in place of remote method calls. However,
each of these commercially available systems defines a particular semantics (usually
synchronous method call) for the connections it supports, rather than providing a general
interface that programmers can implement in various ways to support their application-specific
needs.

Recently, researchers have been developing extensible middleware such as the OpenORB
[BCA+01] and the Universally Interoperable Core [Ubi02]. These systems allow developers to
customize middleware aspects such as the network transport protocol, object marshalling, and
method invocation semantics. DADO provides features of aspect-oriented programming in the
context of a reflective middleware system, supporting connector functionality like caching and
performance monitoring [WJD03]. Compared to ArchJava’s connector abstractions, these
middleware systems provide a great deal of built-in services, but are not tightly integrated into
programming languages and do not provide customized connection typechecking.

CASE Tools. Several computer-aided software engineering tools, including Consystant and
Rational Rose RealTime, generate code to connect components together. This connection code
can range from stubs and skeletons for an infrastructure like CORBA or RMI to wires that
connect different processors in an embedded system. Like many of the technologies discussed
above, these tools typically support a fixed set of connectors.

 23

6. Conclusion

This paper described a technique for adding explicit support for connector abstractions to the
ArchJava programming language. In our system, connector abstractions can be defined using a
very flexible reflective library-based mechanism. We have evaluated the expressiveness of our
technique by implementing representative connectors from a wide range of connector types,
and we have evaluated the engineering tradeoffs in a small case study on the PlantCare
ubiquitous computing application. The benefits of connector abstractions include separating
communication code from application logic, documenting and checking connector interfaces,
and reusing connector abstractions more effectively compared with alternative techniques.

In future work, we intend to implement more connectors and evaluate their expressiveness
on a wider variety of systems. We also hope to develop a library-based framework for
composing connectors together so that complex connectors can be easily created from simple
building blocks. Another important area of future work is more effective support for adaptor-
style connections, extending recently developed adaptation techniques such as on-demand
remodularization [MO02]. Finally, we would like to provide specification and checking of
connector properties that go beyond simple typechecking. We believe that enhanced language
and system support for connectors is crucial to the effective development and evolution of
many classes of software systems.

Acknowledgements

We would like to thank Sorin Lerner, Anthony LaMarca, Stefan Sigurdsson, Matt Lease, and
the anonymous reviewers for their helpful comments. We especially thank Intel Research
Seattle for access to the PlantCare application. This work was supported in part by NSF grants
CCR-9970986, CCR-0073379, and CCR-0204047, and gifts from Sun Microsystems and IBM.

References

[ACN02a] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting
Software Architecture to Implementation. Proc. International Conference on Software
Engineering, Orlando, Florida, May 2002.

[ACN02b] Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural Reasoning in
ArchJava. Proc. European Conference on Object-Oriented Programming, Málaga,
Spain, June 2002.

[AG97] Robert Allen and David Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology 6(3):213-249, July 1997.

[Arc02] ArchJava web site. http://www.archjava.org/

[BA01] Lodewijk Bergmans and Mehmet Aksit, Composing Crosscutting Concerns Using
Composition Filters, Communications of the ACM 44(10):51-57, October 2001.

[BCA+01] Gordon S. Blair, Geoff Coulson, Anders Andersen, Lynne Blair, Michael Clarke,
Fabio Costa, Hector Duran-Limon, Tom Fitzpatrick, Lee Johnston, Rui Moreira, Nikos
Parlavantzas, and Katia Saikoski. The Design and Implementation of Open ORB 2.
IEEE Distributed Systems Online Journal 2(6): 2001.

 24

[BCL+87] Brian Bershad, Dennis Ching, Edward Lazowska, Jan Sanislo, and Michael
Schwartz. A Remote Procedure Call Facility for Interconnecting Heterogeneous
Computer Systems. IEEE Trans. Software Engineering 13(8):880-894, August 1987.

[BOS+98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
Future Safe for the Past: Adding Genericity to the Java Programming Language. Proc.
Object Oriented Programming Systems, Languages, and Applications, Vancouver,
British Columbia, October 1998.

[DMT99] Eric M. Dashofy, Nenad Medvidovic, and Richard N. Taylor. Using Off-the-Shelf
Middleware to Implement Connectors in Distributed Software Architectures. Proc.
International Conference on Software Engineering, Los Angeles, California, May 1999.

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture. In Advances
in Software Engineering and Knowledge Engineering, I (Ambriola V, Tortora G, Eds.)
World Scientific Publishing Company, 1993.

[Jav97] Javasoft Java RMI Team. Java Remote Method Invocation Specification, Sun
Microsystems, 1997.

[JLH88] Eric Jul, Hank Levy, Norman Hutchinson, and Andrew Black. Fine-Grained Mobility
in the Emerald System. ACM Trans. Computer Systems 6(1):109-133, February 1988.

[KRB91] Gregor Kiczales, James des Rivières, and Daniel G. Bobrow. The Art of the Meta-
Object Protocol. MIT Press, Cambridge, MA, 1991.

[LBK+02] A. LaMarca, W. Brunette, D. Koizumi, M. Lease, S. B. Sigurdsson, K. Sikorski, D.
Fox, and G. Borriello. PlantCare: An Investigation in Practical Ubiquitous Systems.
Proc. International Conference on Ubiquitous Computing, Göteborg, Sweden,
September 2002.

[LV95] David C. Luckham and James Vera. An Event Based Architecture Definition
Language. IEEE Trans. Software Engineering 21(9), September 1995.

[Mic95] Microsoft Corporation. The Component Object Model Specification, Version 0.9.
October 1995.

[MK96] Jeff Magee and Jeff Kramer. Dynamic Structure in Software Architectures. Proc.
Foundations of Software Engineering, San Francisco, California, October 1996.

[MMP00] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a Taxonomy of
Software Connectors. Proc. International Conference on Software Engineering,
Limerick, Ireland, June 2000.

[MO02] Mira Mezini and Klaus Ostermann. Integrating Independent Components with On-
Demand Remodularization. Proc. Object-Oriented Programming Systems, Languages,
and Applications, Seattle, Washington, November 2002.

[MOR+96] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor.
Using Object-Oriented Typing to Support Architectural Design in the C2 Style. Proc.
Foundations of Software Engineering, San Francisco, California, October 1996.

[MQR95] Mark Moriconi, Xiaolei Qian, and Robert A. Riemenschneider. Correct Architecture
Refinement. IEEE Trans. Software Engineering, 21(4):356-372, April 1995.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans. Software
Engineering, 26(1):70-93, January 2000.

 25

[OMG95] Object Management Group. The Common Object Request Broker: Architecture and
Specification (CORBA), revision 2.0. 1995.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes, 17:40-52, October 1992.

[SC00] João C. Seco and Luís Caires. A Basic Model of Typed Components. Proc. European
Conference on Object-Oriented Programming, Cannes, France, June 2000.

[SDK+95] Mary Shaw, Rob DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, and
Gregory Zelesnik. Abstractions for Software Architecture and Tools to Support Them.
IEEE Trans. Software Engineering, 21(4):314-335, April 1995.

[SDZ96] Mary Shaw, Rob DeLine, and Gregory Zelesnik. Abstractions and Implementations
for Architectural Connections. Proc. International Conference on Configurable
Distributed Systems, Annapolis, Maryland, May 1996.

[SLB02] Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing Distribution and
Persistance Aspects with AspectJ. Proc. Object-Oriented Programming Systems,
Languages, and Applications, Seattle, Washington, November 2002.

[Sre02] Vugranam C. Sreedhar. Mixin’ Up Components. Proc. International Conference on
Software Engineering, Orlando, Florida, May 2002.

[Ubi02] UbiCore LLC. Universally Interoperable Core. Description at http://www.ubi-
core.com/Documentation/Universally_Interoperable_Core/universally_interoperable_c
ore.html.

[WJD03] Eric Wohlstadter, Stoney Jackson and Premkumar Devanbu. DADO: Enhancing
Middleware to Support Cross-Cutting Features in Distributed, Heterogeneous Systems.
Proc. International Conference on Software Engineering, Portland, Oregon, May 2003.

