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Abstract.  Software connectors are increasingly recognized as an important 
consideration in the design and implementation of object-oriented software 
systems.  Connectors can be used to communicate across a distributed system, 
coordinate the activities of several objects, or adapt one object’s interface to the 
interface of another.  Mainstream object-oriented languages, however, do not 
provide explicit support for connectors.  As a result, connection code is 
intermingled with application code, making it difficult to understand, evolve, 
and reuse connection mechanisms. 
 
In this paper, we add language support for user-defined connectors to the 
ArchJava language.  Our design enables a wide range of connector abstractions, 
including caches, events, streams, and remote method calls.  Developers can 
describe both the run-time semantics of connectors and the typechecking 
semantics.  The connector abstraction supported by ArchJava cleanly separates 
reusable connection code from application logic, making the semantics of 
connections more explicit and allowing engineers to easily change the 
connection mechanisms used in a program.  We evaluate the expressiveness and 
the engineering benefits of our design in a case study applying ArchJava to the 
PlantCare ubiquitous computing application. 

1. Introduction 

The high-level design of a software system is often expressed as a software architecture, 
consisting of a set of components and the connections through which the components interact 
[GS93,PW92].  Object-oriented languages provide a natural object abstraction for components, 
and encourage developers to compose systems out of interacting objects.  However, 
mainstream object-oriented languages do not provide explicit support for connections.  Instead, 
connections are implicit in the object references in the heap, or are expressed indirectly using 
design patterns such as Proxy and Adaptor [GHJ+94]. 

Despite this lack of language support, connections are increasingly recognized as a crucial 
element of software systems.  The software architecture literature has proposed a connector 
abstraction for connections, complementing the class abstraction for components.  In this 
context, a connector is a reusable design element that supports a particular style of component 
interactions.  In a comprehensive taxonomy of connectors, Mehta et al. describe the wide 
variety of connectors used in software, including method calls, events, shared variables, 
adaptors, streams, semaphores, and many others [MMP00].  Connectors are particularly 
important in the context of distributed systems, where connector attributes such as bandwidth, 
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synchronicity, security, reliability, and the wire protocol used may be crucial to the 
functionality and performance of the application. 
 
Implementation Approaches.  Because of the lack of language abstractions for connectors, 
developers are forced to make engineering compromises when implementing them.  One 
approach integrates connector code into the interacting components.  Unfortunately, this tightly 
couples the component and connector, making each of them harder to evolve or reuse.  
Alternatively, connectors can be written as reusable libraries.  However, these libraries must 
often be written to a generic interface (perhaps based on type Obj ect ), giving up many of the 
advantages of static typechecking.  Furthermore, even if a connector library is reusable, 
dependencies on the connector often pervade a component’s implementation, making it 
difficult to understand the component in isolation or reuse it with other connectors.  Our 
discussion of the PlantCare application in sections 4.2-4.4 illustrates many of these issues. 
 
Tool Support.  Communication infrastructures such as RMI [Jav97], CORBA [OMG95], and 
COM [Mic95] address these challenges by using tools to automatically generate proxies for 
communication with remote objects.  These proxies encapsulate the connector code in a 
distributed system, allowing application components to make remote method calls using the 
same syntax as local calls.  Many CASE tools and code generation tools provide similar 
benefits.  However, these infrastructures and tools fix a particular semantics for distributed 
communication—semantics based on synchronous method calls using particular encodings and 
wire protocols.  While such tools may be ideal for applications that can leverage the built-in 
semantics, they are inappropriate for applications that need different connector semantics.  For 
example, the PlantCare application discussed in our case study uses a custom message-passing 
library designed to support the very lightweight and adaptive communication style that is 
required in the ubiquitous computing domain.  Although tools play an important role in 
implementing connectors, we believe that no single connection infrastructure will be sufficient 
for the diverse needs of all applications in the foreseeable future. 
 
Our Approach.  In this paper, we propose explicit language support for user-defined 
connectors.  It is difficult to integrate user-defined connectors directly in a conventional object-
oriented language such as Java, because connections between objects are not explicit in the 
source code, but are expressed implicitly through the run time structure of references.  Instead, 
we present our design in the context of ArchJava, an extension to Java that allows developers to 
specify the software architecture of a system within the implementation [ACN02a].  Because 
ArchJava already supports explicit connections between component objects, it can be easily 
extended to enable user-defined connectors that override the built-in connection semantics. 

Our design allows developers to implement connectors using arbitrary Java code, supporting 
a very wide range of connector types.  We evaluate the expressiveness of our design by 
implementing a representative subset of the connectors from Mehta et al.’s catalogue 
[MMP00].  A novel feature of our approach is that connectors define not just the run-time 
semantics of the connector, but also the typechecking strategy that should be used.  Thus, 
connectors can be used to link components with interfaces that would not match using the 
normal Java semantics.  As long as connector developers implement typechecking correctly for 
the domain of their connectors, our system provides a static guarantee of type safety to 
connector clients. 

Our approach provides a clean separation of concerns.  Each connector is modularly defined 
in its own class.  Components interact with connectors in a clean way using Java’s existing 
method call syntax.  In our approach, the connector used to bind two components together is 
specified in a higher-level component, so that the communicating components are not aware of 
and do not depend on the specific connector being used.  Due to this design, it is easy to change 
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the connectors in a system.  In contrast, changing connectors may be more difficult in 
languages without explicit support for connector abstractions. 

 
Organization.  The rest of this paper is organized as follows.  In the next section, we review 
the ArchJava language design through a simple peer-to-peer system example.  Section 3 
extends ArchJava with explicit support for connector abstractions, describing by example how 
they can be defined and used.  We evaluate the expressiveness and the engineering benefits of 
our system in section 4, both by implementing a wide range of connectors and by applying 
ArchJava to part of the PlantCare ubiquitous computing application.  We discuss related work 
in section 5 before concluding in section 6. 

2. The ArchJava Language 

ArchJava is an extension to Java that allows programmers to express the architectural structure 
of an application within the source code [ACN02a].  ArchJava’s type system verifies 
communication integrity, the property that implementation code communicates only along 
connections declared in the architecture [MQR95,LV95,ACN02b].  This paper extends 
ArchJava by supporting much more flexible kinds of interactions along connections. 

We illustrate the ArchJava language through PoemSwap, a simple peer-to-peer program for 
sharing poetry online.  To allow programmers to describe architectural structure, ArchJava adds 
new language constructs to support components, connections, and ports.  The next subsection 
describes ArchJava’s features for representing components and ports, while subsection 2.2 
shows how developers can specify an architecture using components and connections.  These 
sections review an earlier presentation of ArchJava [ACN02a]. 

2.1. Components and Ports 

A component in ArchJava is a special kind of object that communicates with other components 
in a structured way.  Components are instances of component classes, such as the PoemPeer  
component class in Figure 1.  The PoemPeer  component represents the network interface of 
the PoemSwap application. 

Components in ArchJava communicate with each other through connected ports.  A port 
represents a logical communication channel between a component and one or more components 
that it is connected to.  For example, PoemPeer  has a sear ch port that provides search 
services to the PoemSwap user interface, and it has a poems  port that it uses to access the local 
database of poems. 

Ports declare two sets of methods, specified using the requires and provides 
keywords.  A provided method is implemented by the component and is available to be called 
by other components connected to this port.  For example, the sear ch port provides searching 
and downloading methods that can be invoked from the user interface.  Provided methods must 
be given definitions in the surrounding component class, as shown by the implementation of 
downl oadPoem in Figure 1. 

Conversely, each required method is provided by some other component connected to this 
port.  In Figure 1, the poems  port requires methods that get descriptions of all the poems in the 
database, retrieve a specific poem by its description, and add a poem to the database.  A port 
may have both required and provided methods, but as shown in the example, it is common for a 
port to have only one or the other. 
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A component can invoke a required method declared in one of its ports by sending a 
message to the port.  For example, in Figure 1, after downloading a new poem from a peer, the 
downl oadPoem method adds the new poem to the poem database with the call 
poems. addPoem( newPoem) .  As this example shows, ports such as poems  are concrete 
objects, and required methods can be invoked on ports using Java’s standard method call 
syntax. 

If a component communicates with multiple different components using the same interface, 
it can declare a port interface and then create a port of that interface type for each component it 
needs to communicate with.  A port interface defines the type of a port, just as a class defines 
the type of an object.  In fact, concrete port declarations such as public port sear ch {  
. . .  }  are a convenient shorthand for declaring a port interface together with a single instance 
of that interface type.  In the example, PoemPeer  must communicate with many other 
PoemSwap peers through its cl i ent  port interface, and it may serve requests from many 
peers through its ser ver  port interface.  The two interfaces are symmetric, as each peer may 
act as both a client and a server. 

public component class PoemPeer  {  
  public port sear ch {  
    provides PoemDesc[ ]  sear ch( PoemDesc par t i al Desc)  throws I OExcept i on;  
    provides void downl oadPoem( PoemDesc desc)  throws I OExcept i on;  
  }  
 
  public port poems {  
    requires PoemDesc[ ]  get PoemDescs( ) ;  
    requires Poem get Poem( PoemDesc desc) ;  
    requires void addPoem( Poem poem) ;  
  }  
 
  public port interface cl i ent  {  
    requires cl i ent ( I net Addr ess addr ess)  throws I OExcept i on;  
    requires PoemDesc[ ]  sear ch( PoemDesc par t i al Desc,  int hops,  Nonce n) ;  
    requires Poem downl oad( PoemDesc desc) ;  
  }  
 
  public port interface ser ver  {  
    provides PoemDesc[ ]  sear ch( PoemDesc par t i al Desc,  int hops,  Nonce n) ;  
    provides Poem downl oad( PoemDesc desc) ;  
  }  
 
  void downl oadPoem( PoemDesc desc)  throws I OExcept i on {  
    c l i ent  peer  = new cl i ent ( desc. get Addr ess( ) ) ;  
    Poem newPoem = peer . downl oad( desc) ;  
    if ( newPoem ! = null)  {  
      poems. addPoem( newPoem) ;  
    }  
  }  
  // other method definitions... 
}  
 

Figure 1.  The PoemPeer  class represents the network interface of the PoemSwap 
application.  PoemPeer  communicates with other components through its ports.  It provides a 
network search service to the rest of the application through the sear ch port, and it accesses 
the poem database through the poems  port.  Finally, it communicates with other PoemSwap 
applications over a wide-area network using complimentary cl i ent  and ser ver  ports. 
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The cl i ent  port interface contains a required connection constructor, named cl i ent  
after the surrounding port interface, which the PoemPeer  can invoke in order to create a 
connection to a peer at the given I net Addr ess .  The downl oadPoem method instantiates a 
port of type cl i ent  with the same new syntax used to create objects in Java.  The method can 
then call the required method downl oad on the newly created port instance. 

The goal of ports is to specify both the services implemented by a component and the 
services a component needs to do its job.  Required interfaces make dependencies explicit, 
reducing coupling between components and promoting understanding of components in 
isolation.  For example, the PoemPeer  component is implemented without any knowledge of 
what connection protocol will be used to connect it to its peers.  PoemPeer  expects a 
connector that has synchronous method call semantics, but any connector that conforms to this 
constraint can be used. 

2.2. Software Architecture in ArchJava 

In ArchJava, a hierarchical software architecture is expressed with a composite component, 
which is made up of a number of subcomponents connected together.  A subcomponent is a 
component instance nested within another component.  For example, Figure 2 shows how 
PoemSwap, the main component of the PoemSwap application, is composed of three 
subcomponents: a user interface, a poem database, and a PoemPeer  instance.  The 
subcomponents are declared as fields within PoemSwap. 

In ArchJava, architects declare the set of permissible connections in the architecture using 
connect patterns.  A connect pattern specifies two or more port interfaces that may be 
connected together at run time.  For example, the first three connect patterns in Figure 2 specify 
that both the user interface and the network interface connect to the poems  port interface of the 
PoemSt or e, and that the sear ch port interface of the user interface connects to the 
corresponding port interface of the network peer.  The default typechecking rule for connect 
patterns ensures that for every method required by one or more of the connected port interfaces, 
there is exactly one corresponding provided method with the same name and signature. 

Actual connections are made using connect expressions that appear in the methods of a 
component.  A connect expression specifies the concrete component instances to be connected 
in addition to the connected ports.  In the example, the PoemSwap constructor makes three 
connections, one for each of the connect patterns declared in the architecture.  A static check 
ensures that the types of the connected ports conform to the types declared in one of the 
connect patterns. 

The built-in semantics of ArchJava connections binds required methods to provided 
methods, so that when a required method is called on one port, the corresponding provided 
method of the other port is invoked.  For example, when the PoemPeer  in Figure 1 invokes 
addPoem on its poems  port, the invocation will be forwarded across the connection created in 
the PoemSwap constructor.  The addPoem method implementation provided by the poems  
port of the PoemSt or e (not shown) will be invoked. 
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Connection Constructors.  Each connect pattern must provide a connection constructor for 
each of the required connection constructors declared in the connected ports.  A connection 
constructor is named after the port that required the constructor, and the first argument is the 
component that requested the connection.  The other arguments match the ones declared in the 
corresponding required connection constructor.  For example, the cl i ent  port interface in 
PoemPeer  declares a required connection constructor that accepts an I net Addr ess .  
Therefore, the last connect pattern in Figure 2 declares a connection constructor with two 
arguments—the PoemPeer  that requested the connection and an I net Addr ess .  The body 
of a connection constructor must contain exactly one connect expression that matches the 
surrounding connect pattern.  The connect expression must include the port interface through 

poems 

PoemSwap 
sear ch sear ch 

store  

ui  peer  

poems 
poems 

cl i ent  

ser ver  
network 

 
 
public component class PoemSwap {  
  private final SwapUI  ui  = new SwapUI ( ) ;  
  private final PoemSt or e st or e = new PoemSt or e( ) ;  
  private final PoemPeer  peer  = new PoemPeer ( ) ;  
 
  connect pattern SwapUI . poems,  PoemSt or e. poems;  
  connect pattern PoemPeer . poems,  PoemSt or e. poems;  
  connect pattern SwapUI . sear ch,  PoemPeer . sear ch;  
 
  public PoemSwap( )  {  
    TCPConnect or . r egi st er Obj ect ( peer ,  POEM_PORT,  “ ser ver ” ) ;  
 
    connect( ui . poems,  st or e. poems) ;  
    connect( peer . poems,  st or e. poems) ;  
    connect( ui . sear ch,  peer . sear ch) ;  
  }  
 
  connect pattern PoemPeer . cl i ent ,  PoemPeer . ser ver  with TCPConnect or  {  
 
     c l i ent ( PoemPeer  sender ,  I net Addr ess addr ess)  throws I OExcept i on {  
        connect( sender . cl i ent ,  PoemPeer . ser ver )  
           with new TCPConnect or ( addr ess,  POEM_PORT,  “ ser ver ” ) ;  
     }  
  } ;  
}  
 

Figure 2.  A graphical and textual description of the PoemSwap architecture.  The PoemSwap
component class contains three subcomponents—a user interface, a poem store, and the 
network peer.  Connect patterns show statically how these components may be connected, and 
the connect expressions in the constructor link the components together following these 
patterns.  A final connect pattern shows how peers on different machines communicate via a 
TCPConnect or .  The cl i ent  connection constructor creates a connection when the 
PoemPeer  requests one. 
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which the sender  component requested the connection (sender . c l i ent  in the example).  
We explain the with keyword in the next section. 

3. Connector Abstractions in ArchJava 

In this section, we describe the new language features and libraries that support connector 
abstractions in ArchJava.  We extend the syntax of connect patterns and connect expressions to 
describe which connector abstractions should be used to typecheck and implement the 
connections.  Subsection 3.1 demonstrates these language features by examples, showing how a 
user-defined TCP/IP connector can be used to connect different PoemSwap peers across a 
wide-area network.  New connectors can be written using the ar chj ava. r ef l ect  library, 
described in Subsection 3.2, which reifies connections and required method invocations.  
Subsection 3.3 shows how the TCP/IP connector can be implemented using this library.  
Finally, subsection 3.4 discusses the use of connector abstractions, identifying when connector 
abstractions are beneficial and when a more conventional connector implementation may be 
appropriate. 

3.1. Using Connector Abstractions 

Connector Typechecking.  Instead of using ArchJava’s default typechecking rules, connect 
patterns can specify that a user-defined connector class should be used for typechecking 
instead.  For example, the connect pattern at the end of Figure 2 specifies a user-defined 
connector class to be used for typechecking using the syntax with <connector class>.  Every 
connector class has a static t ypecheck  method that defines the typechecking semantics of 
that connector (see Figure 3 below).  In the example, when the PoemSwap component class is 
compiled, the compiler loads the TCPConnect or  class and invokes the t ypecheck  method 
to check the validity of the connect pattern (see Figure 5 and the discussion in subsection 3.3).  
This typechecking replaces the default ArchJava typechecking semantics, allowing the 
connector abstraction to define arbitrary typechecking rules. 

In the case of TCPConnect or , the t ypecheck  method first invokes the standard 
ArchJava typechecker, and then additionally checks that all arguments and results of all 
methods in the connection are subtypes of the Ser i al i zabl e interface.  Because the 
TCPConnect or  uses Java’s serialization mechanism to send method arguments and results 
across a network, a run-time error will result if the method arguments and results are not 
serializable.  By defining its own typechecking semantics to extend those of ArchJava, the 
TCPConnect or  can detect this error at compile time1. 
 
Instantiating Connectors.  Connectors are instantiated whenever a connect expression that 
specifies a user-defined connector object is executed at run time.  A connect expression uses 
the syntax with <expression> to specify the connector instance that should be used for the 
connection it is creating.  For example, the connection constructor in Figure 2 executes a 
connect expression when it is called, and the connect expression creates a user-defined 
TCPConnect or  object, passing the address, TCP/IP port, and the name of the remote peer to 
the constructor of the connector.  The expression in the with clause must be have a type that is 

                                                                 
1 This check would have been handy when testing the PoemSwap application.  Before 

customized typechecking was implemented, we got run time errors because we forgot to 
make class Poem serializable. 
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a subclass of the connector type declared in the corresponding connect pattern, to ensure that 
the connector implementation used at run time matches the connector that was used to 
typecheck the connection statically. 

In the case of PoemSwap, the component to be connected to the PoemPeer  is a peer on a 
remote machine, and so we cannot use a direct reference to it in the connect expression.  
ArchJava allows developers to specify connections to remote components (to which they 
cannot have a direct reference) by specifying the type of the connected component rather than 
an actual concrete instance.  This type allows the compiler to check the connect expression 
against the surrounding connect pattern.  The TCPConnect or  is responsible for identifying 
and communicating with the remote component, and it does this using the I net Addr ess  
passed to the constructor. 

public class Connect or  {  
  public static Er r or [ ]  t ypecheck( Connect i on c) ;  
  public Obj ect  i nvoke( Cal l  c)  throws Thr owabl e;  
 
  public Connect or ( ) ;  
  protected Connect or ( Obj ect  component s[ ] ,  St r i ng por t Names[ ] ) ;  
 
  public final Connect i on get Connect i on( ) ;  
}  
 
public final class Connect i on {  
  public Por t [ ]  get Por t s( )  
  public Connect or  get Connect or ( )  
}  
 
public final class Por t  {  
  public St r i ng get Name( ) ;  
  public Met hod[ ]  get Requi r edMet hods( ) ;  
  public Met hod[ ]  get Pr ovi dedMet hods( ) ;  
  public Obj ect  get Encl osi ngObj ect ( ) ;  
}  
 
public final class Met hod {  
  public St r i ng get Name( ) ;  
  public Type[ ]  get Par amet er Types( ) ;  
  public Obj ect  i nvoke( Obj ect  ar gs[ ] )  throws Thr owabl e;  
}  
 
public final class Type {  
  public St r i ng get Name( ) ;  
  public boolean i sAssi gnabl eFr om( Type ot her ) ;  
  public static Type f or Name( St r i ng qual i f i edName) ;  
}  
 
public final class Cal l  {  
  public Met hod get Met hod( ) ;  
  public Obj ect [ ]  get Ar gument s( ) ;  
}  
 

Figure 3.  The ar chj ava. r ef l ect  library includes classes reifying connectors, 
connections, ports, methods, types, and calls.  User-defined connector classes extend the 
Connect or  class, overriding the i nvoke method to define customized dynamic semantics
and providing a t ypecheck  method that implements typechecking. 
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3.2. The archjava.reflect Library 

Connector abstractions are defined using the ar chj ava. r ef l ect  library, whose most 
important classes and methods are shown in Figure 3.  This library defines a Connect or  class 
that user-defined connector classes extend, as well as classes that reify connections, ports, and 
methods. 

Class Connect or  provides a hook for defining customized connectors.  Connector 
abstractions can define custom typechecking semantics by defining a static t ypecheck  
method, which is called at compile time to typecheck a connect pattern, returning a possibly 
empty array of errors.  For example, the default implementation of t ypecheck  returns an 
error for each required method that has no matching provided method, or has more than one 
matching provided method.  If a connector defines no t ypecheck  method, the compiler looks 
in that connector’s superclass for a t ypecheck  method, and so on until the compiler gets to 
the default t ypecheck  method in class Connect or . 

Run-time connection behavior can be defined by overriding the i nvoke method, which 
accepts a Cal l  object reifying an invocation on a required method.  The default 
implementation finds the corresponding provided method and invokes it, passing the resulting 
return value or exception back to the caller. 

Connect or  provides a default public constructor that is used by all direct clients and most 
subclasses.  A second constructor creates a connection programmatically (i.e., without a 
connect expression) from the specified arrays of components and corresponding port names.  
This constructor is provided since some connectors (including TCPConnect or ) must be able 
to create a connector object that represents the “ local end”  of a connection that was originally 
made on a remote machine.  Since this constructor allows connections to be created 
dynamically without being typechecked statically, it is accessible only to Connect or  
subclasses, not to clients. 

Classes Connect i on, Por t , Met hod, and Type reify the connection that is associated 
with the connector, along with its ports and method signatures.  Figure 3 shows only a fraction 
of the interface of these classes.  User-defined connectors do not extend these classes, but 
instead may use them as a library for getting information about the current connection.  This 
information, accessible through the get Connect i on method of Connect or , can be used 
statically when typechecking or dynamically when dispatching a required method invocation.  
For example, the connector can invoke provided methods at run time by calling i nvoke on the 
relevant Met hod object. 

3.3. Implementing Connector Abstractions 

Figure 4 shows how the run-time semantics of TCPConnect or  can be defined in Java code.  
The example shows primarily the interface of the connector and how it uses the 
ar chj ava. r ef l ect  library.  We omit the code in two helper classes: TCPDaemon, which 
listens for incoming network connections on a TCP/IP port, and TCPEndpoi nt , which 
serializes and deserializes data going through a connection endpoint. 

When the downl oadPoem method in Figure 1 creates a new instance of the cl i ent  port 
interface, the corresponding connection constructor links the cl i ent  port instance to a remote 
server by creating a TCPConnect or  object, passing the Internet address of the remote 
machine together with a port and string identifying the server.  The TCPConnect or  
constructor shown in Figure 4 creates a TCPEndpoi nt  object that opens a network 
connection to the remote host. 
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When a required method is called on the cl i ent  port instance, the runtime system reifies 
the call and redirects it to the i nvoke method on the TCPConnect or . TCPConnect or ’ s 
i nvoke method determines which required method was called, and then passes the name of 
the method, its parameter types, and the actual call arguments to the TCPEndpoi nt .  The 
TCPEndpoi nt  sends this data over the TCP/IP network connection. 

At the other side of the network, the PoemSwap application uses r egi st er Obj ect  to 
register a PoemPeer  component under the name “server”  (see Figure 2).  The 
r egi st er Obj ect  method starts a TCPDaemon listening at the assigned TCP/IP port.  
When the daemon receives an incoming connection, it creates a TCPEndpoi nt  object 
representing that TCP/IP connection and creates a TCPConnect or  object to represent the 

public class TCPConnect or  extends Connect or  {  
  // data members 
  protected TCPEndpoi nt  endpoi nt ;  
 
  // public interface 
  public TCPConnect or ( I net Addr ess host ,  int pr t ,  St r i ng obj Name)  
                                                    throws I OExcept i on {  
    endpoi nt  = new TCPEndpoi nt ( this,  host ,  pr t ,  obj Name) ;  
  }  
 
  public Obj ect  i nvoke( Cal l  cal l )  throws Thr owabl e {  
    Met hod met h = cal l . get Met hod( ) ;  
    return endpoi nt . sendMet hod( met h. get Name( ) ,  met h. get Par amet er Types( ) ,  
                               cal l . get Ar gument s( ) ) ;  
  }  
 
  public static void r egi st er Obj ect ( Obj ect  o,  int pr t ,  St r i ng obj Name)  
                                                    throws I OExcept i on {  
    TCPDaemon. cr eat eDaemon( pr t ) . r egi st er ( obj Name,  o) ;  
  }  
 
  // interface used by TCPDaemon 
  TCPConnect or ( TCPEndpoi nt  endpoi nt ,  Obj ect  r ecei ver ,  St r i ng por t Name)  {  
    super( new Obj ect [ ]  {  r ecei ver  } ,  new St r i ng[ ]  {  por t Name } ) ;  
    this. endpoi nt  = endpoi nt ;  
    endpoi nt . set Connect or ( this) ;  
  }  
 
  Obj ect  i nvokeLocal Met hod( St r i ng name,  Type par amet er Types[ ] ,  
                           Obj ect  ar gument s[ ] )  throws Thr owabl e {  
    // find method with parameters that match parameterTypes 
    Met hod met h = f i ndMet hod( name,  par amet er Types) ;  
    return met h. i nvoke( ar gument s) ;  
  }  
 
  // typechecking semantics defined in Figure 5 
}  
 

Figure 4.  The TCPConnect or  class extends the ar chj ava. r ef l ect . Connect or  class 
to define the dynamic semantics of a connector based on a TCP/IP network connection.  The 
i nvoke method passes the method name, parameter types, and arguments to a daemon that 
uses Java’s serialization facilities to send them over a TCP/IP network connection.  The 
daemon at the other end of the connection, created when the other peer called 
r egi st er Obj ect , calls i nvokeLocal Met hod on a TCPConnect or  object, which 
identifies the right method to call and invokes it. 



 11

connector locally.  The daemon uses the non-public TCPConnect or  constructor, passing the 
local TCPEndpoi nt  object as well as the object to be connected and the name of its 
connected port to the constructor.  Since the originating connection was created on the other 
machine, there is no information about this connection in the runtime system, and so it is 
necessary to specify the components and ports to be connected when calling the protected 
constructor of the Connect or  superclass. 

When the TCPEndpoi nt  receives an incoming method, it calls i nvokeLocal Met hod 
on the TCPConnect or  associated with the receiver object.  i nvokeLocal Met hod uses the 
f i ndMet hod helper function (not shown) to identify the matching provided method, and then 
invokes the method through a reflective call.  The result, or any exception that is thrown, will 
be packaged back up by the TCPEndpoi nt , sent back over the network, returned to the 
implementation of i nvoke in the source TCPConnect or , and returned to the caller. 

 
User-Defined Typechecking.  For each connect pattern in the system, the compiler loads the 
appropriate connector class and calls its t ypecheck  method at compile time.  The compiler 
passes t ypecheck  a Connect i on object that reifies the port interfaces in the connect 
pattern, so that the typechecker can examine the methods and types in the connected port 
interfaces. 

The t ypecheck  method returns a possibly empty array of Er r or  objects describing any 
semantic errors in the connect pattern.  The Er r or  class encapsulates a St r i ng describing 
the problem as well as a syntax element (a Connect i on, Por t , or Met hod) that describes 
where the error occurred, allowing the compiler to determine an accurate line number for the 
reported error. 

Figure 5 shows the definition of the t ypecheck  method of TCPConnect or .  The code 
begins by running the standard t ypecheck  method defined in class Connect or , which 
ensures that for each required method there is exactly one provided method with an identical 
name and signature.  It returns any errors found by this method.  If standard typechecking 
succeeds, the TCPConnect or  visits every required and provided method in the connection, 

public class TCPConnect or  extends Connect or  {  
  public static Er r or [ ]  t ypecheck( Connect i on c)  {  
    // First invoke the default Java typechecker 
    Er r or  [ ]  er r or s = Connect or . t ypecheck( c) ;  
    if ( er r or s. l engt h > 0)  
      return er r or s;  
 
    // ensure all arguments and results are Serializable 
    Type ser i al i zabl e = Type. f or Name( “ j ava. l ang. Ser i al i zabl e” ) ;  
    for ( int pI  = 0;  pI  < c. get Por t s( ) . l engt h;  ++pI )  {  
      for ( int mI  = 0;  mI  < c. get Por t s( ) [ pI ] . get Met hods( ) . l engt h;  ++mI ) {  
        Met hod met hod = c. get Por t s( ) [ pI ] . get Met hods( ) [ mI ] ;  
        Type r et ur nType = met hod. get Ret ur nType( ) ;  
        if ( ! ser i al i zabl e. i sAssi gnabl eFr om( r et ur nType) )  
          return new Er r or [ ]  {  new Er r or ( “ t ype not  ser i al i zabl e” ,  c)  } ;  
        // similar check for method arguments 
      }  
    }  
  }  
 
  // dynamic semantics defined in Figure 4 
}  
 

Figure 5.  The t ypecheck  method in the TCPConnect or  class ensures that method 
arguments and results are serializable. 
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making sure that all method arguments and results are Ser i al i zabl e, so that the 
TCPEndpoi nt  will be able to serialize them successfully at run time. 

3.4. Connector Implementation. 

Connectors can be implemented in a wide variety of ways, each with its own benefits and 
drawbacks.  For example, in addition to our connector abstractions, connectors could be built 
into the language, expressed idiomatically through a design pattern, or described using 
ArchJava’s component construct. 

The key benefit of using connector abstractions is that the same connector can be reused to 
support the same interaction semantics across many different interfaces, while still providing a 
strong, static guarantee of type safety to clients.  For example, the TCPConnect or  can 
connect any two ports with matching signatures, as long as the arguments to methods in those 
ports are Ser i al i zabl e.  Other solutions that guarantee type safety require separate stub 
and skeleton code to be written for each interface, causing considerable code duplication and 
hindering reuse and evolution.  Alternatively, a standard library for sending objects across a 
TCP/IP connection could be used, but this solution does not guarantee that the messages sent 
and received across the connection have compatible types, so run time errors are possible. 

The main drawback of using connector abstractions is that they are defined using a reflective 
mechanism.  Although connectors can define typechecking rules for their clients, there is no 
way to statically check that a connector’s implementation performs the communication in a 
type-safe way.  Also, there is some run-time overhead associated with reifying a method call so 
that a connector can process it dynamically.  Thus, in situations where a connector is not reused 
across different interfaces, it may be better to use objects or components to implement the 
connector. 

4. Evaluation 

We have implemented language support for connector abstractions in the ArchJava compiler, 
which is available for download at the ArchJava web site [Arc02].  Thus, all examples in this 
paper, including PoemSwap and PlantCare, are simplified versions of working code. 

We evaluate our design in two ways.  In the next subsection, we evaluate the expressiveness 
of our connector abstraction mechanism by describing how a wide range of connectors can be 
implemented.  In the following subsection, we evaluate the engineering benefits of connector 
abstractions with a small case study on the PlantCare ubiquitous computing application.  
Subsection 4.3 discusses the case study and reports feedback from the developers of PlantCare.  
Finally, subsection 4.4 compares our connector abstraction approach to an alternative approach 
using design patterns in the PlantCare system. 

4.1. Expressiveness 

In order to evaluate the expressiveness of our connector abstraction mechanisms, we use Mehta 
et al.’s taxonomy of connectors as a benchmark for our design [MMP00].  The taxonomy 
describes eight major types of connectors: procedure call, event, data access, linkage, stream, 
arbitrator, adaptor, and distributor connectors.  We discuss each connector type in turn, 
describing which species of that connector can benefit from using connector abstractions.  All 
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of the connector abstraction examples described here are available for download as part of the 
ArchJava distribution [Arc02]. 

 
Procedure Call.  Procedure call connectors enable the transfer of control and data through 
various forms of invocation.  Although most programming languages provide explicit support 
for procedure calls, there are a number of semantic issues that justify user-defined procedure 
call connectors.  For example, parameters could be passed by reference, by value, by (deep) 
copy, etc.; calls could be synchronous or asynchronous; calls could use one-to-many broadcast 
semantics, many-to-one collecting semantics, or conceivably even a many-to-many semantics.  

ArchJava’s connector abstractions are well suited to implementing procedure call connectors 
because the interface for defining connectors reifies method calls on ports.  As an example, we 
have implemented an Asynchr onousConnect or  that accepts incoming required method 
calls, returns to the sender immediately, and then invokes the corresponding provided method 
asynchronously in another thread. 

We have also implemented a Summi ngBr oadcast Connect or  that accepts an incoming 
method call, broadcasts it to all connected components, and sums the results of all the 
invocations before returning the sum to the original caller.  This second connector relies on 
ArchJava’s multi-way connections, which can connect more than two ports.  Both connectors 
implement appropriate typechecking; for example, the Asynchr onousConnect or  ensures 
that all methods in connected ports return void, while the 
Summi ngBr oadcast Connect or  ensures that all of the methods return an integer.  The 
TCPConnect or  shown in Figure 4 above is a procedure call connector that connects 
components running on different virtual machines. 

 
Event.  Event connectors support the transfer of data and control using an implicit mechanism, 
where the producer and consumer of an event are not aware of each other’s identity.  Semantic 
issues with event connectors include the cardinality of producers and consumers, event priority, 
synchronicity, and the event notification mechanism. 

Events are often implemented as inner-class callback objects in languages such as Java, but 
this technique can make programs very difficult to reason about and evolve, as it is hard to see 
which components might be communicating through an event channel.  In contrast, using a 
custom ArchJava event connector may aid in program understanding, because the connection 
between components is explicit in the software architecture of the system.  Connector 
abstractions provide additional benefit by allowing components to communicate using different 
event semantics.  For example, we have implemented an Event Di spat chConnect or  that 
enqueues event notifications and dispatches them asynchronously to consumers. 

The PlantCare application, described below in subsection 4.2, uses a user-defined connector 
to support asynchronous event-based communication across a loosely coupled ad-hoc network. 

 
Data Access.  Data access connectors are used to access a data store, such as a SQL database, 
the file system, or a repository such as the Windows registry.  Issues in data access components 
include initialization and cleanup of connections to data sources, and the conversion and 
presentation of data.  Conventional library-based techniques are appropriate for implementing 
many kinds of data access connectors.  However, connector abstractions can be used to provide 
a convenient view of the data source, or adding semantic value to a data source in a reusable 
way.  For example, one could imagine a connector that provides an object-oriented view of a 
relational database, translating each row of each table into an object and providing a collection-
like access to clients.  As a more concrete example, Figure 6 shows a Cachi ngConnect or  
that caches the results of method calls to a data store and returns the same result if the method 
is called again with identical arguments. 
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Linkage.  Linkage connectors bind a name in one module to the implementation provided by 
another module.  Examples of linkage connectors include imported names and references to 
names defined in other source files.  ArchJava’s connector abstractions are intended to connect 
object instances at run time, not link names at compile time.  Therefore, Linkage connectors are 
outside of the scope of ArchJava’s connector abstraction design. 

 
Stream.  Stream connectors support the exchange of a sequence of data between loosely 
coupled producer and consumer components.  Semantic issues with streams include buffering, 
bounding, synchronicity, data types, data conversion, and the cardinality of the producers and 
consumers.  Many of these issues can be encapsulated within a reusable connector abstraction.  
For example, we have developed a Buf f er edSt r eamConnect or  that implements a stream 
with a bounded buffer size, supporting one producer but an arbitrary number of consumers.  
The Buf f er edSt r eamConnect or  is reusable for streams of many different data types, but 
checks that the types of data produced and consumed match.  A plain Java implementation 
would either sacrifice reusability or use Obj ect  as the data type, giving up the checking 
benefits of a typed stream.  Here connector abstractions provide an advantage similar to 
generics proposals for Java such as GJ [BOS+98]. 

 
Arbitrator.  Arbitrator connectors provide services that coordinate and facilitate interactions 
among components.  Examples of arbitrators include semaphores, locks, transactions, fault 
handling connectors with failover, and load balancing connectors.  Semaphores and locks 
typically have the same interface no matter which components they connect, and so they are 
probably best implemented using ordinary objects or as ArchJava components.  However, more 
sophisticated arbitrators can benefit from ArchJava’s connector abstraction mechanism.  For 
example, we have built a LoadBal anci ngConnect or  that accepts incoming method calls 
from a client and distributes them to a bank of server components based on the current server 
loads.  The LoadBal anci ngConnect or  is reusable across any client interface, while still 
providing typechecking between clients and services. 

We have also implemented a Bar r i er Synchr oni zat i onConnect or .  Components 
invoke a different method on the barrier after each stage of work, and the barrier ensures that 
all its clients have called a given barrier method before it allows any of the method calls to 
return. 

 
Adaptor.  Adaptor components retrofit components with different interfaces so that they can 
interact.  Adaptors may convert data formats, adapt to different invocation mechanisms, 

public class Cachi ngConnect or  extends Connect or  {  
  protected Map cache = new Hasht abl e( ) ;  
 
  public Obj ect  i nvoke( Cal l  cal l )  throws Thr owabl e {  
    Li st  ar gument s = Ar r ays. asLi st ( cal l . get Ar gument s( ) ) ;  
    Obj ect  r esul t  = cache. get ( ar gument s) ;  
    if ( r esul t  ! = null)  
      return r esul t ;  
 
    r esul t  = super. i nvoke( cal l ) ;  
 
    if ( r esul t  ! = null)  
      cache. put ( ar gument s,  r esul t ) ;  
    return r esul t ;  
  }  
}  
 

Figure 6.  A Cachi ngConnect or  that caches method invocations to avoid recomputation. 
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transform protocols, or even make presentation changes like internationalization conversions.  
Well-known design patterns such as Adaptor, Wrapper, and Façade are often used to implement 
adaptors [GHJ+94].  However, connector abstractions can be useful for performing similar 
adaptations to different interfaces.  For example, the Rai nConnect or  in section 4.2 below 
adapts data types using structural subtyping, so that two components can communicate with 
different datatypes as long as the data sent in a message has a superset of the information 
expected by the receiver. 

 
Distributor.  Distributor connectors identify paths between components and route 
communication along those paths.  Distributors are not first-class connectors, but provide 
routing services to other connectors.  Both the Event Di spat chConnect or  described 
above and the Rai nConnect or  described below include distributor functionality. 

 
Summary.  As the discussion above makes clear, ArchJava’s connector abstractions are very 
flexible, supporting a wide range of different connector types.  Some kinds of connectors are 
most clearly expressed using conventional mechanisms such as objects and components.  
However, connector abstractions provide a unique level of reusability across port interfaces 
while still providing clients with a strong static guarantee of type safety. 

4.2. PlantCare Case Study 

In order to evaluate the engineering benefits of user-defined connector abstractions, we 
performed a small case study with the PlantCare ubiquitous computing application [LBK+02].  
PlantCare is a project at Intel Research Seattle that uses a collection of sensors and a robot to 
care for houseplants autonomously in a home or office environment.  This application 
illustrates many of the challenges of ubiquitous computing systems: it must be able to configure 
itself and react robustly to failures and changes in its environment. 
 
The Gardening Service.  Figure 7 shows the architecture of the gardening service, one of 
several services in the PlantCare system.  The gardening service consists of a central gardener 
component that uses three external services as well as a client for a well-known discovery 
service.  The gardener periodically executes a cycle of code that cares for plants as follows.  
First, the gardener requests from the Pl ant St or e a list of all the plants in the system and the 
sensor readings from each plant.  For each plant, it queries the Encycl opedi a to determine 
how that plant should be cared for.  After comparing the recommended and actual plant 
humidity levels, it adds or removes watering tasks from the TaskSer ver  so that each plant 
remains in good health. 

We have chosen to include the interfaces of relevant external services as part of the 
gardening service architecture, because then we can use the connectors in the architecture to 
reason about the protocols used to communicate with these services.  A more conventional 
architectural depiction would represent these protocols as connectors in an enclosing 
architecture.  However, in ubiquitous computing systems, there is no way to statically specify 
the entire enclosing architecture, because the services available in a system may change 
frequently as devices move and connections fail.  Instead, the gardening service architecture 
includes a partial view of the surrounding architecture, including the external components with 
which the gardener communicates. 

Below the visual architectural diagram in Figure 7 is the ArchJava code describing the 
architecture (the complete gardener service code is about 500 lines long).  The concrete 
Gar dener  and Di scover yCl i ent  component instances are declared with final fields.  The 
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connect declaration linking the di scover y  ports of the cl i ent  and the gar dener  is 
syntactic sugar for a connect pattern and a corresponding connect expression. 

The connect pattern links the Pl ant I nf o port interfaces of the gardener and the plant 
store.  When the gardener requests a new connection, the provided connection constructor 
specifies that it should be connected with a Rai nConnect or , using a Ser vi ceI D to 
identify the location of the remote Pl ant St or e component.  The other connect patterns, 
although omitted from this diagram, are similar. 

  The Rai nConnect or  class implements the Rain communication protocol used in the 
PlantCare system.  When methods are invoked through connections of type 
Rai nConnect or , the user-defined connector code will package the method name and 

Gardener DiscoveryClient 

TaskServer 

GardeningService 

Encyclopedia 

PlantStore 

 
public component class Gar deni ngSer vi ce {  
  private final Gar dener  gar dener  = new Gar dener ( get Ser vi ceI D( ) ) ;  
  private final Di scover yCl i ent  c l i ent  = new Di scover yCl i ent ( ) ;  
 
  connect cl i ent . di scover y,  gar dener . di scover y;  
 
  connect pattern Gar dener . Pl ant I nf o,  Pl ant St or e. Pl ant I nf o 
    with Rai nConnect or  {  
      Pl ant I nf o( Gar dener  sender ,  Ser vi ceI D i d)  {  
        connect( sender . Pl ant I nf o,  Pl ant St or e. Pl ant I nf o)  
                 with new Rai nConnect or ( i d) ;  
      }  
    }  
  // other architectural connections not shown 
}  
 
public component class Gar dener  extends St at eMachi neNode {  
  public port di scover y {  
    requires Ser vi ceI D f i nd( St r i ng ser vi ceType) ;  
  }  
  public port interface Pl ant I nf o {  
    requires Pl ant I nf o( Ser vi ceI D i d) ;  
    requires void st at usQuer y( ) ;  
    provides void st at usRepl y( Pl ant St at us dat a) ;  
  }  
  private Pl ant I nf o pl ant I nf oPor t ;  
 
  public st ar t St at eCycl e( )  {  
    Ser vi ceI D I D = di scover y. f i nd( “ Pl ant  St or e” ) ;  
    pl ant I nf oPor t  = new Pl ant I nf o( I D) ;  
    pl ant I nf oPor t . st at usQuer y( ) ;  
    . . .  
  // remaining Gardener implementation not shown 
}  
 

Figure 7.  The architecture of the PlantCare gardening service 
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arguments as an XML message, send them over a HTTP connection, and call the appropriate 
provided method on the other side.  Since Rain messages are asynchronous and do not return a 
response, Rai nConnect or  also defines a custom typechecker that verifies that methods in 
the connected ports have a void return type.  Although Rai nConnect or  is similar to 
TCPConnect or  in that both connect components that may be located on different hosts, it 
provides very different semantics (asynchronous messages vs. synchronous method calls), 
demonstrating the versatility of ArchJava’s connector abstractions. 

The Rai nConnect or  implementation is similar to the TCPConnect or  defined earlier.  
The connector uses the name of the method called as the name of the XML message to be sent.  
The method arguments are serialized and sent over the network using the same Rain library that 
is currently used by the PlantCare application.  Because Rain messages are asynchronous, the 
Rai nConnect or  returns immediately after sending a message, without waiting for an 
acknowledgement or response. 

The Gar dener  class has a concrete port for discovery, but port interfaces for 
communicating with other components.  This is a natural choice, because discovery is a 
fundamental service that must be in place in order for the Gar dener  to dynamically discover 
other available services.  The discovery interface allows the Gar dener  to look up a service by 
its type.  It returns a Ser vi ceI D data structure that can then be used in a connection 
constructor to connect to other components. 

The code in st ar t St at eCycl e shows the beginning of the cycle of code that the 
Gar dener  executes when caring for plants.  The code uses the discovery service to find the 
Ser vi ceI D of an available Pl ant St or e service.  It then allocates a new Pl ant I nf o port 
instance and stores it in a variable.  The final line of code shown sends an asynchronous 
message through the newly allocated port, querying the status of the plants in the system.  The 
Pl ant St or e will reply with another asynchronous message, which will be translated by the 
Rai nConnect or  into a call to the st at usRepl y  method, which carries out the next stage 
in the cycle.  If an internal timer (not shown) expires before the st at usRepl y  message is 
received, the gardener assumes that the Pl ant St or e component (or an intervening network 
link) has failed, and restarts the state cycle, using the discovery service once again to connect to 
a functioning Pl ant St or e. 

4.3. Discussion 

In this section, we analyze the results of our case study according to three criteria: program 
understanding, program correctness, and software evolution.  Finally, we report feedback from 
the developers of the PlantCare application. 

 
Program Understanding.  The ArchJava version of the gardening service code has a number 
of characteristics that make it easier to understand the service’s implementation.  In the Java 
version, the information about which messages are sent and received is spread throughout the 
source code.  Figure 7 shows how the ArchJava architecture documents the sent and received 
messages explicitly as required and provided methods in the ports of Gar dener , making it 
easier to understand the interactions between the gardener and other services. 

Figure 7 also shows how the ArchJava source code documents the architecture of the 
service, showing which other services the gardener depends on.  This information is obscured 
in the original gardener source code; it would have to be deduced from the types of messages 
exchanged.  Another benefit is that the connector specification explicitly documents that the 
Rain communication protocol is used between components.  This would be especially valuable 
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if the gardener used different protocols to communicate with different external services, as may 
often be the case in heterogeneous ubiquitous computing systems. 

Figure 8 compares the Java and ArchJava versions of the code that responds to a 
Pl ant I nf oRepl y  message from the encyclopedia.  Here, ArchJava’s abstraction 
mechanisms for inter-component communication make the application logic of the gardener 
clearer.  In the original Java code, a single handl eMessageI n method responds to all 
incoming messages.  The Pl ant I nf oRepl y  message is one case in a long list of messages; 
the code stores the plant care information in an internal data structure and then calls a separate 
sendTasksRequest  function to send out the next batch of messages.  In the ArchJava 
version, this response code is more cleanly encapsulated in a single method, which responds to 
the original message and then sends the next set of messages through the task port.  The process 
of sending a message is also simpler and cleaner in ArchJava.  The programmer simply calls a 

Java Version: 
 
  protected void handl eMessageI n( Message m)  {  
    if . . .  {  . . .  // cases for plant status messages above... 
    }  else if ( msg instanceof Pl ant I nf oRepl y)  {  
      // case for plant info message 
      Pl ant I nf oRepl y p = ( Pl ant I nf oRepl y)  msg;  
      car eMap. put ( p. name, p) ;  
      st at e = AWAI TI NG_TASKS;  
      sendTasksRequest ( ) ;  
      return;  
    }  else if ( msg instanceof TaskLi st Repl y)  {  
      // case for task reply message below... 
  }  
 
  protected void sendTasksRequest ( )  {  
    try {  
      TaskLi st Quer y q = new TaskLi st Quer y( ) ;  
      q. l i st  = " Wat er  Pl ant s" ;  
      sendMessage( t askSer ver , q, newCl osur e( ) ) ;  
    }  catch ( Except i on ex)  {  
      // an error occurred, restart the cycle 
      ex. pr i nt St ackTr ace( ) ;  
      r eset St at e( ) ;  
    }  
  }  
 
ArchJava Version: 
 
  void i nf oRepl y( Pl ant I nf oRepl y dat a)  {  
    car eMap. put ( dat a. name,  dat a) ;  
    st at e = AWAI TI NG_TASKS;  
    try {  
      t askPor t . t askQuer y( " Wat er  Pl ant s" ) ;  
    }  catch ( Except i on ex)  {  
      // an error occurred, restart the cycle 
      ex. pr i nt St ackTr ace( ) ;  
      r eset St at e( ) ;  
    }  
  }  
 

Figure 8.  A comparison of the old and new versions of the Gar dener  code that responds to 
the Pl ant I nf oRepl y  message. 
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method in the t askPor t , rather than constructing a custom message and sending it using the 
Rain library. 
 
Correctness.  The ArchJava language performs a number of checks that help to ensure the 
correctness of the Gar deni ngSer vi ce implementation.  For example, the 
Rai nConnect or  typechecker verifies interface compatibility between the ports of 
Gar dener  and the connected ports of the external services at compile time.  In the original 
Java code, this problem would show up as a run time error when a component does not 
recognize a message that was sent to it. 

ArchJava also verifies communication integrity [MQR95,LV95,ACN02b], a property which 
guarantees that the Gar dener  only communicates with the services declared in the 
Gar deni ngSer vi ce architecture (We assume that the gardener does not directly use Java’s 
networking library, a property that could also be checked in a straightforward way).  This 
property guarantees that the architecture can be relied on as an accurate representation of the 
communication in the system, increasing the program understanding benefits of architecture. 

 
Software Evolution.  Because of ArchJava’s explicit abstractions for ports and connectors, 
some evolutionary steps are easier to perform.  For example, if a service needs to interact with a 
device that cannot generate XML messages, we can replace Rai nConnect or  with a new 
connector type that can communicate with the more restricted device.  Also, we can reuse an 
existing service in a new environment by simply inserting adaptor components or connectors 
that retrofit the old service to the message protocol expected by the new environment.  In both 
cases, ArchJava’s explicit descriptions of component interfaces and connections make 
architectural evolution easier. 

An important criterion to consider in the evolvability of a system is the degree to which the 
system’s modularization hides information within a single module.  One benefit of the 
ArchJava version of the gardening service is that the gardener’s functionality is encapsulated in 
Gar dener  while the communication protocol used is encapsulated in Gar deni ngSer vi ce.  
The ports of Gar dener  serve as the interfaces used to hide this information.  Thus, in the 
ArchJava code, the gardening functionality can be changed independently of the 
communication protocol, facilitating evolution of this service. 

 
Developer Feedback.  Perhaps the most important evaluation criterion is feedback from the 
developers of PlantCare.  We found that the developers were able to understand the ArchJava 
notation fairly quickly.  They said that the Gar deni ngSer vi ce architecture captured their 
informal architectural view of the system well.  Finally, they agreed that ArchJava was able to 
provide the benefits describe in the analysis above.  We are currently working with them to put 
ArchJava to production use in a future ubiquitous computing system. 

4.4. Design Pattern Alternatives to Connector Abstractions 

In this section, we compare the connector abstraction technique we used in the PlantCare 
application to an alternative solution using conventional object-oriented design techniques.  
Many design patterns are intended to provide benefits like separation of concerns and ease of 
change, similar to the benefits provided by connectors [GHJ+94].  In order to be concrete, our 
comparison focuses on the PlantCare application. 

For example, Figure 9 shows the PlantCare code for responding to the Pl ant I nf oRepl y  
message, rewritten using the Proxy design pattern.  In this example, the application-defined 
response code is contained in an i nf oRepl y  method that is similar to the i nf oRepl y  
message in the ArchJava example.  Instead of invoking the t askQuer y  method on the 
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t askPor t , as in ArchJava, it invokes the method on a proxy that sends the message on to the 
task server.  Like the ArchJava version, this solution cleanly separates communication code 
from application logic. 

The main difference between the design pattern code and the ArchJava code is that in the 
design pattern solution, custom code must be written to dispatch each message to the handler 
function (i nf oRepl y  in this example) and to send each message using the Rain library 
(t askQuer y  in this example).  By comparison, in ArchJava the dispatch code and the 
message sending code are written once in the connector, and can then be reused for each 
connection in the system. 

 
Analysis.  The primary disadvantages of our approach, relative to design patterns, are twofold.  
First, our approach involves a new language construct.  Although it is a very tiny addition to the 
ArchJava language, it does increase the complexity of the language, and this comes on top of 
the (more substantial) ArchJava additions to Java.  Second, our approach uses reflection, 
thereby losing some understandability and efficiency relative to custom-written object-oriented 
code. 

On the other hand, our approach offers key advantages over conventional object-oriented 
solutions.  Perhaps the most significant advantage is that connector abstractions can define 
typechecking rules that verify different properties than the default Java rules.  Thus, connectors 
can statically verify that certain classes of connector-specific errors will not occur at run time. 

Design Patterns Version: 
 
  protected void handl eMessageI n( Message m)  {  
    if . . .  {  . . .  // cases for plant status messages above... 
    }  else if ( msg instanceof Pl ant I nf oRepl y)  {  
      // case for plant info message 
      i nf oRepl y( msg) ;  
    }  else if ( msg instanceof TaskLi st Repl y)  {  
      // case for task reply message below... 
  }  
 
  void i nf oRepl y( Pl ant I nf oRepl y dat a)  {  
    car eMap. put ( dat a. name,  dat a) ;  
    st at e = AWAI TI NG_TASKS;  
    try {  
      t askPr oxy. t askQuer y( " Wat er  Pl ant s" ) ;  
    }  catch ( Except i on ex)  {  
      // an error occurred, restart the cycle 
      ex. pr i nt St ackTr ace( ) ;  
      r eset St at e( ) ;  
    }  
  }  
 
  protected class TaskPr oxy {  
    public void t askQuer y( St r i ng t ask)  {  
      TaskLi st Quer y q = new TaskLi st Quer y( ) ;  
      q. l i st  = t ask;  
      sendMessage( t askSer ver , q, newCl osur e( ) ) ;  
    }  
    // methods for other TaskServer messages... 
  }  
 
Figure 9.  The response code for the Pl ant I nf oRepl y  message, written using design 
patterns to separate communication code from application logic. 
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In many cases, connector abstractions allow programmers to reuse connector code that 
would be duplicated in a conventional solution using adaptors or proxies.  Since code does not 
have to be duplicated or customized for each communication interface, the resulting system is 
easier to evolve when connector abstractions are used.  For example, changing the connector 
used takes only one line of code in ArchJava, but in the design pattern solution, a new Proxy 
class must be written that adapts the communication interface to the new connection protocol.  
Our design also expresses the intent of a connector directly through the abstraction, rather than 
indirectly through a design pattern.  Finally, ArchJava explicitly documents the software 
architecture of the system, providing benefits for reasoning about and evolving code.  

Our design shares many benefits with the design-pattern solution described above.  
Connector code is isolated from application code, and the interfaces used to communicate 
between objects are documented and checked.  However, in the design-pattern case, these 
benefits only accrue if the developer anticipates the need to evolve the connectors in a system, 
and chooses to use the appropriate design pattern in the system.  An important advantage of 
language support for connector abstractions is that it encourages developers to think and 
program in terms of connectors, gaining all of the benefits described above.  In contrast, 
developers may balk at implementing design patterns that may result in duplicated code if they 
seem unnecessary at the time, discovering only later that the system would have been easier to 
understand or evolve had design patterns been used. 

5. Related Work 

Software Architecture.  Most architecture description languages (ADLs) support the 
specification or implementation of software connectors [MT00].  For example, Wright specifies 
the temporal relationship of events on a connector and provides tools for checking properties 
such as freedom from deadlock [AG97].  SADL formalizes connectors in terms of theories and 
describes how abstract connectors in a design can be iteratively refined into concrete 
connectors in an implementation [MQR95]. Rapide specifies connectors within a reactive 
system using event traces [LV95]. 

Several ADLs provide tools that can generate executable code from an architectural 
description.  UniCon’s tools use an architectural specification to generate connector code that 
links components together [SDK+95]. C2 provides runtime libraries in C++ and Java that 
implement C2 connectors [MOR+96].  Darwin provides infrastructure support for 
implementing distributed systems specified in the Darwin ADL [MK96].  These code 
generation tools, however, support a limited number of built-in connector types, and developers 
cannot easily define connectors with custom semantics. 
 
User-Defined Connectors.  The work most similar to our own is a specification of how user-
defined connector types can be added as plugins to the UniCon compiler [SDZ96].  UniCon 
connector plugins are fairly heavyweight, as connector developers must understand the details 
of several phases of the compiler.  However, this design allows new connectors to be tightly 
integrated into the compiler system, permitting new kinds of architectural analysis to be defined 
over these connectors.  In contrast, ArchJava’s connector abstractions are lightweight, and a 
wide range of connectors can be implemented with knowledge of a small library interface. 

Dashofy et al. describe how off-the-shelf middleware can be used to implement C2 
connectors [DMT99].  Their work differs from ours in that the semantics of the connectors is 
fixed by the C2 architectural style, while our connector abstractions are intended to support a 
wide range of architectural styles. 

Mezini and Ostermann describe language support for adaptor connections that allow 
components with different data models to work together [MO02].  Their language makes 
wrapper code less tedious to write, and provides support for the difficult problem of 
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maintaining consistent wrapper identity.  ArchJava’s connector abstractions provide weaker 
support for adaptors, but facilitate a range of connector types beyond adaptors. 

 
Object-Oriented Languages.  A number of proposals have added connection support to 
object-oriented languages such as Java.  For example, ComponentJ [SC00] and ACOEL 
[Sre02] as well as the original design of ArchJava [ACN02a] all provide primitives for linking 
components together with connections.  However, these languages all fix the semantics of 
connections to the same synchronous method call semantics used by Java.   

 
Aspect-Oriented Programming.  Aspect-oriented programming (AOP) languages allow 
programmers to more effectively separate code that implements different application concerns.  
For example, Soares et al. showed how the AspectJ language can be used to implement 
distribution and persistence in a health complaint system [SLB02].  Aspect-oriented 
programming developed out of meta-object protocols, which allow programmers to define how 
an object should react to events like method calls [KRB91].  Relative to languages such as 
AspectJ and the more powerful meta-object protocol technique, ArchJava’s connector 
abstractions provide a more limited kind of separation of concerns, restricted to the semantics 
of connectors.  However, because connectors are bound in the surrounding architecture of a 
component, they support more local reasoning about connector aspect code. 

Composition filters is the aspect-oriented approach most similar to ArchJava’s connector 
abstractions.  In this technique, developers interpose filter objects that can inspect incoming 
method calls and perform operations like translation, adaptation, and forwarding on the 
messages [BA01].  ArchJava’s connector abstractions are similar to composition filters, but 
instead of processing all messages called on a single object, they process messages exchanged 
between two component objects in an architecture. 

 
Distributed System Infrastructures.  A number of libraries and tools have been defined to 
support distributed programming.  Commercial examples include RPC [BCL+87] as well as 
COM [Mic95], CORBA [OMG95], and RMI [Jav97].  These systems offer a convenient 
method-call interface for remote communication, much like the interface provided by 
ArchJava’s connector abstractions.  Furthermore, these systems check statically that 
communication through their connections is well typed.  Infrastructures support some 
flexibility—for example, RMI allows the developer to specify the wire protocol to be used, and 
CORBA provides an event service that can be used in place of remote method calls.  However, 
each of these commercially available systems defines a particular semantics (usually 
synchronous method call) for the connections it supports, rather than providing a general 
interface that programmers can implement in various ways to support their application-specific 
needs. 

Recently, researchers have been developing extensible middleware such as the OpenORB 
[BCA+01] and the Universally Interoperable Core [Ubi02].  These systems allow developers to 
customize middleware aspects such as the network transport protocol, object marshalling, and 
method invocation semantics.  DADO provides features of aspect-oriented programming in the 
context of a reflective middleware system, supporting connector functionality like caching and 
performance monitoring [WJD03].  Compared to ArchJava’s connector abstractions, these 
middleware systems provide a great deal of built-in services, but are not tightly integrated into 
programming languages and do not provide customized connection typechecking. 

 
CASE Tools.  Several computer-aided software engineering tools, including Consystant and 
Rational Rose RealTime, generate code to connect components together.  This connection code 
can range from stubs and skeletons for an infrastructure like CORBA or RMI to wires that 
connect different processors in an embedded system.  Like many of the technologies discussed 
above, these tools typically support a fixed set of connectors. 
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6. Conclusion 

This paper described a technique for adding explicit support for connector abstractions to the 
ArchJava programming language.  In our system, connector abstractions can be defined using a 
very flexible reflective library-based mechanism.  We have evaluated the expressiveness of our 
technique by implementing representative connectors from a wide range of connector types, 
and we have evaluated the engineering tradeoffs in a small case study on the PlantCare 
ubiquitous computing application.  The benefits of connector abstractions include separating 
communication code from application logic, documenting and checking connector interfaces, 
and reusing connector abstractions more effectively compared with alternative techniques. 

In future work, we intend to implement more connectors and evaluate their expressiveness 
on a wider variety of systems.  We also hope to develop a library-based framework for 
composing connectors together so that complex connectors can be easily created from simple 
building blocks.  Another important area of future work is more effective support for adaptor-
style connections, extending recently developed adaptation techniques such as on-demand 
remodularization [MO02].  Finally, we would like to provide specification and checking of 
connector properties that go beyond simple typechecking.  We believe that enhanced language 
and system support for connectors is crucial to the effective development and evolution of 
many classes of software systems. 
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