banner above paper title

Naturally Embedded DSLs

Jonathan Aldrich

Carnegie Mellon University
aldrich@cs.cmu.edu

Abstract

Domain-specific languages can be embedded in a variety of ways
within a host language. The choice of embedding approach entails
significant tradeoffs in the usability of the embedded DSL. We ar-
gue embedding DSLs naturally within the host language results
in the best experience for end users of the DSL. A naturally em-
bedded DSL is one that uses natural syntax, static semantics, and
dynamic semantics for the DSL, all of which may differ from the
host language. Furthermore, it must be possible to use DSLs to-
gether naturally—meaning that different DSLs cannot conflict, and
the programmer can easily tell which code is written in which lan-

guage.

Categories and Subject Descriptors CR-number [subcategory):
third-level

Keywords naturally embedded domain specific languages

1. Usability Challenges in Embedded DSLs

Domain-specific languages (DSLs) can provide a number of advan-
tages in software development. Developers can express a program
in the most natural way for the domain they are working in. Con-
versely, the DSL compiler can take advantage of domain knowl-
edge to catch programming errors and produce more optimized
code, compared to a general-purpose language and compiler.

Domain-specific languages often describe part of a solution to
a larger problem, and solving the larger problem may therefore re-
quire more than one DSL. For example, a program may solve a
problem that involves two different domains and therefore two dif-
ferent DSLs to capture them, or else a single domain may have dif-
ferent aspects that are best expressed with different DSL notations.
In either of these cases, it is important to semantically integrate the
DSLs with each other, and potentially with a general-purpose lan-
guage as well.

A natural approach to integration is to embed DSLs within a sin-
gle general-purpose host language. Embedded DSLs can be defined
in multiple ways. In a library-based embedding approach, the DSL
is defined as a library in the host language, so that expressions using
that library make up a kind of DSL. In a macro-based embedding
approach, macros are defined for DSL constructs, and the compiler
expands uses of the macros into host language expressions, which
are then typechecked and executed as usual.

[Copyright notice will appear here once *preprint’ option is removed. ]

short description of paper

Alex Potanin

Victoria University of Wellington
Alex.Potanin@ecs.vuw.ac.nz

Both of these approaches have usability problems. The host
language or its macro system may not support the most appropriate
syntax for the DSL, in which case DSL programs must be expressed
awkwardly. If the programmer makes a semantic mistake in the
DSL, the mistake will be caught after translation into the host
language (if it is caught at all), meaning that the error message may
be difficult for the programmer to understand.

A third approach is extensible languages, in which a language
can be extended through a library' with new syntax and seman-
tics [2]. The extensible language approach can address both of the
problems above, but can introduce new usability problems. De-
pending on the design of the extensible language, it may be difficult
to know what code is being expressed in the host language vs. in
an extension. Furthermore, different DSLs may conflict when the
programmer tries to use them together, forcing the programmer to
disambiguate the uses somehow.

Note that we focus on usability for programmers who use the
host language and its embedded DSLs. Making it easy to define em-
bedded DSLs is a different usability problem. Solving both prob-
lems are worthwhile, but we prioritize the usability for program-
mers who use DSLs because a DSL is used many more times than
it is defined, and because programmers who define DSLs are likely
to have more expertise (and thus more ability to cope with com-
plexity) than programmers who use them.

2. Naturally Embedded DSLs

We argue that DSLs should be embedded naturally within the host
language. A system supporting naturally embedded DSLs has the
following characteristics:

e The ability to define new syntax that expresses the ideas in a
domain in the most natural way. The host language should place
as few as possible restrictions on the syntax of embedded DSLs.

The ability to define new semantics that can be understood in
terms of the target domain, rather than as a mode of use of the
host language. Note that the DSL may still be implemented by
translation into the host language, or by an interpreter written
in the host language; what is important is that this translation or
interpretation is not visible to the end user.

The ability to define error messages (both at compile time and
at run time), introspection and debugging in terms of the target
domain, rather than in terms of the host language.

Support for the programmer to easily identify what language
each expression is written in, and what host-language type each
DSL expression has.

A modularity guarantee that separately-defined DSLs can be
used together without conflicts.

Yor a compiler plug-in, although this makes the DSL dependent on the

particular compiler used rather than on a language standard that can be
implemented by multiple compilers

2016/8/16



def mostOptimalTrade() : ShareTransaction
{pick best 42-shot strategy
from {APPL, XRO, MSFT}
apply strategy for mnext 10 day range
only keep the indexed shares}

def storedTrade(t : ShareTransaction) : SQLQuery
{CREATE in "TRADES" WHERE (t.name, t.buy,

Figure 1: A simple example mixing a share trading and database
DSL’s in Wyvern.

3. Extended example: Wyvern

As part of our talk, we will describe the Wyvern programming
language as an example of the naturally embedded domain-specific
language approach [5] that was inspired by earlier work by Omar
et al. [4] Wyvern is a modularly extensible language in which
language extensions can be defined as libraries.

Wyvern allows DSLs to be defined with their own syntax, can
be an arbitrary sequence of characters that is distinguished from
the host language using indentation. Delimiters such as { and }
can also be used, at the cost of requiring the DSL to balance
any occurrences of these within its syntax. Extensions define their
own semantics, including custom error messages.” Our approach
of using indentation or reserved delimiters distinguishes the DSL
from the host language, and we use expected types or macro names
so that developers can easily identify which DSL is being used in
each subexpression. The delimiting and identification mechanisms
also work together to ensure that DSLs cannot conflict with one
another.

Our talk will include a brief demonstration of Wyvern that
illustrates these features. Figure 1 demonstrates how a banking app
can mix a specific trading language with a database manipulation
language within a common language of Wyvern.

4. Conclusion

Related approaches to our work include tools such as ProteaJ [3]
that uses protean operators that resolve potential syntactic conflicts
by looking at expected types. An alternative approach uses key-
words to distinguish different embedded DSLs (like XJ [1]).

We believe that the natural approach to DSL embedding, for
example as in the Wyvern language, will significantly increase the
usability of DSLs and thereby help software developers realize
more of their benefits in practice.

References

[1] Tony Clark, Paul Sammut, and James S. Willans. Beyond annotations:
A proposal for extensible Java (XJ). In Source Code Analysis and
Manipulation, 2008.

[2] Sebastian Erdweg, Tillmann Rendel, Christian Késtner, and Klaus Os-
termann. Sugar]: library-based language extensibility. In Object-
Oriented Programming Systems, Languages, and Applications, 2011.

[3] Kazuhiro Ichikawa and Shigeru Chiba. Composable user-defined oper-
ators that can express user-defined literals. In Modularity, 2014.

[4] C. Omar, YoungSeok Yoon, T.D. LaToza, and B.A. Myers. Active code
completion. In Proc. 2011 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’11), pages 261-262, 2011.

2 support for customizable error messages is still being implemented as of
this writing, but hopefully will be complete for a demo at DSLDI

short description of paper

[5] Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex
Potanin, and Jonathan Aldrich. Safely composable type-specific lan-
guages. In ECOOP, pages 105-130. Springer-Verlag, 2014.

2016/8/16



