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Abstract 
A number of techniques have been proposed to achieve a better separation of concerns in programming 

systems.  How does one evaluate the benefits and drawbacks of the various alternatives, and offer guidance 
to the designers of future systems?  This paper proposes a set of challenge problems for separation of 
concerns, each of which deals with different types or dimensions of concerns.  Drawing from my 
experience with large, high-level object-oriented systems and from the separation of concerns literature, 
this paper classifies separation of concerns problems into a number of categories and chooses 
representative examples from each.  I intend to continue this work by evaluating a range of current systems 
using these problems as benchmarks, and then using this experience to design better support for separation 
of concerns in the context of high-level object-oriented languages like Cecil. 

1 Challenge Problems 
Challenge problems have long been useful in evaluating program design and implementation 

techniques.  Parnas [P72] proposed the KWIC system as a benchmark to evaluate designs for ease of 
change, and showed that many kinds of change were easier in designs that used information hiding as a 
criterion, as opposed to a straightforward top-down functional decomposition.  Object-oriented languages 
support good designs in the KWIC system and many others. 

However, other kinds of problems are harder to modularize with current language technology.  A set of 
challenge problems is needed to pinpoint the weaknesses of current systems and evaluate techniques for a 
more clean separation of concerns.  In this section, this paper proposes a set of problem categories that 
capture the wide range of separation of concerns problems in the literature and in practical experience.  For 
each category, a representative challenge problem is chosen and other problems from the literature are 
mentioned.  There is not enough space for a complete specification of each challenge problem, but the brief 
outlines given should be enough to capture many of the central issues in each problem category; future 
work includes more precise descriptions of these problems.  The categories each encompass a significant 
range of problems and are largely orthogonal, but some overlap is justified because the different causes or 
rationales for problems in different categories may require different solutions, in general. 

1.1 Functional Concerns 
A functional concern is a piece of functionality provided for a client.  The client may be the user, 

another program, or even another component of the same program.  In an ideal decomposition, a functional 
concern could be isolated to a single module.  However, standard object-oriented decomposition can 
prevent the programmer from encapsulating a piece of functionality in a single module.  In some cases, a 
functional concern may be spread among several objects.  In other cases, a large object may deal with 
several different functional concerns, which are grouped into one object because they all operate on a single 
set of data.  Because mainstream object-oriented languages require a module to be an object, they cannot 
modularize many functional concerns well. 

A challenge problem for modularizing functional concerns is separating different kinds of operations 
on a parse tree, a concern that has been suggested in the literature [TOHS99] and has come up in my own 
compiler work at the University of Washington.  A good modularization would separate the methods and 
data members needed for each operation on the parse tree into its own module, so that one module would 
contain all the methods for type checking, another for tree display, etc: 

 
Statement.typecheck() { ... }  (in typechecking module) 
Expression.typecheck() { ... } 



Other modules, organized by class as in conventional systems, would contain the core data structure & 
methods for each class in the parse tree.  The Cecil language [C92] designed at UW does not have a module 
system, but because Cecil has “open objects” it is possible to add methods and members to a class from 
outside that class’s definition file.  Thus, it is possible to encapsulate all the methods for performing one 
operation in a file devoted to a particular functional concern.  This problem is also solved well in the 
Hyper/J [TOHS99] and AspectJ [K00] systems, which provide different ways to group methods by 
functionality rather than by class. 

Other problems in the literature include the various actions of a bottle deposit machine like depositing 
and printing a receipt [RA92], various composable pieces of data structure functionality such as searching 
and allocation [SB98], user interaction concerns such as directory listings and error messages in an FTP 
server [LM99], and many others. 

1.2 Program Organization 
Program organization refers to the large-scale structure of the program, at the level of large interacting 

groups of objects.  My interest in this concern arose from difficulty understanding Vortex [DDG+96], a 
compiler written in 100,000 lines of high-level Cecil code, without any documentation of the application’s 
control-flow or module structure.  Large applications often have a large-scale structure (or software 
architecture) in order to separate concerns at the highest level of the application; however, because the 
source code doesn’t deal with any unit larger than a single object, this organization is rarely apparent from 
browsing the source code.  This concern also arises when a single library supports a family of applications 
that are built by choosing a customized subset of objects and hooking them together to accomplish the 
desired behavior.  Such program configurations are often awkward to specify in conventional object-
oriented languages.  Large-scale concerns like program organization are complimentary to smaller-scale 
issues like functional concerns, and play a similar role at a higher level of abstraction. 

The challenge problem was inspired by an application simulating urban development over time 
[NBW00].  Figure 1 shows UrbanSim’s software architecture.  In order to provide a good structure for the 
simulation, a shared object store represents the current state of the simulation, and several independent 
model components implement various aspects of the simulation, such as economics, transportation, and 
demographics.  This application structure is similar to the blackboard software architecture [GS94].  The 
challenge problem is therefore to explicitly represent a blackboard architecture, with an explicit connection 
diagram showing how the modules interact with a shared data store.  The system should enforce the 
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Figure 1.  UrbanSim Architecture 



application constraint that the modules do not directly communicate, but only make modifications to the 
shared data.  It should be easy to make changes like setting up another data store in the same program with 
a different set of simulation modules.  Ideally, a tool would also be provided to graphically visualize the 
program structure. 

Other program organization problems include the other common architectural styles in Garlan & 
Shaw’s catalog [GS94], including pipe & filter, event-driven, and layered architectures.  The abstraction 
and vertical extension techniques in the role-model work [RA92] can also be thought of as separating 
program organization concerns at design time. 

1.3 Global Properties 
Global properties are notoriously difficult to enforce in a modular way using existing technologies.  

Typically, custom code must be added at every point where the global property could be changed to ensure 
that the required property continues to hold.  This makes it difficult to change system-wide properties, or to 
implement them in a different way.  It may also be tough to guarantee that all possible places where the 
property could be violated have been found. 

Examples of global properties include aliasing properties that prevent a private object reference from 
escaping a particular module [NVP98], various security properties, constraints that relate the values of 
variables spread throughout the program, global variables or constants, and synchronization between 
threads in a multithreaded system.  My previous work in compiler analyses for eliminating unnecessary 
synchronization [ACSE99] was largely inspired by a desire to support cleaner synchronization 
specifications in an efficient way.  Global property concerns are closely related to model checking and type 
system design. 

Constraints are very useful in specifying flexible graphical user interfaces [B93] and are a good 
challenge problem for separation of global property concerns.  The programmer should be able to 
declaratively specify linear constraints and inequalities between ordinary floating-point program variables: 

 
constraint(window.right + offset < graphic.left); 

 
When the value of one variable changes over the course of program execution, violating a constraint, 

an off-the-shelf constraint solver is invoked to find variable values that maintain the constraints, ideally 
leaving the trigger variable’s value unchanged.  The user should be able to design custom constraints (such 
as that two windows cannot overlap in a windowing system) and specify solvers to be invoked when 
variables involved in the constraint are changed. 

1.4 Repetitive Code 
Certain concerns almost invariably lead to ubiquitous repetitive code throughout a system.  Examples 

include checking the invariants of a data structure or system of objects, logging application behavior, 
tracing executions of a large number of methods, or handling common errors consistently throughout a 
large code base [LL00]. 

The challenge problem, invariant checking, was inspired by a performance-related change to the 
Vortex compiler.  In the Vortex optimizer, sets of classes are represented in a number of ways, including 
singleton classes, all descendants of a particular class, enumerated sets, bit vectors, and other 
representations.  I discovered a performance problem where some classes could not be put into bit vectors, 
causing very slow O(n2) behavior for set union operations.  Putting these classes into bit vectors changed a 
key invariant used many places throughout the whole class set representation code, over 1500 lines of 
complex Cecil code.  To verify that the new invariant was not being violated after my changes, I added 
checking statements to many different operations, but continued to discover bugs, because I had forgotten 
to add checks to some places where the invariant was affected. 

A satisfactory solution to the invariant checking problem would allow the programmer to specify an 
invariant in one place and automatically apply it to a large set of methods through some pattern-matching 
technique: 

 
inherited invariant(X > 0 && ptr != NULL) on public methods(MyClass); 

 



It should be very easy to remove the invariant once testing is complete, or to change the invariant as 
changes are made to the code.  Finally, there should be a clean way to add an invariant to all public 
methods of a class without enumerating the methods (in case more are added later) and the invariant should 
be inherited by subclasses by default, even if they override the methods where the invariant is checked. 

Other categories of hard-to-modularize concerns, such as enforcing global properties, can lead to 
repetitive code.  Thus there is some overlap in this categorization.  However, repetitive code is a significant 
issue in its own right, because it creates more work for programmers, makes it easy to forget a crucial 
repetition here and there, clutters up the resulting code, and makes change more difficult.  Thus repetitive 
code is a useful design and evaluation criterion for systems that enhance separation of concerns. 

1.5 System Performance 
System performance refers to the performance of an entire subsystem of a program when performing a 

task for the user, or experiencing the load of a number of system clients.  Examples include a user querying 
a large company database, or a large number of worldwide users purchasing items through a company’s e-
commerce system. 

Conventional object-oriented programming systems can often encapsulate the performance 
characteristics of a particular data structure, so that it can be searched in O(log n) time, etc.  However, the 
problem is more difficult when the final performance of a system is a product of a large system of objects 
working together, and possibly distributed across multiple machines.  Performance problems are difficult to 
characterize in general, and can be among the most challenging issues to debug in a particular system.  
Because of the diversity of modularity problems caused by performance concerns, this paper does not offer 
a single challenge problem in this area. 

Performance represents a modularity problem because the factors underlying the performance are often 
spread out through the entire code base of a system, so it is difficult to solve a performance problem by 
looking at a single, key part of the system.  In addition, improving the performance of a system can 
interfere with modularity in other was, such as by tying objects too closely together.  Thus it is important to 
make the performance characteristics of a system clear from the overall design, and it is important to be 
able to make performance improvements without compromising the modularity of other concerns. 

Although it is difficult to imagine a programming technology that makes all performance problems 
easy to modularize, technologies designed to address other categories of modularity may improve system 
performance modularity as a side effect.  For example, making the software architecture of a system 
explicit may make it easier to change the configuration of a system to improve performance, perhaps by 
duplicating a bottleneck object across multiple different objects.  Features for encapsulating repetitive code 
make it easier to do effective logging, which can pinpoint the performance bottlenecks in a system. 

1.6 Special Purpose Concerns 
Some special purpose concerns have proven especially difficult to modularize because the concern is 

best specified in a declarative or graphical way, rather than with standard imperative code.  For example, 
graphical user interface design is usually done with a graphical editor, which allows the programmer to lay 
out components visually on the screen and write snippets of code to connect the components to the core 
application.  When GUIs are specified in imperative code, the result is often very repetitive and difficult to 
understand or change, because the textual medium is a very poor representation of the intended graphical 
result.  Certain concerns that also fit into other categories (for example, constraints) may be best expressed 
as a domain-specific language.  Finally, object initialization and traversal is often best specified in a 
declarative syntax [ML98]. 

The challenge problem for this area is providing a clean specification for a parser.  Textual file formats 
are most easily specified in the declarative BNF syntax, and so the easiest way to write a parser is to 
annotate a BNF description of the language with actions to take when a particular construct is parsed.  
Programs such as YACC have been constructed to generate parsers automatically from these annotated 
BNF files.  But tools like YACC do not always fit well into standard development environments, can be 
difficult to customize, and may not be available for all languages (including Cecil).  A good solution to this 
challenge would support a file format notation recognizably close to BNF within the programming 
language, and without a lot of repetitive declarations.  Actions to be taken should be specified in a notation 
as natural as the notation used in tools like YACC.  The whole thing should be done in the framework of a 
single extensible language, so that the parsing code is smoothly integrated with the rest of the application: 



 
rule class_decl ::= CLASS class_name { /* add to symbol table */ } ... 

 
It may be impossible to effectively express all special-purpose concerns in a single, flexible language.  

Certainly it would be very challenging to seamlessly incorporate a graphical GUI designer into an 
imperative programming language.  However, an extensible language with a way to embed declarative 
syntax could provide a natural solution to issues like parsing or object traversal, as long as the extensibility 
mechanism does not make the language significantly harder to understand.  Even if a specifically designed 
domain specific language is still superior for the particular concern, there are costs to using more than one 
language in a single project that may make a language extension mechanism more attractive.  In any case, 
good support for integration with a variety of domain-specific languages can allow programmers to express 
each concern in the most modular and appropriate way. 

1.7 Context Dependent Behavior 
A final concern that can be difficult to modularize effectively is context dependent behavior.  Object-

oriented programming allows different code to be executed depending on one particular context—the class 
of the receiver object.  The receiver class context has proven extremely useful in practice.  However, other 
contexts may also be useful in selecting the appropriate behavior.  Multi-methods, present in Cecil, CLOS, 
and other high-level object-oriented languages, allow executable code to be selected based on the classes of 
all the arguments to a method, not just the class of the receiver object.  Predicate dispatching, which 
chooses code based on variable values and structures, has long been used in functional programming and 
has recently been integrated into an object-oriented research language [EKC98].  Error handling by 
specifying exception handlers or by passing closures to be invoked in an error situation also allows custom 
code to be executed based on an error-handling context. 

The challenge problem comes from the security domain.  It is often important that sensitive methods 
can only be called from trusted system classes, or from privileged object instances.  To solve this problem, 
a system should allow methods to be selected based on the calling scope [AT98].  Ideally, the programmer 
could specify dispatch based on the calling object’s class, the particular object instance, or even data within 
the object.  For some callers, the invoked method would perform the indicated task; for others, there might 
be restrictions on the task or an exception might be thrown. 

 
method sensitive() with caller module(System) | privileged_inst { ... } 
method sensitive() /* no caller specified */ { throw new Exception(); } 

2 Conclusion & Future Work 
This paper proposed a number of challenge problems for effective separation of concerns in object-

oriented systems.  It includes a comprehensive categorization of a wide range of important concerns that 
are difficult to modularize, encompassing most if not all of the examples given in the separation of 
concerns literature.  Different proposed systems designed to separate concerns more effectively have 
attacked subsets of these issues.  For example, the AspectJ [K00] and Hyperspaces [TOHS99] projects both 
attack functional concerns and repetitive code from different perspectives.  Many high-level languages 
have improved concerns that deal with context dependent behavior, and composition filters [AT98] also 
seem well suited to this domain.  Domain-specific language generators such as those in GenVoca 
[BST+94] attack special-purpose concerns, as do a number of language extensions such as the traversal 
strategies in Demeter [ML98].  Type system work, model checking, and logic programming languages have 
focused on various global properties, and there is some support for these in systems like AspectJ.  Systems 
from the software architecture field have focused on program organization, although many of these 
solutions are not well integrated into a programming language. 

In future work, I intend to evaluate the strengths and weaknesses of a number of different systems 
using the challenge problems as guides.  I will also develop a synthetic benchmark that unifies problems 
from all the different concern categories into a single application, so that I can see how the different 
concerns might interact.  Using this experience as a guide, I will then look at ways to extend Cecil with 
better support for separation of the different categories of concerns.  The orthogonal high-level object-
oriented features and advanced type system of Cecil should be a benefit in designing such a system. 
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