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Abstract. Subtyping of Bounded Polymorphism has long been known
to be undecidable when coupled with contra-variance. While decidable
forms of bounded polymorphism exist, they all sacrifice either useful
properties such as contra-variance (Kernel F<:), or useful metatheoretic
properties (F�

<:). In this paper we show how, by syntactically separating
contra-variance from the recursive aspects of subtyping in System F<:,
decidable subtyping can be ensured while also allowing for both contra-
variant subtyping of certain instances of bounded polymorphism, and
many of System F<:’s desirable metatheoretic properties. We then show
that this approach can be applied to the related polymorphism present
in D<:, a minimal calculus that models core features of the Scala type
system.

Keywords: Polymorphism · Language design · Functional languages ·
Object oriented languages

1 Introduction

Bounded polymorphism (or bounded quantification) is a powerful and widely
used language construct that introduces a form of abstraction for types. Where
functions provide an abstraction of behaviour for values, bounded polymorphism
provides an abstraction of behaviour for types. A motivating example is an
ordering for numbers, comparing two numbers, and returning −1 if the first is
smaller than the second, 0 if the two numbers are equal, and 1 if the first is
larger than the second. Below we provide such the signature for ord using no
particular language syntax.

def ord : [A <: Number] A -> A -> Integer

The type A is unimportant except in that A is some subtype of Number (the upper
bound on A). Ideally we would like ord to be defined abstractly for any value
that could be considered a Number, and not have to write a separate function for
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Integer, Natural, and Real. ord is quantified over type A which is bounded by
Number.

Bounded polymorphism has been adopted by many different languages, and
is not exclusive to any specific paradigm. Haskell is an instance of bounded
polymorphism in a functional setting. In Haskell, bounds take the form of type
classes that values must conform to [17]. In an object oriented language, Java
Generics provide a form of bounded polymorphism for both method and class
definitions. Scala exists in both the function and object oriented paradigms, and
includes generics similar to that of Java (only more flexible), but adds abstract
type members on top, further complicating matters.

Unfortunately, several forms of bounded polymorphism have been shown to
exhibit undecidable subtyping. To the surprise of many at the time, Pierce [13]
demonstrated that subtyping in System F<:, a typed λ-calculus with subtyping
and bounded polymorphism, was undecidable by a reduction to the halting prob-
lem. More recently, and to perhaps less surprise, subtyping of Java Generics was
also shown to be undecidable [8]. Hu and Lhoták [9] showed subtyping of D<:,
a minimal calculus, capturing parts of the Scala type system, was undecidable
by a reduction to an undecidable fragment of System F<:. Mackay et al. [10]
developed two decidable variants on Wyvern, a programming language closely
related to Scala. Mackay et al. focused on recursive types in Scala, but touched
on bounded polymorphism.

If subtyping in languages with relatively wide usage is undecidable, then
one might ask the question: how important is decidable subtyping in practice?
Unfortunately, undecidability means that type checking of certain programs will
not terminate, and will potentially crash without any error message indicating
the problem. In writing a compiler, one fix to this problem might be to enforce a
maximal depth on proof search, or to simply timeout during type checking. These
are unsatisfying solutions, as not only might they create some false negatives, but
they also won’t be able to provide the programmer much guidance on debugging
their program. Thus, while presumably rare, the potential problems are severe.

Not all forms of bounded polymorphism are undecidable, and there have
been attempts at identifying fragments of bounded polymorphism that are both
decidable and expressive. With regard to System F<:, the most notable instances
of these are perhaps Kernel F<: and F�

<: (technically Kernel F<: existed prior to
questions of decidability). All restrictions sacrifice some aspect of the language,
and exclude some category of program from the language. Both Kernel F<:

and F�
<: exclude useful behaviour, or in the case of F�

<: introduce undesirable
properties to the language (this will be addressed in Sect. 2).

In this paper we show how simple syntactic restrictions can allow for decid-
able forms of bounded polymorphism that are easy to type check, allow for
informative error messages, all while retaining many of the useful properties of
typing in System F<:: subtype transitivity, type safety, and minimal typing. We
then demonstrate that this approach can be extended to the related calculus
D<:. The novelty of our approach lies in its simplicity. Simple syntactic restric-
tions allow for relatively simple extensions to existing type checkers, and can
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help keep metatheory simple. Simplicity of metatheory is particularly useful in
the context of D<:, a type system that arises from a family of type systems that
are notoriously nuanced in their theoretical foundations [15].

2 The Undecidability of Bounded Polymorphism in
System F<:

Bounded polymorphism was formalized in System F<: by Cardelli [4], and shown
to be undecidable by Pierce [13]. System F<: introduces bounded polymorphism
to the simply typed λ-calculus by way of a universally quantified syntactic form
with the following typing rule.

Γ, (α � τ1) � t : τ2

Γ � Λ(α � τ1).t : ∀(α � τ1).τ2

That is, term t, with type τ2, is quantified over some type, represented by α,
whose upper bound is τ1. The undecidability of subtyping in System F<: was
demonstrated by a reduction of subtyping to the halting problem. The reduction
relies on the contra-variance in the subtyping rule for bounded polymorphism
given below.

Γ � τ2 <: τ1 Γ, (α � τ2) � τ ′
1 <: τ ′

2

Γ � ∀(α � τ1).τ ′
1 <: ∀(α � τ2).τ ′

2

(S-All)

As can be seen above, subtyping of bounded polymorphism in System F<: allows
for contra-variance on the polymorphic type bound. Kernel F<:, a variant of Sys-
tem F<:, has been shown to be decidable in its subtyping [14]. Kernel F<: removes
the contra-variance of the S-All rule above, and instead enforces invariance on
the bound.

Γ, (α � τ) � τ1 <: τ2

Γ � ∀(α � τ).τ1 <: ∀(α � τ).τ2
(S-All-Kernel)

While decidable, S-All-Kernel is unsatisfying as it excludes desirable
behaviour. Ideally, we would like the ord function, from Sect. 1, to be usable
in positions that require a more specific type such as Integer. Suppose we want
to parameterize an Integer sorting algorithm on not just the list, but the order-
ing too.

def sort (compare : [A <: Integer] A -> A -> Integer ,
l : List[Integer ]) : List[Integer]

We would like to be able to call the above sort function with ord.

assert(sort(ord , [1, 8, 2, -10]) == [-10, 1, 2, 8])
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Castagna and Pierce [5] attempted to introduce such variance in a safe way by
proposing F�

<: with the following subtyping rule for bounded polymorphism.

Γ � τ2 <: τ1 Γ, (α � �) � τ ′
1 <: τ ′

2

Γ � ∀(α � τ1).τ ′
1 <: ∀(α � τ2).τ ′

2

(S-All
�)

τ ::=
� top
α variable

τ → τ arrow
∀(α � τ).τ all

Fig. 1. System F<: Type Syntax

Unfortunately, while decidable, F�
<: sacrifices minimal typing. That is, it is pos-

sible to write a term in F�
<: that can be typed with two different, and unrelated

types [6]. A lack of minimal typing means that the typing algorithm for F�
<: is

not complete.

3 Separating Recursion and Contra-Variance
in System F<:

In this section we present a variant of System F<: that introduces a syntactic
restriction on bounded polymorphism to achieve decidable subtyping. We start
by introducing the type syntax of System F<: in Fig. 1. Since we are only con-
cerned with subtyping, and not typing, we only present the type syntax. The
term syntax and typing rules can be found in the accompanying technical report.
Further, throughout the rest of this paper, we refer to several different definitions
of subtyping and typing. To distinguish between these differences, we annotate
the judgment. We have already mentioned three different subtyping definitions,
and differentiate them here

– Subtyping for System F<: as defined by Cardelli et al. [4] is indicated as
Γ � τ1 <: τ2.

– Subtyping for Kernel F<: is indicated as Γ � τ1 <:K τ2.
– Subtyping for F�

<: is indicated as Γ � τ1 <:� τ2.

A type in System F<: is either the top type (�), a bounded type variable
(α), an arrow type (τ → τ), or a universally quantified type (∀(α � τ).τ) i.e.
bounded polymorphism. Note: in the literature, polymorphism can mean several
different language features, however in this paper, unless stated otherwise, we
use it as short hand to refer to bounded polymorphism of the form in System
F<:.

In Fig. 2 we define the subtyping of FN
<:, a normal form of subtyping in Sys-

tem F<:, defined by Pierce [13]. Subtyping is bounded above by � (SN
-Top)
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and explicitly reflexive in the case of type variables (SN
-Rfl). A type super-

types a type variable if it supertypes its upper bound (SN
-Var). Subtyping of

arrow types is contra-variant with respect to its argument type, and covariant
with respect to its return type (SN

-Arr). Finally, subtyping of bounded poly-
morphism is contra-variant with respect to the type bounds, and covariant with
respect to the type bodies.

Achieving a decidable variant of System F<: follows a simple idea: we restrict
contra-variance of type bounds to only types that do not themselves contain
bounded polymorphism. In Fig. 3 we introduce a separated variant for the syntax
of System F<: called FR

<:. In FR
<:, types containing no bounded polymorphism are

identified by ρ. Their only difference from more general types is a lack of bounded
polymorphism. A restricted type, ρ, is either �, a restricted type variable γ, or an
arrow type. We keep the generalized form of type variables, α, for convenience.
We now define a restricted subtyping relation using the rule set in Fig. 4.

Γ � τ <:N � (SN -Top) Γ � α <:N α (SN -Rfl)

(α � τ ′) ∈ Γ

Γ � τ ′ <:N τ

Γ � α <:N τ
(SN -Var)

Γ � τ2 <:N τ1
Γ � τ ′

1 <:N τ ′
2

Γ � τ1 → τ ′
1 <:N τ2 → τ ′

2

(SN -Arr)

Γ � τ2 <:N τ1 Γ, (α � τ2) � τ ′
1 <:N τ ′

2

Γ � ∀(α � τ1).τ ′
1 <:N ∀(α � τ2).τ ′

2

(SN -All)

Fig. 2. System F<: Subtyping

τ ::= FR
<: Type

� top
α variable
τ → τ arrow
∀(γ � ρ).τ restricted all
∀(υ � τ).τ all

α ::= Type Variable
υ unrestricted
γ restricted

ρ ::= Restricted Type
� top
γ variable
ρ → ρ arrow

Fig. 3. FR
<: Type Syntax

The subtyping of FR
<: defined in Fig. 4 replaces the S

N
-All rule with two

rules: SR
-All-Kernel and S

R
-All. SR

-All-Kernel is exactly the rule for
subtyping of bounded polymorphism found in Kernel F<:, that is, for ∀(α �
τ1).τ ′

1 to subtype ∀(α � τ2).τ ′
2, τ1 and τ2 must be syntactically equivalent.

Contra-variance is allowed only in cases where the type bounds are of the form
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γ � ρ, and thus do not themselves include bounded polymorphism. This is
captured by the rule S

R
-All.

The result of this restriction is that subtyping may only introduce new
instances of bounded polymorphism into the context if they are common to
both types.

3.1 Subtype Decidability

In order to prove subtype decidability, we define a finite measure on types under
a context (M(Γ, τ)), along with an ordering (M(Γ1, τ1) < M(Γ2, τ2)). We sub-
sequently demonstrate that for any calls to a subtype algorithm for FR

<:, all
resulting subtype calls are strictly smaller that the original call.

Γ � τ <:R � (SR-Top) Γ � α <:R α (SR-Rfl)

(α � τ ′) ∈ Γ

Γ � τ ′ <:R τ

Γ � α <:R τ
(SR-Var)

Γ � τ2 <:R τ1
Γ � τ ′

1 <R: τ ′
2

Γ � τ1 → τ ′
1 <:R τ2 → τ ′

2

(SR-Arr)

Γ, (α � τ) � τ1 <:R τ2

Γ � ∀(α � τ).τ1 <:R ∀(α � τ).τ2
(SR-All-Kernel)

Γ � ρ2 <:R ρ1 Γ, (γ � ρ2) � τ1 <:R τ2

Γ � ∀(γ � ρ1).τ1 <:R ∀(γ � ρ2).τ2
(SR-All)

Fig. 4. FR
<: Subtyping

Indexed Types. Before we define our measure M, we introduce an indexing
on type variables and types, along with a related invariant on typing contexts.

We index type variables with a natural number, indicating their position
in a context. This is represented as a superscript on type variables: αn under
context Γ is the (n + 1)th type variable introduced to Γ (the first type variable
introduced to Γ being indexed by 0). We extend this indexing to types in the
form of an upper bound on type variable indices: τn under context Γ indicates
that for all αi occurring in τn, i < n. Generally the index n is not important,
and so we only include it when relevant. We further define a simple form of
well-formedness:

Definition 1 (Type Variable Well-Formedness). A type τn is well-formed
under context Γ (written Γ � τn wf) if and only if n ≤ |Γ |.
We now use this to define a well-formedness property that we assume on all
typing contexts:
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Definition 2 (Typing Context Well-Formedness). A typing context Γ is
well-formed (written Γ wf) if and only if for all (αn � τ i) ∈ Γ we have i < n.

That is, a type bound τ in a typing context Γ may only contain occurrences of
type variables that were already in Γ when τ was added to it.

Note that indices on types are not unique, and are only an upper bound on
type variable occurrences. i.e. if we are able to write τn, and n < m, then we
are equally able to write τm. Finally, we use this to define an indexing on typing
contexts.

Definition 3 (Indexed Typing Context)

Γn � {(αi � τ)|(αi � τ) ∈ Γ and i ≤ n}

D(Γ, α) = 1 + D(Γ ′, τ)
where Γ = Γ ′, (α � τ), Γ ′′

D(Γ, τ1 → τ2) = 1 + max(D(Γ, τ1), D(Γ, τ2))

D(Γ, �) = 0
D(Γ, ∀(α � τ1).τ2) = 0

Fig. 5. Quantification depth: the depth of the next instance of bounded polymorphism.

Q(�) = 0
Q(α) = 0
Q(τ1 → τ1) = Q(τ1) + Q(τ2)
Q(∀(α � τ1).τ2) = 1 + Q(τ1) + Q(τ2)

Q(∅) = ∅
Q(Γ ) = Q(τ) + Q(Γ ′)

where Γ = Γ ′, (α � τ)
Q(Γ, τn) = Q(Γn) + Q(τn)

Fig. 6. Quantification size: the number of instances of bounded polymorphism in a
type.

A Finite Measure on Types. M(Γ, τ) is defined as a lexicographic ordering
on the quantification size and the quantification depth of τ under Γ . Note: we
use quantification here to refer to bounded polymorphism, i.e. “all” types of the
form ∀(α � τ1).τ2. We define M using two simpler measures:

1. D(Γ, τ) (see Fig. 5): the depth at which the next instance of bounded poly-
morphism occurs in τ , and

2. Q(Γ, τ) (see Fig. 6): the number of instances of bounded polymorphism in τ
under context Γ .

D, or quantification depth is defined in Fig. 5 as the maximum depth at
which the next quantification type occurs. D is also necessarily finite, since it
is bounded by the sizes the context Γ and type τ . Note: we assume a simple
well-formedness property, that type variables in the context only refer to types
lower down in the context, this allows us to disregard Γ ′′ in the definition of
D(Γ, α).
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Q(τ), or quantification size of a type is defined in Fig. 6 as the number of
syntactic instances of quantification within some τ . It is simple to demonstrate
that Q is finite, as it is bound by the (finite) size of τ . We then define Q(Γ, τ), as
the quantification size of both the type τ , and all types in the context Γ . Since
context arising from type checking must be finite, it follows that Q(Γ, τ) must
also be finite.

M = Q × D
and
(q1, d1) < (q2, d2) ⇐⇒ q1 < q2 or (1)

q1 = q2 and d1 < d2 (2)

Fig. 7. Lexicographic ordering on quantification size and depth.

Finally, we define M(Γ, τ) along with an ordering in Fig. 7. M(Γ, τ) is defined
as (Q(Γ, τ), D(Γ, τ)). The key property of M that guarantees subtype decidabil-
ity, is the fact that restricted types have no bounded polymorphism as subterms,
i.e.

Property 1 (Quantification Size of Restricted Types in FR
<:)

∀ρ,Q(ρ) = 0

Proof of Decidability. Since the subtyping defined in Fig. 4 is syntax-directed,
the inversion of the rules themselves represent an algorithm for subtyping of FR

<:.
This means that we need not define an algorithm, and are only required to reason
about the conclusions of the rules and their premises. We define subtypeF R

<:
as

the algorithm obtained by inverting the rules in Fig. 4. Theorem 1 provides a
proof of decidability of subtyping in FR

<:.

Theorem 1 (Subtype Decidability of FR
<:). For all Γ , τ1, and τ2,

subtypeF R
<:
(Γ , τ1, τ2) is guaranteed to terminate.

Proof. Termination of subtypeF R
<:

is easy to demonstrate by showing that M
represents a strictly decreasing measure on subtyping. That is, for any subtype
check

subtypeF R
<:

(Γ, τ1, τ2)

for any resulting calls
subtypeF R

<:
(Γ ′, τ ′

1, τ
′
2)

we have
M(Γ ′, τ ′

1) + M(Γ ′, τ ′
2) < M(Γ, τ1) + M(Γ, τ2)

Since subtypeF R
<:

is defined as the inversion of the rules in Fig. 4, the above
property is demonstrated by showing that the size of the premises (as measured
by M) of each rule is strictly smaller than the size of the conclusion. In most
cases it is fairly simple to demonstrate this invariant, however in the cases of
S

R
-Var and S

R
-All, the result is not necessarily so obvious.
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Case 1 (SR
-Var).

(α � τ ′) ∈ Γ Γ � τ ′ <:R τ

Γ � α <:R τ
(SR

-Var)

The only sub-proof that we need demonstrate our invariant for is Γ � τ ′ <:R τ .
That is, we need to show that

(Q(Γ, τ ′)+Q(Γ, τ),D(Γ, τ ′)+D(Γ, τ)) < (Q(Γ, α)+Q(Γ, τ),D(Γ, α)+D(Γ, τ))

Since Q(Γ, τ) and D(Γ, τ) fall on both sides of the ordering, it is sufficient to
show that

(Q(Γ, τ ′),D(Γ, τ ′)) < (Q(Γ, α),D(Γ, α))

Γ is in fact an ordered list of type variable bounds, and thus (α � τ ′) ∈ Γ is
equivalent to asserting that there exists some Γ ′ and Γ ′′ such that Γ = Γ ′, (α �
τ ′), Γ ′′. Now from the definition of D we have that

D(Γ, α) = 1 + D(Γ ′, τ ′)

Therefore, clearly D(Γ, α) > D(Γ ′, τ ′), and since Γ (and thus Γ ′) is ordered all
variables in τ ′ are mapped within Γ ′, and D(Γ, τ ′) = D(Γ ′, τ ′), giving us

D(Γ, α) > D(Γ, τ ′)

Since D is decreasing, in order to show that our invariant is obeyed, we need
only show that Q is not increasing, i.e. Q(Γ, α) �< Q(Γ, τ ′). We make use of
the well-formedness of typing contexts that we defined in Definition 2. That is,
whenever we retrieve a type bound from a well-formed typing context, the index
of that type bound is strictly smaller than that of the associated type variable.
Suppose that α above is indexed by some n By definition

Q(Γ, αn) = Q(Γn) + Q(αn)

Further, by Definition 2 we know there exists some i such that i < n and

Q(Γ, τ i) = Q(Γ i) + Q(τ i)

Since i < n and n ≤ n, by Definition 3 we know that

Γ i ∪ {(αn � τ i)} ⊆ Γn

Therefore,
Q(Γn) ≥ Q(Γ i) + Q(τ i)

and finally we get
Q(Γn) + Q(αn) ≥ Q(Γ i) + Q(τ i)
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Case 2 (SR
-All).

Γ � ρ2 <:R ρ1 Γ, (γ � ρ2) � τ1 <:R τ2

Γ � ∀(γ � ρ1).τ1 <:R ∀(γ � ρ2).τ2
(SR

-All)

Firstly, it is simple to show that

M(Γ, ρ1) + M(Γ, ρ2) < M(Γ,∀(γ � ρ1).τ1) + M(Γ,∀(γ � ρ2).τ2)

Secondly, the key observation is that by Property 1 we know that

Q(ρ1) = Q(ρ2) = 0

As a result we also have that

Q(Γ, (γ � ρ2) = Q(Γ ))

Thus we have

Q(Γ, (γ � ρ2), τ1) + Q(Γ, (γ � ρ2), τ2) = Q(Γ, τ1) + Q(Γ, τ2)

It is thus simple to show that

Q(Γ, τ1) + Q(Γ, τ2) < Q(Γ,∀(γ � ρ1).τ1) + Q(Γ,∀(γ � ρ2).τ2)

and subsequently we get the desired result.

3.2 Properties of FR
< :

One of the most useful aspects of FR
<:, is that it represents a subset of System

F<:. That is, not only is any type τ in FR
<: also a type in System F<:, but

subtyping in FR
<: implies subtyping in System F<:, and typing in FR

<: implies
typing in System F<:. This means that FR

<: inherits several useful properties of
System F<: metatheory.

In this Section, we discuss some of the properties of FR
<:, and in doing so,

we refer to both the typing judgment, and operational semantics. These are
identical to those of System F<:, and so are not given here, but are provided in
the accompanying technical report [1]. As with subtyping, we often need to refer
to several different forms of typing, and we make this distinction by annotating
the judgment appropriately. Typing in System F<: is indicated as Γ � τ1 : τ2,
and in FR

<: as Γ � τ1 :R τ2.

Subtype Transitivity. Unlike other variants on System F<: [9], FR
<: retains

the subtype transitivity of System F<:.

Theorem 2 (Subtype Transitivity in FR
<:). For all τ1, τ2, and τ3, if Γ �

τ1 <:R τ2 and Γ � τ2 <:R τ3, then Γ � τ1 <:R τ3.
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Proof. Subtype transitivity is proven as part of more general theorem that
includes narrowing of the typing context. i.e. we prove the following properties
mutually hold:

Γ � τ1 <:R τ2
Γ � τ2 <:R τ3

Γ � τ1 <:R τ3
(Trans)

Γ1, (α � τ), Γ2 � τ1 <:R τ2
Γ1 � τ ′ <:R τ

Γ1, (α � τ ′), Γ2 � τ1 <:R τ2
(Narrowing)

The proof can be found in the associated technical report [1].

Subtyping in FR
<: ⊂ Subtyping in System F<: FR

<: is not a significant change
to the semantics of bounded polymorphism from System F<:, in fact subtyping
in FR

<: is a subset of subtyping in System F<:. That is any subtyping that can
be derived in FR

<: can also be derived in System F<:.

Theorem 3 (FR
<: ⊂ System F<:). For all Γ , τ1, and τ1, if Γ � τ1 <:R τ2

then Γ � τ1 <:N τ2.

Proof. The result is easily reached by noting that every rule in Fig. 4 has a
counterpart in Fig. 2 that is at least as permissive.

This is a useful property because it implies that existing type checkers need
only introduce syntactic checks at key points (when checking subtyping between
polymorphic types with different bounds), and do not need significant modifica-
tions to the subtyping algorithm.

Subtyping in Kernel F<: ⊂ Subtyping in FR
<: FR

<: represents a super-set
of Kernel F<: in terms of subtyping. This provides a useful lower bound on
expressiveness. Any valid Kernel F<: program is also a valid FR

<: program.

Theorem 4 (Kernel F<: ⊂ FR
<:). For all Γ , τ1, and τ1, if Γ � τ1 <:K τ2

then Γ � τ1 <:R τ2.

Proof. The result arises from the fact that the S
R
-Kernel-All rule in Fig. 4

is the exact rule for bounded polymorphism in Kernel F<:. Thus, subtyping in
FR

<: is at least as expressive than subtyping in Kernel F<:.

Type Safety. As subtyping in FR
<: is a subset of subtyping in System F<:, and

the two calculi have otherwise identical typing, it follows that every well-typed
program in FR

<: is well-typed in System F<:. It is thus unsurprising that given
System F<:’s type safety, and that the two calculi have identical operational
semantics, any well-typed FR

<: program is guaranteed to not get stuck. In other
words, FR

<: is type safe.

Theorem 5 (Type Safety). For all Γ , t and τ , if Γ � t :R τ , then reduction
of t is guaranteed to not get stuck.

Proof. The result arises immediately from the type safety of System F<:, and
the result in Theorem3.
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Minimal Typing. As mentioned in Sect. 2 F�
<: [5] is another variant of System

F<: that allows for subtyping of bounded polymorphism that is both decidable
and contra-variant on type bounds. We also mentioned that typing in F�

<: is not
minimal [6], and thus some terms can be typed with two different types that are
not related by subtyping. Specifically, in F�

<:, the term t = Λ(X � Int).λ(x :
X).x can be shown to have both the type τ1 = ∀(X � Int).X → X, and the
type τ2 = ∀(X � Int).X → Int. In F�

<:, these two types are unrelated, and have
no lower bound. The implications of this lack of minimality are that the standard
typing algorithm for System F<: is not complete for F�

<:, and will assign t one
type, but not the other, and any usage where t is required to be typed with both
types will not type check.

The reason for the loss of minimal typing in F�
<: is due to a “rebounding” of

type variables during subtyping to �. Subtyping of the body of a polymorphic
type is done with reduced type information as the bound of the type variable is
treated as �, hiding the relationship between the type variable and its bound.

A central motivation in designing FR
<: is to provide reliable and expected

behaviour to type checkers, that allows for understandable error messages in
type checking. The loss of minimal typing does not provide these assurances.
For instance, it seems reasonable to expect that in the example above, τ1 should
subtype τ2, and if it doesn’t a satisfying reason should be provided by the type
checker. Subtyping in FR

<: does not perform the same “rebounding”, and as a
result does not suffer from the same loss of minimal typing.

τ ::=
� top
⊥ bottom
∀(x : τ).τx function

x.L selection
{L : τ . . . τ} declaration

Fig. 8. D<: Type Syntax

Theorem 6 (Minimal Typing). For all Δ, Γ , t, τ1, and τ2, if Δ;Γ � t :R τ1
and Δ;Γ � t :R τ2, then there exists some τ , such that Δ;Γ � t :R τ ,
Δ;Γ � τ <:R τ1, and Δ;Γ � τ <:R τ2.

Proof. The proof can be found in the associated technical report [1].

4 Separating D<:

D<: is a calculus related to System F<: that includes abstract type members and
dependent functions, and serves to model core aspects of the Scala type system.
The syntax of D<: is given in Fig. 8, and at first glance does not immediately
resemble that of System F<:. Most noticeably, D<: does not include any type
variables. The expressiveness of D<: derives from being able to capture System
F<: using path types (x.L) and dependent function types (∀(x : τ1).τ2).
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A type in D<: is either �, ⊥, a type declaration {L : τ1 . . . τ2}, a selection
type x.L, or a dependent function type ∀(x : τ1).τx

2 .
In D<:, type declarations ({L : τ1 . . . τ2}) define a type. Given a path x to the

type definition, the defined type can be used by selection on the path: x.L. That
is, if value x has type {L : τ1 . . . τ2}, then x.L refers to the defined type, where τ1
is the lower bound, and τ2 the upper bound. This is useful when combined with
the dependent function types of D<:. The return types of functions in D<: can
be dependent on the argument. This dependence is indicated in the syntax by a
super-script of the variable identifying the argument. i.e. ∀(x : τ1).τx

2 indicates
that x is free in τ2.

D<: subtyping is defined in Fig. 9, and is indicated by Γ � τ1 <:D τ2.
Subtyping is bound above by � (Top) and below by ⊥ (Bot). Subtyping is
explicitly reflexive (Rfl). Selection types subtype their upper bounds (Sel1),
and super type their lower bounds (Sel2). Subtyping of type declarations are
contra-variant with respect to the lower bounds, and covariant with respect to
their upper bounds (Bnd). Finally, subtyping of dependent function types is
contra-variant with respect to the argument types, and covariant with respect
to the return types, with the return types being dependent on the arguments
(All).

Coupling type declarations together with dependent function types allows for
similar functionality to F<:. That is, we can use the encoding below to capture
bounded polymorphism from System F<: in D<:.

[[�]] � � (1)
[[α]] � xα.A (2)

[[τ1 → τ2]] � ∀(xα : [[τ1]]).[[τ2]]xα (3)
[[∀(α � τ1).τ2]] � ∀(xα : {A : ⊥ . . . [[τ1]]}).[[τ2]]xα (4)

Γ � τ <:D � (Top) Γ � ⊥ <:D τ (Bot) Γ � τ <:D τ (Rfl)

Γ (x) = {L : τ1 . . . τ2}
Γ � x.L <:D τ2

(Sel1)
Γ (x) = {L : τ1 . . . τ2}

Γ � τ1 <:D x.L
(Sel2)

Γ � τ1 <:D τ2
Γ � τ2 <:D τ3

Γ � τ1 <:D τ3
(Trans)

Γ � τ2 <:D τ1
Γ, (x : τ2) � τ ′

1 <:D τ ′
2

Γ � ∀(x : τ1).τ ′
1 <:D ∀(x : τ2).τ ′

2

(All)

Γ � τ2 <:D τ1 Γ � τ ′
1 <:D τ ′

2

Γ � {L : τ1 . . . τ ′
1} <:D {L : τ2 . . . τ ′

2}
(Bnd)

Fig. 9. D<: Subtyping

The above encoding is in fact not enough to demonstrate the undecidability
of D<: due to the fact that subtyping of System F<: types is not equivalent to
subtyping of their encoding in D<:. That is, while the following holds:

Γ � τ1 <:N τ2 ⇒ [[Γ ]] � [[τ1]] <:D [[τ2]]
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the inverse does not.

[[Γ ]] � [[τ1]] <:D [[τ2]] �⇒ Γ � τ1 <:N τ2

The reasons for this are due to the fact that functions in System F<: are unrelated
to polymorphic types, but in D<: they are both captured using dependent func-
tion types. A simple counter-example to the inverse are the types ∀(α � �).�
and � → �. Both polymorphic types and arrow types in System F<: are encoded
as dependent function types, and [[∀(α � �).�]] subtypes [[� → �]], however,
it is clear that ∀(α � �).� does not subtype � → �. The full proof for this
was demonstrated by Hu and Lhoták [9]. This result does not affect the unde-
cidability result for D<:, as the proof of undecidability in System F<: does not
rely on arrow types. Pierce’s [13] proof of undecidability uses a subset of System
F<: that does not include arrow types, and thus while the encoding of System
F<: into D<: is not complete, it is possible to define a complete encoding of the
fragment of System F<: that is undecidable. We leave the details of this to Hu
and Lhoták [9].

Figure 10 presents the syntax for DR
<:, a separated variant of D<:. DR

<: intro-
duces a similar separation on syntax to that of FR

<:. Where FR
<: places a restric-

tion on the bounds of type variables, DR
<: places a restriction on the bounds

of type members. That is, we distinguish restricted type definitions from unre-
stricted ones. A restricted type definition ({R : ρ1 . . . ρ2}) is a type definition
that does not contain any dependent function types in either the upper or lower
bound. As with FR

<:This restriction is indicated by restricted types (ρ). Note:
restricted types are only separated from dependent function types, and not func-
tion types in general. As we have already mentioned, dependent functions in D<:

capture both abstraction over values and abstraction over types, while in Sys-
tem F<:, bounded polymorphism only captures abstraction over types. To this
end, we allow restricted types in DR

<: to include non-dependent function types
(∀(x : τ1).τ2) that can be identified by the absence of the variable super-script
indicating the return type is dependent on the argument type.

τ ::= DR
<: Type

� top
⊥ bottom
{U : τ . . . τ} declaration
{R : ρ . . . ρ} restricted declaration
x.L selection
∀(x : τ).τx dependent function

L ::= Type Label
U unrestricted
R restricted

ρ ::= DR
<: Restricted Type

� top
⊥ bottom
{L : ρ . . . ρ} declaration
∀(x : ρ).ρ function
x.R selection

Fig. 10. DR
<: Type Syntax
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Γ � τ <:R � (TopR) Γ � ⊥ <:R τ (BotR) Γ � x.L <:R x.L (RflR)

Γ (x) = {L : τ1 . . . τ2}
Γ � τ2 <: τ

Γ � x.L <:R τ
(Sel1R)

Γ (x) = {L : τ1 . . . τ2}
Γ � τ <: τ1

Γ � τ <:R x.L
(Sel2R)

Γ � τ2 <:R τ1 Γ � τ ′
1 <:R τ ′

2

Γ � {L : τ1 . . . τ ′
1} <:R {L : τ2 . . . τ ′

2}
(BndR)

Γ, (x : τ) � τ1 <:R τ2

Γ � ∀(x : τ).τx
1 <:R ∀(x : τ).τx

2

(All-KernelR)

Γ � ρ2 <:R ρ1 Γ, (x : ρ2) � τ1 <:R τ2

Γ � ∀(x : ρ1).τ ′x
1 <:R ∀(x : ρ2).τ ′x

2

(AllR)

Fig. 11. DR
<: Subtyping

4.1 Restricted Subtyping in DR
< :

Subtyping for DR
<: is defined in Fig. 11. There are several differences between the

restricted form of subtyping and that of D<:. As with bounded polymorphism
in FR

<:, subtyping of dependent function types in DR
<: can be proven using one

of two rules: (i) Kernel-All
R, a subtype rule that enforces invariance on the

argument type, and (ii) All
R, a subtype rule that allows covariance on function

argument types of the form ρ.

D(Γ, x.L) = 1 + max(D(Γ, τ1), D(Γ, τ2))
where Γ � x : {L : τ1 . . . τ2}

D(Γ, ∀(x : τ1).τ2) = 1 + max(D(Γ, τ1), D(Γ, τ2))

D(Γ, �) = 0
D(Γ, ⊥) = 0
D(Γ, ∀(x : τ1).τx

1 ) = 0

Fig. 12. Quantification Depth: the depth of the next dependent function type.

Subtyping in DR
<: also differs from standard D<: subtyping in how reflexivity

and transitivity are formalized. Explicit subtype reflexivity in DR
<: is restricted to

type selections (x.L). This is similar to the modification FN
<: makes to traditional

System F<:.

Subtype Transitivity. As in FN
<:, the explicit transitivity rule, Trans, is

removed. Transitivity rules are generally difficult to design an algorithm for as
it is not always clear what to choose for the middle type (τ2 in Trans). To try
and recapture some level of transitivity, we modify the subtype rules for upper
and lower bounds by introducing a level of transitivity (see Sel1

R and Sel2
R
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in Fig. 11). This mirrors the difference in transitivity between the FN
<: version

of System F<: subtyping, and the original definition of Cardelli [4], where the
explicit transitivity rule was removed, and replaced with a modified rule for type
variable subtyping that accounted for transitivity. In the FN

<: (and FR
<:) rule set,

general transitivity is provable as a property of subtyping. Unfortunately the
same cannot be said for DR

<:. Subtyping in DR
<: is not transitive.

The reason for the loss of transitivity is due to the relationship between the
upper and lower bounds of type definitions: there is no requirement that the
lower bound subtypes the upper bound. Precursor calculi to D<: attempted to
enforce this invariant, but due to a complex set of reasons, this is not generally
possible in the presence of another Scala feature: intersection types. A critical
insight of previous work on the DOT calculus, is that ill-formed type bounds
not necessarily unsound [2,3,16] since ultimately at run-time, any type bounds
must be fulfilled by some value (a witness), and only well-formed bounds may
be fulfilled. The details are interesting, but are fairly complex and so we do not
address them further.

4.2 Subtype Decidability in DR
< :

The subtype decidability argument for DR
<: is much like that of FR

<:: We define
an ordering on the number of dependent function types and the depth of a type
down to the next dependent function type. We define the measures D and Q
in Figs. 12 and 13. As with FR

<:, the finite measure of DR
<: the lexicographic

ordering:
M = D × Q

Q(�) = 0
Q(α) = 0
Q(∀(x : τ1).τ2) = Q(τ1) + Q(τ2)
Q(∀(x : τ1).τx

2 ) = 1 + Q(τ1) + Q(τ2)

Q(Γ ) = Q(τ) + Q(Γ ′)
where Γ = Γ ′, (α � τ)

Q(Γ, τn) = Q(Γn) + Q(τn)

Fig. 13. Quantification Size: the number of dependent function types in a DR
<: type.

We can now prove subtype decidability for DR
<: using much the same logic

as we did for FR
<:. We define a subtype algorithm for DR

<: : subtypeDR
<:

. As with
subtypeFR

<:, subtypeDR
<:

is the inversion of the rule set in Fig. 11. A sketch of
the proof of decidability is given below.

Theorem 7 (Subtype Decidability of DR
<:). For all Γ , τ1, and τ2,

subtypeDR
<:
(Γ , τ1, τ2) is guaranteed to terminate.

Proof. As with the proof of subtype decidability for FR
<:, it is fairly simple to

demonstrate that for any call subtypeDR
<:

(Γ, τ1, τ2), by the measure M, any
resulting calls to subtypeDR

<:
are strictly smaller.
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4.3 Type Safety

Subtyping in DR
<: is a subset of subtyping in DR

<:, and as with FR
<:, this affords

DR
<: many of the properties of D<:. Type safety is one such property, and arises

immediately from Theorem 8 below.

Theorem 8 (DR
<: ⊂ D<:). For all Γ , τ1, and τ1, if Γ � τ1 <:R τ2 then

Γ � τ1 <:D τ2.

Proof. The result follows directly from the fact that for every rule in Fig. 11,
there is an corresponding rule in Fig. 9 that is at least as permissive.

4.4 Expressiveness

The expressiveness of DR
<: is still an open question, and can only properly be

addressed in an empirical way. It is worth noting that our definition of DR
<: is

similar in its conception to FR
<:, in that we take care to only place restrictions on

the use of dependent function types, and not function types in general. Argument
types may still refer to function types that do not meaningfully modify the
context. In fact, DR

<: is actually still too strict, and could potentially be relaxed
further in its definition. There is no reason that subtyping of non-dependent
function types need to have the same restrictions placed on them as dependent
function types. It is likely possible that we could extend the subtyping in Fig. 11
with the following rule.

Γ � τ2 <:R τ1 Γ, (x : τ2) � τ ′
1 <:R τ ′

2

Γ � ∀(x : τ1).τ ′
1 <:R ∀(x : τ2).τ ′

2

(All2
R)

While at first glance the above rule looks like it might re-introduce undecidabil-
ity, note that the return types do not depend on the argument type: that is they
lack the super-script x. In this case, while we are still introducing differing types
to the context, they are not referred to in the return types, and so are of no
consequence. Such a rule is not without potential problems however. It is not
immediately clear what the above rule would mean for other properties of DR

<:.

5 Related Work

5.1 Strong F< : and Strong D< :

Hu and Lhoták [9], defined decidable variants of System F<: and D<: named
Strong F<: and Strong D<: respectively. Their approach introduces a second
typing context to subtyping, one for each type, giving subtyping the following
form.

Γ1 � τ1 <: τ2 � Γ2

Hu and Lhoták refer to this as “stare-at subtyping”. Type bounds in τ1 are
appended to Γ1, while type bounds in τ2 are appended to Γ2. This separation
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of contexts ensures that there is no problematic “rebounding” [13] that might
lead to an expansive context. There are however some short comings to this
technique, specifically subtype transitivity is lacking in both type systems. Below
we demonstrate an instance of subtype transitivity that is lost in Strong F<:.

A = ∀(α � �).α B = ∀(α � Int).α C = ∀(α � Int).Int

While it can be shown that both A subtypes B and B subtypes C in Strong
F<:, the transitive case cannot be derived, i.e. A �<: C. During subtyping of
bounded polymorphism in Strong F<: (and Strong D<:), two typing contexts are
maintained, each updated with the bounds of the relevant type. While subtype
reflexivity of type variables allows α to subtype α when deriving A <: B, this
is not so when attempting to derive A <: C. This is not an especially complex
example, and is a subtyping that programmers might expect to hold.

Using a syntactic separation we are able to retain subtype transitivity in FR
<:.

The trade off is that we exclude a specific class of programs. These programs,
however, can be identified syntactically, and thus FR

<: enables the type checker
to better guide programmers in fixing their error.

While we have already mentioned that DR
<: is not indeed transitive, this is due

to the potential for “bad bounds” on type definitions, and the problems associ-
ated with ensuring “good bounds”. DR

<: does not exclude the types of transitivity
seen in Strong D<: which lacks transitivity, not only due to the “bad bounds”
problem, but also for the same reasons Strong F<: does. More specifically, the
subtyping A <: C can be derived in FR

<:. Similarly, the equivalent example in
D<: is not derivable in Strong D<:, but is derivable in DR

<:.

5.2 Wyvern

Mackay et al. [10] defined two decidable variants of Wyvern [11,12], a language
related to Scala, featuring type members, dependent function types, recursive
types, and a limited form of intersection types called type refinements. Their vari-
ants of Wyvern were named Wyvfix and Wyv self, and took different approaches
to ensuring decidability.

Interestingly, Wyvfix introduces essentially the same double headed form of
subtyping that Hu and Lhoták [9] did. An independent discovery, Mackay et al.
[10] use the double headed subtyping form in a slightly different setting with
the same purpose. While the Strong Kernel D<: of Hu and Lhoták [9] does not
include recursive types or any form of intersection types, Wyvfix does. Wyvfix

suffers from the same loss of transitivity that Strong Kernel D<: does, and as
such prohibits several useful forms of expressiveness.

Wyv self does not use a double headed form, and rather makes use of a Mate-
rial/Shape separation inspired by the work of Greenman et al. [7]. Wyv self does
not allow for contra-variance on the argument types of dependent functions.
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6 Conclusion

In this paper we have presented FR
<:, a variant of System F<: that is decidable in

its subtyping, while retaining several of the desirable qualities of System F<:. Our
approach is largely in the form of a syntactic restriction on types, rather than a
significant departure from the semantics of subtyping bounded polymorphism.
Further, we have shown that this approach can be applied to another related
calculus, D<:, to get DR

<:, a type system that models core concepts of Scala. DR
<:

does not sacrifice certain instances of transitivity and expressiveness that other
similar designs in the past have.

In future work, we hope to show that this approach can be further applied to
the much more complex DOT calculus, by incorporating intersection types and
recursive types. Further, the expressiveness of these restrictions is still an open
question. While there are many languages that incorporate bounded polymor-
phism similar to System F<:, it is not clear how many of them allow for bounded
polymorphism within type bounds, the pattern that FR

<: restricts. What is yet
harder to say is what the restrictions of DR

<: mean for Scala. As we have noted,
the Scala type system potentially suffers from more undecidability issues than
just those related to dependent function types, recursive types in Scala are also
a source of undecidability [10], and so DR

<: does not ensure decidability of Scala’s
type system.

To settle the question of expressiveness, it would be valuable to conduct an
empirical survey of existing languages with bounded polymorphism to determine
either (i) how many of them already restrict the usage of bounded polymorphism
in the way that FR

<: and DR
<:, or (ii) how many of them are permit such patterns,

but are not in practice used by the respective programming communities.
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