
074 0 -74 59 /19©2019 I E E E MARCH/APRIL 2019 | IEEE SOFTWARE 83

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

MOBILE ROBOTICS IS a growing
area of research, but the long-term
deployment of such robots has had
limited success. A major challenge in
the field is that robotics software is
often purpose built for a given robot,
task, and environment. Adapting that
software to accommodate even small
changes in the robot’s hardware,
mission, or ecosystem is difficult. At
Carnegie Mellon University (CMU),
CoBots have been assisting humans
for the last seven plus years by escort-
ing visitors, delivering messages, and
carrying out other tasks. But getting
these robots to perform as intended
requires a good deal of human effort.
So the CoBots remain mostly con-
fined to the controlled environment
of the Computer Science building.

The Model-Based Adaptation for
Robotics Software project (http://
www.cs.cmu.edu/~brassmars) seeks to
change the way mobile robotics soft-
ware is made so that it can be more
easily adapted to different hardware,
tasks, and environments. We want to
build software so flexible that it can
adapt itself to changing environments
over a period of years or even decades.
Our primary intellectual leverage comes
from models: formal descriptions of
the structure and properties of robotic
software, and how these respond to
environmental change.1 Using these
models, our approach will enable ro-
bots to automatically explore potential
adaptations to the system architecture
and code and then choose the adapta-
tion that best meets system objectives
in the current environment.

Change and Adaptation
in Robotics Software
When a robot is in service for years, it
is likely to change in many ways. Sen-
sors are replaced or removed, software
is upgraded, and parts show wear and
tear. All of these changes affect how

Model-Based
Adaptation
for Robotics
Software
Jonathan Aldrich, David Garlan, Christian Kästner, Claire Le
Goues, Anahita Mohseni-Kabir, Ivan Ruchkin, Selva Samuel,
Bradley Schmerl, Christopher Timperley, Manuela Veloso, and
Ian Voysey, Carnegie Mellon University

Joydeep Biswas, Arjun Guha, and Jarrett Holtz,

University of Massachusetts, Amherst

Javier Cámara, University of York

Pooyan Jamshidi, University of South Carolina

// We developed model-based adaptation,

an approach that leverages models of

software and its environment to enable

automated adaptation. The goal of our

approach is to build long-lasting software

systems that can effectively adapt to

changes in their environment. //

Digital Object Identifier 10.1109/MS.2018.2885058
Date of publication: 22 February 2019

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

the robot senses the world, makes de-
cisions, moves, reasons, and interacts
with its environment. Meanwhile, as
time goes on, the robot may have to
operate in new environments and be
expected to perform new tasks.

These changes require time-con-
suming manual adaptation in today’s
mobile robotics systems. For exam-
ple, the person installing or updat-
ing a sensor on a robot must learn
how that new sensor uses system re-
sources, such as power, and how the
data it provides affect downstream
components. Today, this requires
painstaking data gathering and pa-
rameter tuning, much of which is
done manually. Upgrading individ-
ual software components—not to
mention software frameworks, such
as the Robotic Operating System
(ROS)—may result in incompatibili-
ties that prevent the software from

running correctly, consequently re-
quiring extensive programmer time
to debug the system.

While developing and maintaining
our CoBots, we have observed that
addressing these issues takes up enor-
mous amounts of time, thus illustrat-
ing how this problem is a significant
barrier to the more widespread de-
ployment of similar systems.

Our Approach: Intelligent
Model-Based Adaptation
We propose intelligent model-based
adaptation (Figure 1), an approach in
which developer-specified and auto-
matically discovered models are lev-
eraged to enable robotics software to
autonomously adapt to changes in the
ecosystem. Our models capture the in-
tent of the system and its components
at a higher level of abstraction com-
pared to the source code. For example,

a model of software architecture rep-
resents the high-level decomposition
of the system into components and
captures how those components com-
municate, providing a tool for reason-
ing through system-level adaptation.
Other models represent the system
and its environment, state-machine
control, triggers for replanning, utility,
system behavior, and the current plan.

Once models have been speci-
fied by developers or automatically
discovered via observations of the
system, we can leverage them in a
monitoring component that detects
the need for adaptation, then use them
to search intelligently among possible
adaptations and select an appropri-
ate adaptation for a given change in
the environment. Our adaptation ap-
proaches include replanning and ar-
chitectural adaptations as well as
code-level adaptations.

Robot

Running
System

Software
Engineer Integration

Discovery Models

Adaptation

Code

Monitoring

Sensitivity Analysis

Transition Repair

Learning Trigger

Behavior Learning

Adapt Code

System/Environment

State Machine

Task Switching

Behavior

Plan

Utility

Architecture

Plan/Adapt

Observations

Code

Component Upgrades

Design IntentC
or

re
ct

io
ns

FIGURE 1. A diagram illustrating the intelligent model-based adaptation approach.

 MARCH/APRIL 2019 | IEEE SOFTWARE 85

Sensitivity Analysis
Currently, environmental changes
typically require time-consuming
manual reconfiguration or tuning;
we would prefer robots to adapt to
these changes automatically by dis-
covering models that explain the
effects of all sorts of configuration
changes in a given environment.
These models would then be applied
to adapt the software, e.g., by choos-
ing among algorithms or sensors to
find the most effective tradeoff be-
tween the quality of service and use
of resources.

We apply sensitivity analysis, a
technique based on sampling and
machine learning, to automatically
discover models governing how
the robot’s resource use and per-
formance depend on its configura-
tion. Model discovery is expensive,
particularly in long-lasting robots
that may have a large configura-
tion space; e.g., four sensors that
have five Boolean configuration op-
tions each yield a million combi-
nations. It is not feasible to test all
combinations, so we have devel-
oped techniques both to learn the
effect of individual configuration
options and to discover when mul-
tiple options interact.2 We have also
reduced learning-related costs via
transfer learning, which combines
large amounts of data cheaply gath-
ered from simulations with carefully
selected data from the real robot to
predict how the robot will operate in
different situations.

State Transition Repair
Complex robot tasks are typically
modeled as state machines, where
each state encapsulates a feedback
controller. Transitions b e t w e e n
states are triggered when the ob-
served state of the world matches
thresholds in a multidimensional

parameter space. However, these
thresholds are hard to get right,
even for experienced roboticists. It
is common for parameter values to
work in one physical environment
but fail in another or to work on
one robot but fail with another. In
long-running robotic software, it
is important for nontechnical users
to be able to give the robot feed-
back on its behavior—e.g., telling
a robotic assistant that it should
have asked a human for help ear-
lier instead of wandering the halls
for an hour—and have the robot
automatically adjust its state tran-
sition thresholds accordingly.

We have introduced satisfiability
modulo theories (SMT)-based Robot
Transition Repair (SRTR),3 an ap-
proach to adjusting the parameters
of robot state machines using sparse,
partial specifications of corrections
from humans. This approach is gen-
eral to any robot action as long as it
fits the model of a robot finite-state
machine. During implementation,
we log execution traces of the transi-
tion function. Afterward, the human
corrects one or more transitions.
SRTR then takes the transition func-
tion source code and the corrections
as input and then produces adjust-
ments to the parameter values—au-
tomatically isolating parameters
that are repairable and translating
a set of resulting constraints to an
off-the-shelf MaxSMT solver that
produces adapted parameter values.

Learning Triggers for
Task Switching
Our CoBot robotic assistants can
autonomously deliver messages and
escort visitors while avoiding obsta-
cles. However, they cannot respond
to their surroundings, e.g., report-
ing a problem such as a water spill.
Long-lasting service robots will be

assigned many new tasks through-
out their lifetime. They must learn
how to automatically switch among
such tasks.

We evaluated a baseline ap-
proach to task switching by mod-
eling tasks as a Markov decision
process (MDP) with rewards and
composing all tasks together into
one MDP. This approach becomes
computationally intractable as the
number of tasks increases, as ex-
pected in long-last ing systems,
because the state space grows combi-
natorially. Furthermore, the global
MDP approach necessitates that
sensors involved in all tasks run
constantly, requiring too much en-
ergy and processing power.

We developed a new approach
that adds the ability to interrupt one
task and switch to another based on
new observations. With our method,
the robot learns policies and rewards
for each task, then learns a task-se-
lection policy that incorporates syn-
ergies between different tasks.6 For
example, reporting a spill can be
done conveniently if it is observed
while performing another task that
is not urgent. We also learn the most
important observations for trigger-
ing the interruption of one task and
consequent switch to another. Focus-
ing on these narrow stimuli substan-
tially saves on the estimated costs of
sensing. Through our stimuli-based
task switching, robotics software
can easily scale up to more tasks and
seamlessly adapt to changes in the
environment.

Architectural Adaptation:
Models and Code
Integration
A key aspect of our approach is ar-
chitectural adaptation—enabling the
robot to consider a variety of avail-
able algorithms and sensors and

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

automatically find and enact a con-
figuration of the system that meets
end-user needs. This approach re-
quires a model of the system’s archi-
tecture that is not just traceable to
code but also integrated with it so
that changes to the code are reflected
in the model and vice versa.

Our approach enforces compo-
nent isolation, ensuring that compo-
nents by default cannot communicate
with each other or access system re-
sources.5 This creates loose coupling
between components and facilitates
architectural adaptation. An archi-
tecture description language speci-
fies how to bind those components
together:

architecture SenseAct
component s:Sensor
component a:Actuator
connector senseData:ROSTopic
connect s.out, a.in with senseData.

Our robots are based on ROS,
so the (greatly simplified) previously
described architecture uses an ROS
topic connector to pass sensor input
to an actuator that uses it for further
processing. The ROS topic connector
generates the appropriate commu-
nication boilerplate so that the sen-
sor and actuator components can be
written without knowing the details
of the connector, allowing a connec-
tor with different characteristics or

even a connector from a later version
of ROS to be substituted without af-
fecting the component code.

Multimodel Integration
and Planning
As described, our approach leverages
multiple models, including models
of the robotic system’s tasks, power
usage, and physical environment as
well as its software architecture. In
a long-running system, new models
must be added to reflect new soft-
ware, hardware, and resources as
well as new environments and tasks.
Such long-lasting systems require a
systematic approach to integrating
multiple models and using them to

Physical EnvironmentPower ArchitectureTask

Aggregator

Model-View
Translator

Model-View
Translator

Model-View
Translator

Model-View
Translator

Task Planning
Model Generator

Task Planner

Architecture
Reconfiguration
Model Generator

Architecture
Reconfiguration

Planner

Problem
Domain
Models

Planning
Model

Generation

Planning

Outputs Task Plan
Reconfiguration

Plans

Utility Model Plus Task Quality Quantifiers (PCTL),
e.g., “Time to Complete Task,” “Success

Probability,” “Energy Consumed,” and so on

PRISM
Spec

PRISM
Spec

Legal Reconfigurations Prescribe
the Range of Allowable Behaviors
Encoded in the Task Plan Model

FIGURE 2. A diagram illustrating our approach to model integration.

 MARCH/APRIL 2019 | IEEE SOFTWARE 87

reason about how to adapt the ro-
bot’s configuration and behavior.

In our approach to model integra-
tion, illustrated in Figure 2, we use a
translator to project each model to a
view in a common language, where
the views are checked for consistency.7
An aggregator then composes this in-
formation. Models for task planning
and architectural reconfiguration are
generated in the input language for
the PRISM model checker.9 A plan-
ner leverages probabilistic model
checking together with probabilistic
computation tree-logic formulas de-
scribing safety properties and utility
to produce plans for carrying out indi-
vidual tasks and for reconfiguring the
system when needed. The key benefits
of this approach include extensibility
(new types of models can be added),
generality (the planning mechanism
supports an arbitrary number of quan-
tifiable quality dimensions), assurance
(the probabilistic planner provides
quantitative guarantees about behav-
ior), and automation (system reconfig-
uration actions and task planning can
be directly synthesized from models).

Adapting Source Code
Many classes of adaptations require
changes to source code. Our goal is to
automatically generate adapted source
code in many situations—e.g., when a
new component is added to the system
but contains a defect or an interface
mismatch compared to a previous ver-
sion of the component.

Unfortunately, long-lasting robot-
ics software poses challenges of scale
and complexity that significantly out-
pace the ability of state-of-the-art
patch generation techniques, which
typically target bugs that can be fixed
locally and require a comprehensive
repeatable test suite to localize the fix
and evaluate repairs. Robotics code
tends to have nonlocal effects, making

it difficult to identify where a patch
should be applied. Furthermore, the
requirement to simulate both the ro-
bot and its environment makes vali-
dation significantly more complex;
constructing large, repeatable test
suites is rarely feasible, and doubts
have been raised about whether typi-
cal robotics defects can be found
in simulation.

To address these challenges, we
have built a test generation framework
called Houston (https://github.com/
squaresLab/Houston), which cap-
tures a robotics system as a black box
with an explicit configuration space,
a space of possible incoming events,
and observable behaviors. Houston’s
abstractions allow the systematic gen-
eration of tests for constructing the
models of behavior in Figure 1 as well
as for guiding the selection of code-
level transformations and evaluating
their effectiveness. Leveraging this
framework, we demonstrated that our
techniques can find, verify, and cor-
rect many recently found real-world

defects in Ardu-based robotics sys-
tems using purely software-in-the-
loop simulation.8

Evaluation
In partnership with an independent
third-party evaluator, the Mas-
sachusetts Institute of Technology’s
Lincoln Laboratory, we are evaluat-
ing how well robots adapt with our
approach. Our evaluation uses the
Gazebo simulator to model a Turtle-
Bot delivering messages on a floor of
Wean Hall at CMU. The evaluation
uses three scenarios, each with a dif-
ferent kind of perturbation to test
our system’s ability to adapt:

1. New hardware affects the power
usage of the TurtleBot. We use
sensitivity analysis to discover
a model of power consump-
tion, which is then used by our
 adaptive planner, e.g., for chang-
ing the plan to visit charging
 stations when battery power
runs low.

0
10
20
30
40
50
60
70
80

F
ul

l

In
co

nc
lu

si
ve

F
ai

lu
re

F
ul

l

In
co

nc
lu

si
ve

F
ai

lu
re

F
ul

l

In
co

nc
lu

si
ve

F
ai

lu
re

Adapting With Learned
Power Model

Code Adaptation Architecture
Adaptation

Rates of Successful Adaptation for Three Challenge Problems

(%
)

FIGURE 3. A graph showing experimental results for the three adaptation scenarios.

Full means that the adaptation enabled normal operation after a perturbation.

Inconclusive means we were not able to assess whether the adaptation was successful.

Failure means normal operation was not restored.

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

2. An upgraded software com-
ponent is installed, but it has
(seeded, in our simulation)
defects that adversely affect
 behavior. We use our

code-level adaptation engine
to produce patches that en-
able the robot to complete its
task with the new software
component.

3. Environmental changes, such as a
dark corridor or a blocked path,
force the robot to alter its plan.
We combine task adaptations
(e.g., taking an alternate path)

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JONATHAN ALDRICH is a professor

in the School of Computer Science at

Carnegie Mellon University, Pittsburgh.

His research interests include improv-

ing software quality and programming

productivity by expressing design

within source code. Aldrich received

a Ph.D. in computer science and

engineering from the University of

Washington, Seattle. Contact him at

jonathan.aldrich@cs.cmu.edu.

CLAIRE LE GOUES is an assistant

professor of computer science in the

Institute for Software Research at Carn-

egie Mellon University, Pittsburgh. Her

research interests include automatically

reasoning about and improving software

quality in real-world, evolving systems.

Le Goues received a Ph.D. in computer

science from the University of Virginia,

Charlottesville. Contact her at clegoues@

cs.cmu.edu.

DAVID GARLAN is a professor

and associate dean in the School of

Computer Science at Carnegie Mellon

University, Pittsburgh. His research

interests include autonomous and self-

adaptive systems, software architec-

ture, formal methods, explainablity,

and cyberphysical systems. Garlan

received a Ph.D. in computer science

from Carnegie Mellon University. Con-

tact him at garlan@cs.cmu.edu.

ANAHITA MOHSENI-KABIR is a

robotics Ph.D. student at Carnegie Mel-

lon University, Pittsburgh. Her research

interests include robotics and artificial

intelligence with a focus on robot learning

through interaction with people and the

environment. Mohseni-Kabir received

her master’s degree in computer science

from Worcester Polytechnic Institute,

Massachusetts, in 2015. Contact her at

anahitam@andrew.cmu.edu.

CHRISTIAN KÄSTNER is an as-

sociate professor in the School of

Computer Science at Carnegie Mellon

University, Pittsburgh. His research in-

terests include the limits of modularity

and complexity caused by variability in

software systems. Kästner received a

Ph.D. in computer science from

the University of Magdeburg,

Germany. Contact him at kaestner@

cs.cmu.edu.

IVAN RUCHKIN is a software engineer-

ing Ph.D. student in the Institute for

Software Research at Carnegie Mellon

University, Pittsburgh. His research inter-

ests include the modeling and verification

of cyberphysical systems. Contact him at

iruchkin@cs.cmu.edu.

 MARCH/APRIL 2019 | IEEE SOFTWARE 89

with architectural adaptations
(e.g., using different sensors and
algorithms that operate better in
the new environment) to enable
the robot to succeed in its task.

Figure 3 shows the results of our
evaluation. In each scenario, our ad-
aptations were able to restore full
functionality in response to pertur-
bations in most tests.

M obile robotics systems
have the potential to play
a greater role in society,

assisting with tasks in the workplace
and the home. But this revolution can

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

SELVA SAMUEL is a software engi-

neering Ph.D. student in the Institute

for Software Research at Carnegie

Mellon University, Pittsburgh. His re-

search interests include programming

languages and software engineering.

Contact him at ssamuel@cs.cmu.edu.

MANUELA VELOSO is the Herbert A.

Simon University professor in the School

of Computer Science at Carnegie Mellon

University, Pittsburgh, currently on leave

at J.P. Morgan AI Reserach. Her research

interests include artificial intelligence

and robotics. Veloso received a Ph.D.

in computer science from Carnegie

Mellon University. Contact her at mmv@

cs.cmu.edu.

BRADLEY SCHMERL is a principal

systems scientist in the Institute for

Software Research at Carnegie

Mellon University, Pittsburgh. His

research interests include software

architecture, self-adaptive systems,

and software engineering tools.

Schmerl received a Ph.D. in com-

puter science from Flinders University,

Adelaide, Australia. Contact him at

schmerl@cs.cmu.edu.

IAN VOYSEY is a research programmer

in the Institute for Software Research at

Carnegie Mellon University, Pittsburgh.

His research interests include type theory

and theorem proving. Contact him at

iev@cs.cmu.edu.

CHRISTOPHER TIMPERLEY is a

systems scientist in the Institute for

Software Research at Carnegie Mellon

University, Pittsburgh. His research

interests include automated program

repair, cyberphysical systems,

program analysis, and search-based

software engineering. Timperly

received a Ph.D. in computer science

from the University of York, United

Kingdom. Contact him at ctimperley@

cmu.edu.

JOYDEEP BISWAS is an assistant

professor in the College of Information

and Computer Sciences at the University

of Massachusetts, Amherst. His research

interests include robot perception, mo-

tion planning, control systems, artificial

intelligence, and deployed robot systems.

Biswas received a Ph.D. in computer

science from Carnegie Mellon University,

Pittsburgh. Contact him at joydeepb@

cs.umass.edu.

90 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

only take place if the robots can eas-
ily adapt to new environments and
maintain themselves with little hu-
man effort. Our preliminary results
suggest that models are an impor-
tant technical enabler for the kind
of adaptation that will enhance the
benefits of mobile robotics systems
for society.

References
1. N. Bencomo, R. France, B. H. C.

Cheng, U. Aßmann, Eds., Models@

run.time: Foundations, Applications,

and Roadmaps. New York: Springer-

Verlag, 2014.

2. P. Jamshidi, N. Siegmund, M. Velez,

C. Kästner, A. Patel, and Y. Agarwal,

“Transfer learning for performance

modeling of configurable systems: An

exploratory analysis,” in Proc. IEEE

/ACM Int. Conf. Automated Soft-

ware Engineering, 2011, pp. 497–508.

3. J. Holtz, A. Guha, and J. Biswas,

“Interactive robot transition repair

with SMT,” in Proc. Int. Joint

Conf. Artificial Intelligence, 2018,

pp. 4905–4911.

4. M. Kwiatkowska, G. Norman, and

D. Parker, “PRISM 4.0: Verification

of probabilistic real-time systems,”

in Proc. Int. Conf. Computer Aided

Verification, 2011, pp. 585–591.

5. D. Melicher, Y. Shi, A. Potanin, and J.

Aldrich, “A capability-based module

system for authority control,” in Proc.

European Conf. Object-Oriented Pro-

gramming, 2017, pp. 20:1–20:27.

6. A. Mohseni-Kabir and M. Ve-

loso, “Robot task interruption by

learning to switch among multiple

models,” in Proc. Int. Joint Conf.

Artificial Intelligence, 2018, pp.

4943–4949.

7. I. Ruchkin, J. Sunshine, G. Iraci,

B. Schmerl, and D. Garlan, “IPL:

An integrated property language for

multi-model cyber-physical systems,”

in Proc. Int. Symp. Formal Methods,

2018, pp. 165–184.

8. C. S. Timperley, A. Afzal, D. S. Katz,

J. M. Hernandez, and C. Le Goues,

“Crashing simulated planes is cheap:

Can simulation detect robotics bugs

early?” in Proc. IEEE Int. Conf. Soft-

ware Testing, Validation and Verifica-

tion, 2018, pp. 331–342.

9. PRISM Model Checker, University

of Oxford, 2011. [Online]. Available:

http://www.prismmodelchecker.org/

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ARJUN GUHA is an assistant profes-

sor in the College of Information and

Computer Sciences at the University of

Massachusetts, Amherst. His research

interests include programming lan-

guages, formal methods, and systems.

Guha received a Ph.D. in computer

science from Brown University, Provi-

dence, Rhode Island. Contact him at

arjun@cs.umass.edu.

JAVIER CÁMARA is a lecturer in the

Department of Computer Science at the

University of York, United Kingdom.

His research interests include autono-

mous and self-adaptive systems,

software architecture, formal methods,

and cyberphysical systems. Cámara

received a Ph.D. in computer science

from the University of Málaga, Spain.

Contact him at javier.camaramoreno@

york.ac.uk.

JARRETT HOLTZ is a computer sci-

ence Ph.D. student at the University of

Massachusetts, Amherst. His research

interests include robotics, com-

puter vision, artificial intelligence, and

software engineering. Contact him at

jaholtz@cs.umass.edu.

POOYAN JAMSHIDI is an assistant

professor at the University of South

Carolina, Columbia. His research interests

include software engineering, systems,

and machine learning, with a focus on

the areas of machine-learning systems.

Jamshidi received a Ph.D. from Dublin

City University, Ireland. Contact him at

pjamshid@cse.sc.edu.

