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FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

MOBILE ROBOTICS IS a growing 
area of research, but the long-term 
deployment of such robots has had 
limited success. A major challenge in 
the field is that robotics software is 
often purpose built for a given robot, 
task, and environment. Adapting that 
software to accommodate even small 
changes in the robot’s hardware, 
mission, or ecosystem is difficult. At 
Carnegie Mellon University (CMU), 
CoBots have been assisting humans 
for the last seven plus years by escort-
ing visitors, delivering messages, and 
carrying out other tasks. But getting 
these robots to perform as intended 
requires a good deal of human effort. 
So the CoBots remain mostly con-
fined to the controlled environment 
of the Computer Science building.

The Model-Based Adaptation for 
Robotics Software project (http://
www.cs.cmu.edu/~brassmars) seeks to 
change the way mobile robotics soft-
ware is made so that it can be more 
easily adapted to different hardware, 
tasks, and environments. We want to 
build software so flexible that it can 
adapt itself to changing environments 
over a period of years or even decades. 
Our primary intellectual leverage comes 
from models: formal descriptions of 
the structure and properties of robotic 
software, and how these respond to 
environmental change.1 Using these 
models, our approach will enable ro-
bots to automatically explore potential 
adaptations to the system architecture 
and code and then choose the adapta-
tion that best meets system objectives 
in the current environment.

Change and Adaptation 
in Robotics Software
When a robot is in service for years, it 
is likely to change in many ways. Sen-
sors are replaced or removed, software 
is upgraded, and parts show wear and 
tear. All of these changes affect how 
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the robot senses the world, makes de-
cisions, moves, reasons, and interacts 
with its environment. Meanwhile, as 
time goes on, the robot may have to 
operate in new environments and be 
expected to perform new tasks.

These changes require time-con-
suming manual adaptation in today’s 
mobile robotics systems. For exam-
ple, the person installing or updat-
ing a sensor on a robot must learn 
how that new sensor uses system re-
sources, such as power, and how the 
data it provides affect downstream 
components. Today, this requires 
painstaking data gathering and pa-
rameter tuning, much of which is 
done manually. Upgrading individ-
ual software components—not to 
mention software frameworks, such 
as the Robotic Operating System 
(ROS)—may result in incompatibili-
ties that prevent the software from 

running correctly, consequently re-
quiring extensive programmer time 
to debug the system.

While developing and maintaining 
our CoBots, we have observed that 
addressing these issues takes up enor-
mous amounts of time, thus illustrat-
ing how this problem is a significant 
barrier to the more widespread de-
ployment of similar systems.

Our Approach: Intelligent 
Model-Based Adaptation
We propose intelligent model-based 
adaptation (Figure 1), an approach in 
which developer-specified and auto-
matically discovered models are lev-
eraged to enable robotics software to 
autonomously adapt to changes in the 
ecosystem. Our models capture the in-
tent of the system and its components 
at a higher level of abstraction com-
pared to the source code. For example, 

a model of software architecture rep-
resents the high-level decomposition 
of the system into components and 
captures how those components com-
municate, providing a tool for reason-
ing through system-level adaptation. 
Other models represent the system 
and its environment, state-machine 
control, triggers for replanning, utility, 
system behavior, and the current plan.

Once models have been speci-
fied by developers or automatically 
discovered via observations of the 
system, we can leverage them in a 
monitoring component that detects 
the need for adaptation, then use them 
to search intelligently among possible 
adaptations and select an appropri-
ate adaptation for a given change in 
the environment. Our adaptation ap-
proaches include replanning and ar-
chitectural adaptations as well as 
code-level adaptations.
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FIGURE 1. A diagram illustrating the intelligent model-based adaptation approach. 
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Sensitivity Analysis
Currently, environmental changes 
typically require time-consuming 
manual reconfiguration or tuning; 
we would prefer robots to adapt to 
these changes automatically by dis-
covering models that explain the 
effects of all sorts of configuration 
changes in a given environment. 
These models would then be applied 
to adapt the software, e.g., by choos-
ing among algorithms or sensors to 
find the most effective tradeoff be-
tween the quality of service and use 
of resources.

We apply sensitivity analysis, a 
technique based on sampling and 
machine learning, to automatically 
discover models governing how 
the robot’s resource use and per-
formance depend on its configura-
tion. Model discovery is expensive, 
particularly in long-lasting robots 
that may have a large configura-
tion space; e.g., four sensors that 
have five Boolean configuration op-
tions each yield a million combi-
nations. It is not feasible to test all 
combinations, so we have devel-
oped techniques both to learn the 
effect of individual configuration 
options and to discover when mul-
tiple options interact.2 We have also 
reduced learning-related costs via 
transfer learning, which combines 
large amounts of data cheaply gath-
ered from simulations with carefully 
selected data from the real robot to 
predict how the robot will operate in 
different situations.

State Transition Repair
Complex robot tasks are typically 
modeled as state machines, where 
each state encapsulates a feedback 
controller. Transitions b e t w e e n 
states are triggered when the ob-
served state of the world matches 
thresholds in a multidimensional 

parameter space. However, these 
thresholds are hard to get right, 
even for experienced roboticists. It 
is common for parameter values to 
work in one physical environment 
but fail in another or to work on 
one robot but fail with another. In 
long-running robotic software, it 
is important for nontechnical users 
to be able to give the robot feed-
back on its behavior—e.g., telling 
a robotic assistant that it should 
have asked a human for help ear-
lier instead of wandering the halls 
for an hour—and have the robot 
automatically adjust its state tran-
sition thresholds accordingly.

We have introduced satisfiability 
modulo theories (SMT)-based Robot 
Transition Repair (SRTR),3 an ap-
proach to adjusting the parameters 
of robot state machines using sparse, 
partial specifications of corrections 
from humans. This approach is gen-
eral to any robot action as long as it 
fits the model of a robot finite-state 
machine. During implementation, 
we log execution traces of the transi-
tion function. Afterward, the human 
corrects one or more transitions. 
SRTR then takes the transition func-
tion source code and the corrections 
as input and then produces adjust-
ments to the parameter values—au-
tomatically isolating parameters 
that are repairable and translating 
a set of resulting constraints to an 
off-the-shelf MaxSMT solver that 
produces adapted parameter values.

Learning Triggers for 
Task Switching
Our CoBot robotic assistants can 
autonomously deliver messages and 
escort visitors while avoiding obsta-
cles. However, they cannot respond 
to their surroundings, e.g., report-
ing a problem such as a water spill. 
Long-lasting service robots will be 

assigned many new tasks through-
out their lifetime. They must learn 
how to automatically switch among 
such tasks.

We evaluated a baseline ap-
proach to task switching by mod-
eling tasks as a Markov decision 
process (MDP) with rewards and 
composing all tasks together into 
one MDP. This approach becomes 
computationally intractable as the 
number of tasks increases, as ex-
pected in long-last ing systems, 
because the state space grows combi-
natorially. Furthermore, the global 
MDP approach necessitates that 
sensors involved in all tasks run 
constantly, requiring too much en-
ergy and processing power.

We developed a new approach 
that adds the ability to interrupt one 
task and switch to another based on 
new observations. With our method, 
the robot learns policies and rewards 
for each task, then learns a task-se-
lection policy that incorporates syn-
ergies between different tasks.6 For 
example, reporting a spill can be 
done conveniently if it is observed 
while performing another task that 
is not urgent. We also learn the most 
important observations for trigger-
ing the interruption of one task and 
consequent switch to another. Focus-
ing on these narrow stimuli substan-
tially saves on the estimated costs of 
sensing. Through our stimuli-based 
task switching, robotics software 
can easily scale up to more tasks and 
seamlessly adapt to changes in the 
environment.

Architectural Adaptation: 
Models and Code 
Integration
A key aspect of our approach is ar-
chitectural adaptation—enabling the 
robot to consider a variety of avail-
able algorithms and sensors and 
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automatically find and enact a con-
figuration of the system that meets 
end-user needs. This approach re-
quires a model of the system’s archi-
tecture that is not just traceable to 
code but also integrated with it so 
that changes to the code are reflected 
in the model and vice versa.

Our approach enforces compo-
nent isolation, ensuring that compo-
nents by default cannot communicate 
with each other or access system re-
sources.5 This creates loose coupling 
between components and facilitates 
architectural adaptation. An archi-
tecture description language speci-
fies how to bind those components 
together:

architecture SenseAct
component s:Sensor
component a:Actuator
connector senseData:ROSTopic
connect s.out, a.in with senseData.

Our robots are based on ROS, 
so the (greatly simplified) previously 
described architecture uses an ROS 
topic connector to pass sensor input 
to an actuator that uses it for further 
processing. The ROS topic connector 
generates the appropriate commu-
nication boilerplate so that the sen-
sor and actuator components can be 
written without knowing the details 
of the connector, allowing a connec-
tor with different characteristics or 

even a connector from a later version 
of ROS to be substituted without af-
fecting the component code.

Multimodel Integration 
and Planning
As described, our approach leverages 
multiple models, including models 
of the robotic system’s tasks, power 
usage, and physical environment as 
well as its software architecture. In 
a long-running system, new models 
must be added to reflect new soft-
ware, hardware, and resources as 
well as new environments and tasks. 
Such long-lasting systems require a 
systematic approach to integrating 
multiple models and using them to 
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FIGURE 2. A diagram illustrating our approach to model integration.
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reason about how to adapt the ro-
bot’s configuration and behavior.

In our approach to model integra-
tion, illustrated in Figure 2, we use a 
translator to project each model to a 
view in a common language, where 
the views are checked for consistency.7 
An aggregator then composes this in-
formation. Models for task planning 
and architectural reconfiguration are 
generated in the input language for 
the PRISM model checker.9 A plan-
ner leverages probabilistic model 
checking together with probabilistic 
computation tree-logic formulas de-
scribing safety properties and utility 
to produce plans for carrying out indi-
vidual tasks and for reconfiguring the 
system when needed. The key benefits 
of this approach include extensibility 
(new types of models can be added), 
generality (the planning mechanism 
supports an arbitrary number of quan-
tifiable quality dimensions), assurance 
(the probabilistic planner provides 
quantitative guarantees about behav-
ior), and automation (system reconfig-
uration actions and task planning can 
be directly synthesized from models).

Adapting Source Code
Many classes of adaptations require 
changes to source code. Our goal is to 
automatically generate adapted source 
code in many situations—e.g., when a 
new component is added to the system 
but contains a defect or an interface 
mismatch compared to a previous ver-
sion of the component.

Unfortunately, long-lasting robot-
ics software poses challenges of scale 
and complexity that significantly out-
pace the ability of state-of-the-art 
patch generation techniques, which 
typically target bugs that can be fixed 
locally and require a comprehensive 
repeatable test suite to localize the fix 
and evaluate repairs. Robotics code 
tends to have nonlocal effects, making 

it difficult to identify where a patch 
should be applied. Furthermore, the 
requirement to simulate both the ro-
bot and its environment makes vali-
dation significantly more complex; 
constructing large, repeatable test 
suites is rarely feasible, and doubts 
have been raised about whether typi-
cal robotics defects can be found 
in simulation.

To address these challenges, we 
have built a test generation framework 
called Houston (https://github.com/
squaresLab/Houston), which cap-
tures a robotics system as a black box 
with an explicit configuration space, 
a space of possible incoming events, 
and observable behaviors. Houston’s 
abstractions allow the systematic gen-
eration of tests for constructing the 
models of behavior in Figure 1 as well 
as for guiding the selection of code-
level transformations and evaluating 
their effectiveness. Leveraging this 
framework, we demonstrated that our 
techniques can find, verify, and cor-
rect many recently found real-world 

defects in Ardu-based robotics sys-
tems using purely software-in-the-
loop simulation.8

Evaluation
In partnership with an independent 
third-party evaluator, the Mas-
sachusetts Institute of Technology’s 
Lincoln Laboratory, we are evaluat-
ing how well robots adapt with our 
approach. Our evaluation uses the 
Gazebo simulator to model a Turtle-
Bot delivering messages on a floor of 
Wean Hall at CMU. The evaluation 
uses three scenarios, each with a dif-
ferent kind of perturbation to test 
our system’s ability to adapt:

1. New hardware affects the power 
usage of the TurtleBot. We use 
sensitivity analysis to discover 
a model of power consump-
tion, which is then used by our 
 adaptive planner, e.g., for chang-
ing the plan to visit charging 
 stations when battery power 
runs low.
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FIGURE 3. A graph showing experimental results for the three adaptation scenarios. 

Full means that the adaptation enabled normal operation after a perturbation. 

Inconclusive means we were not able to assess whether the adaptation was successful. 

Failure means normal operation was not restored.
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2. An upgraded software com-
ponent is installed, but it has 
(seeded, in our simulation) 
defects that adversely affect 
 behavior. We use our  

code-level adaptation engine  
to produce patches that en-
able the robot to complete its 
task with the new software 
component.

3. Environmental changes, such as a 
dark corridor or a blocked path, 
force the robot to alter its plan. 
We combine task adaptations 
(e.g., taking an alternate path) 
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with architectural adaptations 
(e.g., using different sensors and 
algorithms that operate better in 
the new environment) to enable 
the robot to succeed in its task.

Figure 3 shows the results of our 
evaluation. In each scenario, our ad-
aptations were able to restore full 
functionality in response to pertur-
bations in most tests.

M obile robotics systems 
have the potential to play 
a greater role in society, 

assisting with tasks in the workplace 
and the home. But this revolution can 
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only take place if the robots can eas-
ily adapt to new environments and 
maintain themselves with little hu-
man effort. Our preliminary results 
suggest that models are an impor-
tant technical enabler for the kind 
of adaptation that will enhance the 
benefits of mobile robotics systems 
for society. 
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