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Abstract
The Java Environment for Distributed Invocation (JEDI)
is efficient, dynamic, and easier to use than alternative
communication systems for distributed Java objects.
Existing state-of-the-art mechanisms for remote method
calls on Java objects, such as RMI, require users to
perform a complicated series of steps.  Furthermore, the
compiled static interfaces these systems use limit their
functionality.  This paper presents the design and
implementation of JEDI's simpler approach utilizing
dynamic proxies.   We discuss a means of integrating
JEDI with a publicly available CORBA ORB, followed by
the tests used to ensure the robustness of the JEDI system.
Comparing this system's performance with that of other
communication facilities such as UDP, TCP, and RMI
demonstrates the efficiency of JEDI.  A calendar-
scheduling application illustrates the flexibility and
usability tradeoffs of employing JEDI in distributed
client-server applications.

1. Introduction

Java programs can use the Internet for distributed
computations in many different ways [8]. One such
technique involves message passing [9] between objects
on different machines, as exemplified by Caltech's
Infospheres [4], IBM's Aglets [14], and the iBus multicast
system [16]. Another technique involves accessing remote
objects through a request broker active on a remote
machine using CORBA [17] or DCOM [6]. Some systems
communicate with remote objects through a gateway to a
Web server using HTTP and CGI [1]. Method calls on
remote objects may be made using Open Network
Computing Remote Procedure Calls [29] or Java's Remote
Method Invocation [12]. With each of these techniques,
the programmer must deal with creating extra interfaces
(often in a different language) and must do other setup
work to handle low-level communication details.

This paper explores remote method calling facilities
that automatically handle some of the more cumbersome
communication and synchronization responsibilities [21].

Many existing systems, including Java's RMI, require a
programmer to run interface code through a preprocessor
to create stub and skeleton objects. We have developed an
alternative system for remote method calling, offering the
programmer complete control over communication while
simplifying the model of distributed computing. Since our
system uses Java's serialization capabilities, a programmer
can automatically send any object to a remote machine.

First, we will discuss and evaluate several existing
systems, including RPC, RMI, CORBA and IIOP,
DCOM, and Infospheres. These systems motivate the
design and implementation of JEDI, a system that allows
dynamic method invocation (the ability to call any method
of a remote object at run-time without relying on statically
compiled interfaces) and requires fewer development
steps than other existing systems. Then we describe how a
developer would use JEDI. Next, we discuss several
experiments in client-server computing to determine the
flexibility, scaleability, and ease-of-use of the JEDI
system. These experiments include studying the
integration of JEDI with CORBA, testing the performance
and reliability of JEDI, and using JEDI to develop an
application from scratch. We conclude with a short
summary of our JEDI findings.

2. Existing Systems

Until recently, Java lacked a native client-server
method invocation paradigm [24], but several
supplementary systems are available to provide this
functionality.

In this section, we explore and compare some of the
current communication mechanisms in client-server
systems: RPC, RMI, CORBA and IIOP, DCOM, and the
Infospheres Infrastructure.

2.1. ONC Remote Procedure Calls

For years, programmers have used ONC's Remote
Procedure Call (RPC) system [29] to automate some of
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the communication tasks between client programs and
their servers. Although RPC was one of the first systems
to simplify the development of distributed applications
over the use of plain socket connections, RPC does not
handle remote procedure calls automatically. The
programmer must first design the interfaces (step 1 in
figure 1) on both the client side and server side so they
will connect properly when the distributed system is
invoked.
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Figure 1. Although the Remote Procedure Call
system somewhat simplified the job of a client-server
system developer, it still requires running separate
interface files through a preprocessor and filling in
the resulting stub files.

Next, the user creates a .x file (step 2) that specifies
the designed interface. This file is then run through
rpcgen (step 3) to construct client and server stubs. The
programmer then fills in the client and server stubs
produced by rpcgen with code that implements the
desired behaviors (step 4). This code is then compiled for
execution (step 5). Some consider this system to be more
straightforward than standalone sockets or message
passing, because the client can invoke operations on the
server by using what looks like a local procedure call.
Making network communications into procedure calls

meshes well with the top-down design techniques of
procedural programming. However, the RPC system
requires that the programmer tediously set up all the
remote methods in the interface description file, run the
preprocessor, and implement the resulting stub files.

2.2. Java's Remote Method Invocation

The Remote Method Invocation (RMI) system
furnished by Java 1.1 allows RPC-like access to remote
objects [12]. RMI includes support for data serialization,
remote class loading, and socket manipulation.
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Figure 2. RMI improves the RPC-like access for
remote Java objects, but adds several extra tasks for
the developer.

To use RMI, an application developer creates a Java
interface for the object to be accessed remotely (step 1 of
figure 2), and then writes a server class to implement this
interface (step 2). The Java compiler compiles the server
code (step 3), and the RMI preprocessor rmic uses the
resulting class to create the server skeleton and client-side
stub (step 4). The client may be written and compiled any
time after the server interface is written (steps 5 and 6).
Before the client can access a remote object on a server
(step 7), the RMI registry must be run (step 8), the server
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object must be created in a Java VM (step 9), and the
server must register itself in the RMI registry (step 10).

We believe that the extra preprocessing steps introduce
unnecessary complexity. They add several additional
object files to the compilation process, and restrict the
methods that can be run on remote objects to those that
are described in a static interface. If a server object is
updated to include new functionality and a new interface,
the client will be unable to use the new interface without
resorting to Java's somewhat awkward reflection
capabilities.

RMI is difficult for developers to use, because it does
not allow client programs to use new functionality in
server programs without first recompiling (and
redistributing) the client programs or using Java's
reflection to get around this static limitation of RMI.
Another cumbersome aspect of RMI is its requirement that
programmers must use the rmic preprocessor to generate
code for the server skeletons and client stubs. RMI can
use only a few wire protocols (currently TCP/IP and
HTTP), but some applications would benefit from the use
of custom transport protocols available through a generic
message infrastructure. The ACE framework [25][10] and
the iBus project [16] both provide a layered component-
based Java communication system that allows plug-in
custom transport protocols to provide different quality of
service facilities to applications.

ObjectSpace Voyager [18] provides remote method
invocation facilities much like RMI's, but makes the
development process much simpler and provides
additional features. Developers run an existing class
through the Voyager preprocessor to create a stub class
with all the methods the original class had. This saves
them the work of writing an remote interface file and
changing their code to implement the interface. Although
Voyager allows dynamic method calls, it requires
developers to specify methods with the unintelligible
method signature syntax used by the Java virtual machine.

2.3. CORBA

The Object Management Group's (OMG) Common
Object Request Broker Architecture (CORBA) allows the
development of distributed applications with component
objects [30]. CORBA's language-independence allows
objects written in different languages to communicate with
one another. All object interaction is routed through
intermediary Object Request Brokers (ORBs) which
communicate through the industry-standard IIOP protocol
(see figure 3). CORBA uses client and server stubs
created from an interface definition written in the ISO
Interface Definition Language (IDL).
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Figure 3. Through the CORBA bus, client objects
send requests for method invocations to the remote
ORB, which routes the request through the object
adapter and server skeleton to the server object.

To create a Java-based client-server application in
CORBA, the programmer first writes a IDL file defining
the signatures of the methods that need to be called
remotely. The IDL file is then run through a Java
preprocessor which creates an interface for the server
object and a stub class that will forward method calls to
that server object. Then the programmer writes the client
program and an object that implements the server's
interface. The client and server can then be compiled and
run.

CORBA has support for clients to discover and use
interfaces dynamically through its Dynamic Invocation
Interface (DII) [17]. When using DII, the client creates its
method calls at run-time, rather than calling methods in
the stub. A CORBA specification for the Dynamic
Skeleton Interface (DSI), allows server objects to update
their interfaces at run-time [17]. Any method invoked
through the DSI is passed through a single upcall method
(written by the programmer) that is responsible for
checking the method name and forwarding it to the correct
implementation method.

We looked at two particular ORB implementations.
Xerox PARC's Inter-Language Unification (ILU) system
[11] interoperates with other CORBA ORBs using the
Internet Inter-ORB Protocol (IIOP). Although ILU does
not implement many features of the commercial ORBs [7],
it provides DII and is freely available. As described in our
section "Experiments in Client-Server Computing", we
have worked on an ILU interface that allows CORBA
objects to call methods on JEDI objects.

VisiBroker, Visigenic's implementation of CORBA,
has similar features to ILU but includes more complete
functionality. Caffeine, a part of VisiBroker, includes a
compiler that generates IDL code from a Java interface,
making the CORBA development process in Java much
like that of RMI.
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2.4. DCOM

Microsoft has recently developed a Java interface to
their Distributed Component Object Model (DCOM) [6].
DCOM is another system that allows RPC-like calls on
remote objects; it uses a DCE-like IDL language to define
interfaces. Note that Microsoft's IDL (MIDL) is compliant
with neither CORBA IDL nor DCE IDL.

Like CORBA, RMI, and RPC, DCOM requires
compiling interfaces written in its IDL into stub objects.
However, DCOM has the added complexity of requiring
that a type library for the object be created as well. The
server object must then be written to implement the
defined interface. The client code is fairly straightforward,
but DCOM objects can only be accessed through an
interface, not directly. Also, both the client and the server
must register the DCOM object with the operating system
before the client may access it. To use a reference to a
local DCOM object in Java, a program must first cast the
object to its corresponding interface before using the
class. Although several ports are planned for the future,
DCOM is presently available only on Windows 95 or NT
systems.

DCOM Automation allows clients to make dynamic
method calls. By exposing one or more dispinterfaces (a
set of methods that can be called dynamically), an object
can make methods available to clients that were not
compiled with DCOM interface stubs. The client packages
up the arguments to the call in a variant data type and
combines this with an integer ID denoting which method
to call. These parameters are passed to the Invoke
method of the DCOM interface IDispatch. When the
Invoke call reaches the server, the destination object
must check the ID in order to discover which method is
being called before unpacking the variant parameters and
implementing the call.

2.5. Comparing RMI, CORBA, and DCOM

Comparing each of these distributed object
communication mechanisms [19], we note that RMI,
CORBA, and DCOM all offer somewhat seamless Java
integration, typed parameter support, and reasonable
performance. However, all three approaches suffer from
high setup costs due to programming complexity, lack of
configuration ease, evolving wire-level security, and
limited dynamic discovery and dynamic dispatch when
compared with systems such as NeXT's Portable
Distributed Objects [22]. Furthermore, although CORBA
was designed to scale to accommodate communication
among many objects, neither DCOM nor RMI presently
seems suitable for communication among more than a
handful of objects [19].

The Infospheres Infrastructure [4] offers a solution to
the scaling problem by providing mailboxes that can send
and receive typed messages. With these mechanisms,
developers can set up sessions of persistent
communicating objects [3]. JEDI was originally
constructed as an invocation layer built on top of the
Infospheres message-passing communication layer. As the
package evolved, the Infospheres plumbing was replaced
by a more performant communication layer using UDP.

Work is proceeding on the design and implementation
of the second generation of the Infospheres Infrastructure,
which integrates JEDI's invocation facilities. With this
design, we hope to make JEDI even easier to use and
provide features like security, authentication, and an even
more flexible and performant communication layer.

2.6. The Evolution of JEDI

Originally, JEDI was designed to make access to
remote objects completely transparent to the programmer,
handling all of the networking and synchronization details.
As the package developed, we realized that complete
transparency is not always desirable in distributed
systems. Several unique characteristics of distributed
systems, including uncertain delays and distributed failure,
must be considered when designing such a system [31].
Unfortunately, when the distributed nature of a system is
not hidden, programmers must often deal with low-level
coding issues and with complicated development tools
such as RMI. JEDI's focus therefore shifted to making
robust distributed systems easier to implement.

2.7. A Simple, Dynamic, and Global Vision for
Distributed Computing

We envision a distributed computing model with
billions of objects scattered over the globe, interacting
with each other via the Internet [4]. Because objects in
one Java VM usually communicate with method calls, we
believe that a communications system based on remote
method calls is conceptually more simple than a message-
passing system. Although message-passing is a more
general communication framework, developers are more
comfortable reasoning about and using method calls to
communicate between objects. Unfortunately, many
existing remote method call systems are quite complex
and have many steps to learn and repeat. JEDI's primary
goal is to simplify or eliminate as many of these steps as
possible.

JEDI provides a simple and flexible dynamic
invocation service. Conventional RPCs, for the most part,
are based on static interface definition files. RPC requires
a static, compile-time interface, and standard CORBA
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requires the same. Through the Dynamic Invocation
Interface facilities, CORBA clients can discover resources
dynamically. However, DII is somewhat difficult to use—
many steps are required to construct a dynamic request
object [19]. If the client must query the server for the
interface of the method it wants to call, performance may
decrease dramatically. DCOM Automation is likewise
complicated and difficult to use. With JEDI, calling a
method dynamically is a simple process: a client must
bind to the object it is calling, and then it can invoke any
method by name. Querying the interface of a remote
object is as simple as calling getClass() on the object
(using JEDI) and then finding its public interface using
Java's reflection capabilities.

As the number of objects running on the Internet
increases, truly dynamic RPC interfaces will be a
necessity, because it will become impossible to take
tightly-integrated object systems off-line so that they can
be recompiled to produce new static interfaces. With
massive distribution, knowledge of precompiled stubs of
every object in the network universe just is not practical,
because massive distribution requires dynamic typing and
construction of messages at run-time. Just as latency and
partial failure are inherent aspects of distributed
computing, coping with dynamically changing and
unknown interfaces is an inherent aspect of massively
distributed computing. Therefore, JEDI was developed to
allow the programmer to dynamically call any method on
any Java object at run-time.

3. An Overview of JEDI

We now describe the design of JEDI, and its use in
distributed Java systems.

3.1. The Design of JEDI

The simplicity of using the JEDI system is illustrated in
figure 4. Instead of involving a stub compiler, JEDI
provides a software library for making remote method
calls; as a result, any method can be called remotely at
run-time. The development process is identical to writing
any non-distributed Java program: classes are written,
compiled and run. Any object can be called from another
machine simply by giving it a name. A client can bind to a
remote object by creating a proxy with the remote
machine, port, and object name. The client can then call
any public method of the object with one simple line of
source code.
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Figure 4. The JEDI package simplifies a
programmer's task considerably. The user needs
only to implement, compile, and start up the client
and server programs. Servers name their objects in
a registry service so clients can call methods on
them.

Unlike most other RPC schemes, no source code
changes must be made to an object before its methods can
be called globally. This means that methods of any object,
including the core library objects like String, can be called
remotely—even if the source code for the object's class is
not available. Thus, "legacy" Java objects not designed for
distribution can nevertheless be integrated into distributed
systems without writing the wrapper classes necessary
with other RPC systems.

Since JEDI does not require a precompiler, the
program does not need to know the signature of any
method it will call until the call is actually made. An
interesting consequence of this is that JEDI does not
require the shutting down of a distributed object to update
its interface for new remote calls. Instead, that object can
be replaced on-the-fly by an updated version providing
expanded features and clients will be able to access the
additional functionality immediately. By using a dynamic
system like JEDI for remote method calls, distributed
systems can scale up to more objects.

Because JEDI is a library-based system, it fits more
naturally into the usual program-development cycle than
precompiler-based RPC systems. In general it is easier to
learn to use a software library than to use a new
command-line tool. Also, it is easier to understand what is
happening inside a software library than to understand the
black-box code generated by a precompiler—especially if
the library's source is available.

A potential disadvantage of a dynamic scheme like
JEDI is that there is no static type-checking. A method
call can fail at run-time if the programmer makes a
mistake and misspells the method or passes the wrong
parameters. However, in a distributed computing system
the programmer must be aware that any method may fail
because of a failure in the network or in the remote
machine. No distributed system can mask the failure of an
arbitrary method call. Furthermore, a system like RMI that
provides interfaces to remote objects still cannot ensure
that the programmer does not try to make an illegal
method call—it just reports the error as an illegal cast
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rather than a nonexistent method. Thus, the dynamic
typing system of JEDI is not a significant potential point
of failure for the application programmer.

Java's serialization mechanisms simplify programming
for the JEDI system. Any object that implements
java.io.Serializable may be passed to a method
of a remote object:

public class MyClass
implements java.io.Serializable {
// class definition here

}

The JEDI system permits the creation of distributed
systems using the intuitive remote method call paradigm
without the complexity of many similar schemes. JEDI
provides simple but dynamic remote method calls, giving
programmers the ability to make run-time modifications.

3.2. Using JEDI

Consider a simple remote method call using JEDI, as
illustrated in figure 5. Before a method call can be made,
the object on which it acts must be registered under a
name on the server. This is accomplished by getting the
local repository (use Repository.local()) and
calling the bind method with the new name and the object
to be registered. Then any client can call a method on that
object using JEDI.

The client begins this process by creating a Proxy
object with the network address (such as
"www.caltech.edu") and the name of the object.
Once a proxy has been created, any method can be called
on a remote object by calling function() on the proxy.
There are several versions of function(); the most
general accepts a method name and a vector of arguments
to that method and returns an arbitrary object. Underneath
it all, the JEDI system will send the method call
information to the remote machine, which will find the
object associated with the proxy. It will then look up the
method with the correct name, invoke the method, and
pass the return value back to the client. If any exception is
thrown in the method, or the method or object cannot be
found, or there is a communication error, an exception
will be thrown from function(). An example
demonstrates these concepts.

Client Server

Proxy proxy =
    new Proxy(…)

result = proxy.
       function(...)

-method name
-arguments

-return value
-exception

Find object in
  Repository
Find method
  with Reflection
Call method
Return result

Figure 5. JEDI allows a client to set up a Proxy
object through which it makes its remote method
calls. When calling a method through the proxy, the
method name and arguments are sent through
JEDI's communication layer to the server, which
finds the object in its object repository and finds the
proper method using Java reflection. The method is
then called on the object on the server machine, with
the return result shipped over the JEDI wire back to
the client program. New objects on the server can be
plugged in on-the-fly, so dynamic methods can be
invoked at run-time.

3.3. A Simple Example of Using JEDI

This simple JEDI server allows remote clients to call
any method on a String object.

import info.jedi.*;

public class ServerTest
{
   public static void

main(String args[])
   {
     String string = "Hello";
     Repository.local().bind(string,
         "HelloString");
   }
}

To expose an object to remote clients, a user needs to
create the object and bind it to a name in the repository. In
this example, we have created the string "Hello" and
bound it to the name "HelloString" in the local
Repository. Under the hood, our call to
Repository.local() initialized the JEDI system to
listen for incoming remote method calls on the default
port. Our server is now ready to accept requests from the
following simple client:

import info.jedi.*;

public class ClientTest
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{
  public static void main(

String args[]) throws Exception
  {
     Proxy proxy = new Proxy(
       "harmonica.cs.caltech.edu",
       "HelloString");

     System.out.println(
       "The string’s length is "
       + proxy.function("length"));
  }
}

This client creates a proxy object to represent the string
on the remote machine. In our example, the server is
running on harmonica.cs.caltech.edu, so this is
the network address we pass to the proxy constructor.
Since we registered the object under "HelloString," this is
the object name we pass to the proxy constructor. Once
the proxy has been created, we can call any function on
the remote object. In this case, we call the length()
method of the String. We use a convenient version of
Proxy.function() that does not take a vector of
arguments, because the String.length() method has
no arguments. Other versions of Proxy.function()
are provided for calling methods with different numbers of
arguments. The length() method will return an int,
which will be wrapped in an Integer object, passed back
over the network to the client, and finally returned by
proxy.function(). It will be converted into a string
by the concatenation operator, and the output of the client
will be:

The string’s length is 5

3.4. A Tour of the JEDI Architecture

JEDI includes a simple but powerful general messaging
infrastructure. This infrastructure is designed to be both
efficient and modular, and is implemented in several
layers with a protocol stack architecture similar to that of
iBus [16]. One layer can use the services of another; thus
the remote method call facility uses the reliability layer to
make robust remote method calls over an unreliable
network connections. Because the layers are loosely
connected, a separate messaging service layer could make
use of the reliability layer to provide robust message
passing, as is done with the ACE system [25].

Socket
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PingHandler

ReliableHandler

RMCHandler

UDP Packets

Other Handlers

Figure 6. The JEDI MailDaemon sits at a socket,
waiting for UDP packets. Upon receipt of a UDP
packet, it routes the packet accordingly to the
PingHandler, the RMCHandler, the
ReliableHandler, or some other packet handler.
The BSD Daemon is copyright 1988 by Marshall Kirk
McKusick.

The center of the JEDI system is the MailDaemon
class, illustrated in figure 6. Any program needing to
communicate uses a MailDaemon to forward incoming
UDP packets to the appropriate packet handler. When a
packet is received, it is converted into an InputPacket,
which creates a DataInputStream for reading the
contents of the packet. Then the first byte is examined;
this byte indicates which of up to 256 well-known packet
handlers will process the packet. Each packet handler
must conform to interface PacketHandler, which
defines a method that takes an InputPacket and
returns true if processing of that packet is complete. If
processing is not complete when the packet handler
returns, the next byte is assumed to be the next handler.
This provides the layering mechanism in JEDI: a packet
can first be processed by a reliability layer and then
passed on to a higher-level layer that uses data from the
packet for computation. The slots that are not yet used are
filled with DefaultPacketHandlers, which simply
ignore any packets they are passed.

A ResourceHandler is created for the
MailDaemon, and sets up threads of type
ReceiveThread to handle incoming packets. If there is
any possibility of a thread suspending during the handling
of a packet, it should call
ResourceHandler.threadBusy() followed by
ResourceHandler.threadIdle() when its work
is done. These method ensure there are enough threads to
handle incoming packets, and create another
ReceiveThread if there are not. In this way many
simultaneous packets can be serviced, up to the thread
limit of the virtual machine. For efficiency, the
ResourceHandler also keeps track of a pool of 64KB
packets (which are expensive to create for each incoming
packet).
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OutputPacket is a convenience class for creating,
filling, and sending a JEDI packet. It creates a
DataOutputStream that fills up a
ByteArrayOutputStream. It also provides methods
for sending the packet to another host and for resending it
if it gets lost on the way.

As a test for the system, the simplest handler provided
is the PingHandler. This class simply sends a packet
back to the original host. The PingHandler class has a
main() method so a program can test the latency of its
network connection through JEDI. It also provides a tool
to compare the overhead of the JEDI messaging structure
with that of a simple UDP ping.

The reliability layer is implemented through the
ReliableHandler class. Clients can call
ReliableHandler.addReliability(p) to make
packet p reliable. ReliableHandler extends
Thread, and the run() method will periodically resend
each reliable packet until it times out or is acknowledged
by the remote host. No packet ordering is necessary in a
remote method call system, so all available packets will be
sent immediately without waiting for acknowledgments.
When a reliable packet is received, the
ReliableHandler is called. It will check to make sure
the packet has not been duplicated, and then send an
acknowledge packet so that the sending host knows that
the packet has been received. If the remote host cannot be
contacted within a specified period, a
TimeoutException will be thrown to the caller.
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RMCCall

Network

RMCCall

Registry

Remote

Method Call
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Figure 7. The JEDI package automatically handles
the seven steps of a remote method call.

The JEDI remote method call facility is implemented
through several classes. The Proxy object asks the
RMCHandler object associated with the local
MailDaemon to send the method call out over the
network (step 1 in figure 7). The RMCHandler object
creates an RMCCall object to represent the method call
(step 2). The RMCCall object uses the reliability layer to
send a reliable packet to the remote machine (step 3),

which is intercepted by the RMCHandler object there
(step 4). This handler will create an equivalent RMCCall
object on that end of the network, look up the object's
name in the local Repository object (step 5), and
dispatch the method call using a method from class
Remote (step 6). Remote.staticCallFunction
takes an object, a method name, and a vector of
arguments, and uses Java's reflection facility to find and
call the appropriate method (step 7). The RMCCall
object then sends the return value back to the original
client, where it is decoded and passed on to the user.

4. Experiments in Client-Server Computing

To determine the flexibility, reliability, scaleability,
and ease-of-use of the JEDI system, four key experiments
were performed. We investigated integrating JEDI with
CORBA ORBs, and designed a comprehensive test suite
to demonstrate the reliability of the JEDI system. Later,
we tested and compared the performance of JEDI with
several other systems and compared the implementation of
a simple scheduling application using JEDI, RMI, and
Infospheres.

4.1. Flexibility: Interactions with ILU/CORBA

We experimented with creating a CORBA object that
would allow remote invocation of JEDI objects. The
testbed chosen was ILU because it is free and openly
available from Xerox. To make a JEDI object accessible
to CORBA ORBs using IIOP, we created the following
CORBA IDL file to expose an interface to the Remote
class:

module jedi {
  interface ILURMCCall {
    exception JediException{};

    typedef sequence < any > Arguments;

    any RemoteCallFunction (
  in string object_name,
  in string function_name,

        inout Arguments arguments)
raises (JediException);

  };
};

Through this interface, CORBA objects can access
JEDI objects through a method similar to the DII
interface, as illustrated in figure 8. A CORBA call comes
into the ILU system (step 1), where it is decoded and
mapped to the ILURMCCall object (step 2+3). ILU then
calls the implementation, ILURMCCallImpl (step 4),
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which accesses the JEDI registry to find the requested
object (step 5). We then invoke a function in the JEDI
Remote library to call the requested method (step 6).
Remote then calls the method and passes back any result
or exception information that was generated (step 7). This
information is then returned to the original caller through
ILU.

CORBA
call

ILURMCCall

ILURMCCall
implementationRegistry

RemoteMethod
Call

1 2

3

4

5

6

7

ILU / IIOP

Figure 8. The JEDI system can be integrated with a
CORBA-compliant object request broker such as
ILU.

4.2. Reliability

To ensure a high-confidence, robust system, we
devised a comprehensive test suite for JED to test all
portions of the info.jedi.net and info.jedi
packages. The complete source code for the test suite is
available with the JEDI distribution at our web site in the
info.jedi.testsuite package. In addition to testing JEDI, this
code provides many examples of the different ways to use
JEDI.

The simplest part of the test suite calls remote methods
with different signatures and return types. We call remote
methods with no parameters, and with String, int, and
boolean argument types. A call to a method with a
serializable user-defined tree-like structured data type
parameter checked for the proper use of Java serialization.
Finally, we call a static method and a method with one
argument of each of the above types.

To ensure that performance scales up with the number
of method calls, our test suite sends a user-defined number
of method calls, reporting the time per message after each
10% of the messages have been sent. This part of the test

suite has been tested with 1,000,000 method calls with no
observed performance degradation.

To test multiple concurrent JEDI calls, we create 100
threads, each of which called a remote semaphore method.
This synchronized method implements a 100-thread
barrier. None of the method calls may return until all of
them have entered the barrier method.

Next, to make sure that proxies can be sent to remote
methods as parameters and used successfully, our test
client calls a method on the server, receiving a proxy from
the return value of the method. This proxy is then used to
call a server method that is passed a count of 100 and
another proxy to the client. The server method recursively
calls the same method on the client with a count of 99 and
proxy to the server. This process continues until recursive
method calls had been made 100 levels deep between
client and server, after which they all return.

Finally, we test the error-handling capabilities of JEDI.
This includes catching exceptions thrown by remote
methods and ensuring that they print out stack traces with
methods from both the local and remote machines,
catching "not serializable" exceptions for parameters and
return values that do not implement Serializable,
catching time-out exceptions when a remote host does not
respond within a specified time period, and catching
exceptions where the specified remote object or method
does not exist.

The successful completion of our test suite gives us
confidence that our JEDI infrastructure is reliable. Its
reliability has been further demonstrated as we have begun
to build the next generation of Caltech's Infospheres
Infrastructure on this solid JEDI foundation.

4.3. Performance and Scaleability

We tested the JEDI package on Sun's JDK 1.1.3 virtual
machine, running on Solaris 2.5.1 on two 143 MHz
UltraSparc 140s with 64M of RAM and 10 Mbit ethernet
connections. Although performance numbers can vary
from one machine to another, we expect that the relative
performance of JEDI to the other Java-based systems will
remain approximately the same.

We repeated tests 5 times each and reported the best
times achieved for each technology, to filter out the
random effects of other users and programs on the two
testing machines. As shown in figure 9, each test set up a
connection from a client to the test server and sent data
back and forth between the machines 100 times, and
smaller numbers are better. Notice that both ping and call
times are reported for JEDI; the call time includes all of
the overhead incurred by passing method names and
parameters, looking up the right method, and maintaining
call reliability. The JEDI ping time given measures the
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time required to send an unreliable packet to a server and
back.
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Figure 9. The performance of JEDI pings and actual
JEDI remote method calls, in milliseconds, compares
well with the performances of pings using UDP, RMI,
and TCP/IP.

Although we considered using TCP/IP to send method
call data, we were concerned that its scaleability would be
restricted by the limited number of sockets the operating
system is able to create. Our early (incorrect) tests also
implied that the Java VM implementation of TCP/IP
sockets was very slow, since the default Java TCP/IP
stream does not do any data buffering. While it is still
relatively expensive to create a TCP/IP stream for each
method call, acceptable performance may be attainable by
reusing a single stream for multiple method calls. We plan
to provide the option of using this transport in future
versions of JEDI.

Because of the Infospheres work being done here at
Caltech, we initially used the info.net library of the
Infospheres Infrastructure [5] as our communications
protocol. However, this system provides rich features that
slow its performance, such as ensured ordered messages.
Performance tuning has not yet begun in earnest for the
info.net library, so using it incurs a considerable
performance penalty (100 back-and-forth messages took
5.0 seconds). As a result, we elected to build a more
simple subsystem for JEDI communication.

This new JEDI messaging system is quite efficient.
Sending 100 short UDP ping messages took 182
milliseconds on the machines we tested. Using the
underlying JEDI infrastructure directly, a ping took 321
milliseconds, mainly because several convenience objects
are created for each ping. On a slow, interpreted system,
1.39 ms per ping (139 ms over 100 pings) represents a
fairly low overhead.

JEDI's remote method call facility also compares well
with RMI in the performance domain. Testing simple

functions that return a string, we found that RMI made
100 remote method calls in 1.29 seconds, while JEDI was
able to accomplish the same task in only 0.85 seconds.
This is remarkable, considering that RMI uses hard-coded
method names and signatures that are fixed at compile
time, whereas JEDI can call any method on any object at
run-time using reflection. However, JEDI still lacks some
functionality provided by RMI, including support for
method calls involving more than 64K of data passed as
parameters.

When testing JEDI and RMI without including setup
time, RMI  takes 3.1 milliseconds per call while JEDI
takes 3.4 milliseconds per call.  Since JEDI is faster when
setup time is included, we conclude that connecting to a
remote object is an expensive operation under RMI.  Thus
RMI may be better for extensive communication (more
than 100 method calls) with a specific object, while JEDI
may perform better when interacting with many different
objects at the same time.

Research has shown the importance of measuring not
only two-way ping latency in distributed object oriented
systems, but also throughput and latency for sending
different kinds of data structures [27]. We tested JEDI and
RMI by passing a 35 Kb, richly typed, tree-like data
structure in a remote method call. In this case RMI sent
the structure in 0.85 seconds, while JEDI took 1.56
seconds. Since both figures are significantly longer than
the time required for communication, we theorize that the
delay is mostly due to Java's serialization. Tests of
serialization confirm that just serializing the data structure
can explain most of this time delay. Because the
communication layer of JEDI sends all of its data in one
packet, while the TCP/IP implementation in RMI sends
data as it is produced, we believe that RMI is able to begin
decoding the serialized data on the remote machine while
it is still being encoded on the originating machine. This
accounts for RMI's performance advantage in sending
large, structured data. We plan to add the capability to
send structured data more efficiently in a future release of
JEDI.

During our performance experiments, we did not
compare our JEDI mechanisms with CORBA invocations,
because significant research is being conducted to make
CORBA more performant and scaleable over high-speed
networks [26], resulting in several techniques for
optimizing IIOP performance [28]. We note that using the
dynamic capabilities of CORBA comparable to those
provided by JEDI can result in a performance degradation
of more than an order of magnitude in some ORB
implementations [20]. JEDI's niche is in low-end
distributed system development as an efficient, easier-to-
use alternative to RMI in Java programs. An example of
this use is the calendar application we describe next.
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4.4. Comparing Implementations of a Simple
Distributed Application

As illustrated in figure 10, a calendar scheduling
application [4] is an example of distributed resource
management [23]. For comparison of the application of
different techniques for distributed program development,
we implemented this calendar application using Java with
simple local method calls, after which we distributed the
program using RMI, Infospheres, and JEDI. We used a
responsibility-driven design [15] to coordinate the
scheduling activities of multiple distributed calendar
programs for each port of the system.

Group #1

Jonathan
Group #1

Leader

Group #2

Adam Scott
Group #2 

Leader
James

Mani
Group #3 

Leader

Group #3

Figure 10. Jonathan, Scott, Mani, and Adam are in
group 1; Scott, James, and Mani are in group 2; and
Mani, Jonathan, Adam, and James are in group 3.
Each person has a single calendar application that
handles the scheduling of the social calendar for that
person; for example, Mani's calendar application
handles the scheduling of his meetings with groups
1, 2, and 3. When a group leader decides to hold a
meeting, he queries the other group members in a
peer-to-peer session [3] to determine an appropriate
meeting time. The calendar application then locks in
the appropriate slots for the group meeting in each of
the respective group members' schedules.

Because of the request-response nature of the
scheduling algorithm we used, this application maps
naturally to remote method call semantics. As a result,
using the Infospheres Infrastructure's message-passing
system required more work than the remote method call
systems. For example, locking the calendar objects for
each member of a group requires the following code:

for (i=0; i < numMembers; i++) {
  sendBox.bind (
    new Place(memberAddresses[i]));
  sendBox.send (
    new CalendarMessage(REQUEST_LOCK));
  CalendarMessage response =

    (CalendarMessage)
       receiveBox.receive();
}

On the receiving end, a thread must be specifically set
up to wait for incoming messages at a mailbox, attempt to
lock the calendar, and send a response back to the process
that requested the lock. If the locking operation could
block, the user must create another thread to handle other
incoming messages while the thread is blocking.

The advantage of a RPC-based system like JEDI or
RMI for this application is that many aspects are handled
manually. For example, the user does not need to write the
CalendarMessage class (although in the case of RMI,
the user will have to write a new remote interface
definition file instead!). Also, the run-time library handles
creating enough threads to service incoming requests (in
case any method calls block). In addition, the RPC-like
syntax is more convenient for the programmer because it
matches the method call paradigm common to object-
oriented programming systems. Other projects,
particularly ones that do not require a synchronous
response to every network message, are better suited to
the message-passing scheme such as the Infospheres
info.net package.

Using RMI for communication made the code highly
readable (since remote method calls look just like local
ones).  However, RMI's multiple implementation steps
were time-consuming, because an extra interface had to be
developed for every object that was accessed remotely.
For example, we developed a Semaphore object to guard
access to each user's calendar.  To allow remote users to
lock and unlock the semaphore, we needed to create the
following interface:

package jedi.calendar.remote;

import java.rmi.*;

public interface SemaphoreInterface
         extends Remote
{
  public void lock()
    throws InterruptedException,
      RemoteException;
  public void unlock()
    throws RemoteException;
}

This additional interface was not a useful part of our
overall design, as the Semaphore class definition includes
a complete specification of the interface to our Semaphore
object. Although coding such a simple interface is not
difficult, it would be time consuming and error prone to
develop an interface for every class in a large collection of
distributed objects. In a world with billions of different
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interacting objects, maintaining a separate remote
interface for each one is not a scaleable solution.

Using JEDI did not result in code as pretty as RMI,
because remote method calls are made through the generic
library facility, rather than to a remote interface with a
stub hidden behind it. However, developing the JEDI
version was much quicker, simpler, and easier than the
RMI version, because no separate interface files had to be
layered on top of the existing objects, no preprocessor had
to be run, no separate registry program had to started, and
we did not need to keep track of stub and skeleton class
files.

Locking the semaphore for each group member's
calendar provides an example illustrating how RMI calls
and JEDI calls are made. In RMI, this process looks like a
simple procedure call due to the stub/skeleton system and
the remote interface:

for (i = 0; i < numMembers; i++) {
  MemberInterface member =
    (MemberInterface)
      members.elementAt(i);
  SemaphoreInterface semaphore =
    member.semaphore()
  semaphore.lock();
}

With JEDI, the call is conceptually similar, but
syntactically more complex because there is no magic
preprocessor to create a Java object with the correct
interface:

for(i = 0; i < numMembers; i++) {
  Proxy member =
    (Proxy) members.elementAt(i);
  Proxy semaphore = (Proxy)
    member.function("semaphore");
  semaphore.function("lock");
}

At the same time, the Semaphore class being
accessed through JEDI was not modified in any way from
a local Semaphore class. This demonstrates that JEDI
can call methods on objects even when the source code
cannot be changed. A protocol such as RMI that depends
on changing the source code to implement a remote
interface can never be used with libraries that are not
designed with distributed computing in mind. In contrast,
JEDI allows objects of any class to be fully network-
capable.

One weakness in our design became apparent during
this implementation: two Java Virtual Machines (VMs)
cannot share a JEDI port. In our testing if we wanted two
calendars to reside on one machine, we had to set up the
calendar application using a different port for each
member, rather than looking up the member's name in

some sort of machine-global index. This demonstrates that
if two JEDI objects are on different Java VMs in one
machine, any process that needs to connect to them must
keep track of their respective ports. Since RMI depends
on a separate registry process running on each machine,
we were able to look up calendars in the RMI system by
name, rather than by port. In the future, we may add a
machine-global directory service so that more than one
JEDI VM can be run on one machine without forcing
developers to deal with port numbers.

4.5. Comparing JEDI with RMI and CORBA

Table 1
Feature JEDI RMI CORBA

Ease of use easy difficult difficult
Dynamic

invocation
yes no yes

Pass object
by value

yes yes no
(proposed
for future)

Pass object
by reference

yes yes yes

Steps
involved

few many many

Inter-
language

through
CORBA
interface

no yes

Dynamic
discovery

yes limited to
Remote

interfaces

yes

Forces
interface
creation

no yes yes

Java
integration

yes requires
rmic stub
compiler

requires
stub

compiler
Security only native

Java
mechanisms

special RMI
security
manager

CORBA
services

Transaction
capabilities

no no CORBA
services

This table shows that JEDI is most suitable for projects
requiring a Java-based RPC system with conceptual
simplicity, ease of use, acceptable performance, and
dynamic invocation capabilities. Although JEDI is
presently less suitable for applications that require inter-
language communication or advanced security and
transaction capabilities, these features may be added to the
JEDI system in the future.
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The JEDI package can be extended in many
compelling ways; some of the planned future extensions
include:
1. Adding the ability to make method calls with large

(more than 64K of data) arguments.
2. Enabling developers to make remote method calls

without waiting for a return value (or retrieving the
return value later.)

3. Adding a machine-global directory service so multiple
JEDI virtual machine servers can exist on one machine
without having to remember particular ports.

4. Further integrating JEDI with CORBA.
5. Allowing secure transactions on JEDI objects,

including rollback and two-phase commit capabilities.
6. Allowing persistent objects that are woken up when a

remote method call is made on them, as is permitted by
Infospheres Djinns [5].

7. Providing a security filter mechanism for incoming
JEDI method calls, perhaps allowing for trust-signed
method invocation chains [13].

As a mechanism for dynamic method invocations,
JEDI has become the communication substrate used with
Caltech's current work on Infospheres 2.0, allowing the
development of location-independent mobile objects with
RPCs [2].  In the future, this system will be integrated
with both events and the Infospheres mailbox and message
packages, creating a JavaBeans-based infrastructure that
supports RPCs and messages.  New integrated system
features will include asynchronous method calls (with the
option of receiving  a return value later), a general
composition framework, fault-tolerant mobile objects, and
a server-side thread control library that enables objects to
determine when to process incoming method calls.

5. Summary

The JEDI system gives a developer flexibility with its
dynamic dispatch of remote method calls and the potential
for dynamic discovery of remote object methods through
reflection. The JEDI approach is scaleable, in that its
communication layer provides efficient communication
among many Java objects over the Internet. The ease of
using the JEDI package was demonstrated with the rapid
conversion of a calendar scheduling application from a
single machine application to a robust client-server
system. Many possibilities exist for extending the JEDI
package to provide a rich but simple and dynamic RPC-
like mechanism for Java programmers.

Appendix: JEDI method APIs

Repository methods

• static LocalRepository local()
• Object lookup(String name)

LocalRepository methods

• void bind(String newName, Object
object)

• void unbind(String newName)
• MailDaemon mailDaemon()

Proxy methods

• Proxy(String machineName, int port,
String objectName) throws
UnknownHostException

• Proxy(String machineName, String
objectName) throws
UnknownHostException •Proxy(String
objectName) throws
UnknownHostException

• Object function(String methodName,
Vector args) throws Exception

• Object function(String methodName)
throws Exception

• Object function(String methodName,
Object firstArg) throws Exception
•Object function(String methodName,
Object firstArg, Object secondArg)
throws Exception

MailDaemon methods
 
• MailDaemon() throws SocketException
• MailDaemon(int port) throws

SocketException
• InputPacket

receivePacket(DatagramSocket socket,
int TYPE_TO_CATCH) throws
IOException

• void handle(InputPacket packet)
throws IOException

• void send(DatagramPacket packet)
throws IOException

• void addHandler(PacketHandler
handler, int index)

• PacketHandler handlers(int index)
• ResourceHandler resourceHandler()
• DatagramSocket socket()
• PingHandler getPingHandler()
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• ReliableHandler getReliableHandler()
• RMCHandler getRMCHandler()

InputPacket fields

• InputPacket(DatagramPacket packet)
• DataInputStream stream
• DatagramPacket packet

ResourceHandler methods

• DatagramPacket getPacket()
• void returnPacket(DatagramPacket

packet)
• void threadBusy()
• void threadIdle()
• DatagramSocket getSocket() throws

SocketException

• void returnSocket(DatagramSocket
socket)

ReceiveThread methods

• ReceiveThread(MailDaemon md)
• void run()

OutputPacket fields

• OutputPacket(MailDaemon md)
• void send(InetAddress address, int

port) throws IOException
• void resend() throws IOException
• DatagramSocket socket
• DataOutputStream stream

PingHandler methods
 
• boolean handle(InputPacket packet)

throws IOException
• void ping(InetAddress address, int

port) throws IOException
• static void main(String args[])

throws IOException
 
ReliableHandler methods

• void addReliability(OutputPacket
packet) throws IOException

• boolean handle(InputPacket packet)
throws IOException

• void run()

RMCHandler methods

• boolean handle(InputPacket packet)
throws IOException

• Object call(InetAddress address, int
port, String objectName, String
methodName, Vector args) throws
Exception

• static RMCHandler getHandler()

RMCCall methods

• RMCCall(MailDaemon md, InetAddress
address, int port, String
objectName, String methodName,
Vector args)

• RMCCall(MailDaemon md, InputPacket
packet) throws IOException

• void send() throws IOException
• Object getResponse() throws

Exception
• void execute()

• void respond() throws IOException

Remote methods

• static Object
staticCallFunction(Object callee,
String methodName, Vector arguments)
throws NoSuchMethodException,
SecurityException,
IllegalArgumentException,
InvocationTargetException,
NullPointerException,
IllegalAccessException
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