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Abstract

For several decades, inheritance and delegation have been
widely adopted for code reuse in object-oriented languages.
Though extensive research has explored the expressiveness
of these techniques, little is known about how the choice be-
tween them affects formal reasoning. In this paper, we ex-
plore this question by describing two core languages that
are identical except for the use of inheritance and delega-
tion, respectively. We add support for formal reasoning about
typestate to both languages, and evaluate the complexity of
the formal semantics and compare the example specifica-
tions. Our study suggests that our variant of delegation can
substantially simplify typestate reasoning, while inheritance
makes code more succinct in the case where open recursion
is used.

1. Introduction

Inheritance and delegation are two major mechanisms for
code reuse and program extension in object-oriented pro-
gramming languages [5, 9]. In addition to longstanding work
studying the semantics of these constructs, recent empirical
studies have investigated their use in practice [7, 8]. How-
ever, we are not aware of any work that investigates whether
and how the two notions affect formal reasoning.

In this paper, we explore how inheritance and delegation
affect a particular kind of formal reasoning: typestate check-
ing [6]. We choose typestate checking because it is a well-
established yet relatively simple kind of formal reasoning.
Typestate is richer than a standard type system and enables
reasoning about temporal behavior, as do many other for-
mal reasoning systems. However, it is simple enough that
we can easily understand and compare typestate reasoning
in the presence of the two different reuse mechanisms. We
hope that the insights obtained during our study can be gen-
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eralized to other formal reasoning systems, although demon-
strating this is future work.

We design two Java-like programming languages: one
with inheritance and the other with delegation. Both lan-
guages support static reasoning about typestate [3]. In the
typestate model, each object goes through a series of con-
ceptual states during its lifetime. A state is defined by the
set of methods that can be invoked on objects that are in that
state; a method may transition the object into another state.
Programmers can use state invariants to specify predicates
over the object’s fields that must hold for each state. Our lan-
guages use classes as the unit of code, as in most Java-like
languages, and our inheritance language allows one class to
extend another. In our delegation language, we replace in-
heritance with a delegate construct that delegates a set of
methods to a second object reachable through a designated
field. We deliberately make the two languages as similar as
possible in order to focus purely on the differences caused
by inheritance and delegation. Our study suggests:

1. Delegation can reduce the complexity of typestate rea-
soning because the relationship between delegator and
delegatee is specified using the same mechanisms and are
used for any other pair of related objects. Since the del-
egator and delegatee are separate objects, they are more
loosely coupled than in inheritance, but at the cost of a
more verbose specification relating them.

2. Inheritance provides more succinct code and specifica-
tions when there is open recursion between a superclass
and subclass. However, the coupling that supports this
succinctness also creates the need for tight coordination
between the states of the superclass and subclass, lead-
ing to complex solution approaches such as sliding meth-
ods [2] or frame permissions [1].

To the best of our knowledge, this is the first work that
compares inheritance with delegation in the context of for-
mal reasoning. In order to make the study thorough and ac-
cessible, we use concrete examples as well as formal rules
to highlight the differences between these two mechanisms.

2. Examples

We use two simple programs to illustrate the usage of the two
languages. Both programs perform exactly the same task—



setting up and coloring a Flower, which reuses generic Plant
code—and involve both up-calls and down-calls, which gives
the examples non-trivial structure. The programs start with
declarations that show the states of the program objects and
the methods that can be called in each state. In the method
signatures, the syntax after the argument list describes the
state transition that the receiver object this goes through.
Then come the class declarations; each class has a set of
fields, followed by a set of state invariants that describe, for
each state of the object, whether the fields are null or what
state the fields are in. Finally, the methods of the class are
listed.

Listing 1 shows the program written in the language with
inheritance. The primary challenge in this version is coordi-
nating the states of the superclass and subclass. The required
relationship is shown in the state invariants for Flower: for
instance, when the Flower is in the Colored state, the Plant
must also be; there are additional requirements on the fields
of both classes. To allow Flower’s state invariants to talk
about the state of its superclass, we introduce the syntax
‘super instate S’ (lines 39-41).

Because of the relationships between superclass and sub-
class states, it is critical that the superclass and subclass tran-
sition between states in a coordinated way. To enforce this
requirement, we follow DeLine and Fahndrich in designat-
ing certain methods as sliding methods [2] using the sliding
keyword. A sliding method is used to transition an object
from one state to another. In each sliding method body, we
can manipulate fields, and we can make super calls to transi-
tion the superclass between the appropriate states (for exam-
ple, Flower.dye() does both of these things). However, at any
given point in the inheritance hierarchy, the object has only
been transitioned “halfway” into a new state. Thus, calling
other methods on the receiver object (‘this’) is forbidden, be-
cause the call might dispatch to a method implementation in
a subclass that expects the object to be in a consistent state.

A non-sliding method cannot touch the fields of the ob-
ject, for fear of making the object’s state inconsistent with
the current state (even reading a field can do so, because we
work in a linear type system in which field reads use up the
permission to the field). However, a non-sliding method can
call other methods on this, including sliding methods.

In our language, sliding methods must be overridden in
all subclasses. The reason of overriding sliding methods is to
avoid the scenario in which different frames [1] of an object
are in inconsistent states. For instance, if the programmer
does not implement the dye() method in class Flower, the
object state transition will be as follows:

f=new Flower;

// f@Raw

f.initialize();

// f@Initialized

f.dye()

// super@ Colored && petalColor == null,
// so fis not in any legitimate state.

As shown above, since dye() is not overridden in class
Flower, f.dye() executes method dye() in class Plant, and
object f will end up being an inconsistent state, that is, it is
not in any state defined in this program. More specifically,
if we treat an object as a collection of frames from different
classes, f consists of two frames: Plant and Flower frames.
At this point, the Plant frame of f is in Colored state while
the Flower frame of f is in Initialized state.

1 state Raw {

2 unit paint() Raw— Colored

3 unit initialize() Raw— Initialized
4}

5

6 state Initialized {

7 unit dye() Initialized— Colored
8

9

10  state Colored {}
11
12 class Plant {

13 body;

14 color;

15

16 invariants:

17 Raw: body == null;

18 Initialized: body != null;

19 Colored: color != null;

20

21 unit paint() Raw— Colored {
22 initialize();

23 dye();

24 }

25

26 sliding unit initialize() Raw — Initialized {
27 body = new Plant();

28 }

29

30 sliding unit dye() Initialized — Colored{
31 color = RED;

32 }

33 }

34

35 class Flower extends Plant {
36 petalColor;

37

38 invariants:

39 Raw: super instate Raw

40 Initialized: super instate Initialized

41 Colored: super instate Colored && petalColor != null
42

43 sliding unit initialize() Raw — Initialized {
44 super.initialize();

45 }

46

47 sliding unit dye() Initialized — Colored {
48 super.dye();

49 petalColor = YELLOW;

50 }

51}

52

53 // Client code
54  f=new Flower;
55  f.paint();

Listing 1. Inheritance Example



As illustrated in this example, the complexity of the in-
heritance language lies in sliding window methods and deal-
ing with inconsistent object states. The system with inher-
itance also has to reason about the state of super. On the
other hand, the inheritance language makes upcalls and dy-
namic dispatch relatively easy and convenient, which results
in more concise program code.

Listing 3 demonstrates the delegation-based language.
Our semantics for delegation is slightly different from the
classic one [5, 9]; rather than bind the original receiver as
‘this’ in the delegatee’s method, we pass the original receiver
as an additional parameter to the delegatee’s method. This
choice makes our typing rules both simpler and more expres-
sive, because we can treat the current object and the original
receiver as separate arguments to a method rather than try to
find a type that fits both.

Our delegate construct replaces inheritance. For exam-
ple, in Listing 3, line 49 delegates the method paint() to
target. In order to elaborate how the delegation mechanism
works, we show in Listing 2 how it could be translated into
equivalent code without delegation.

unit paint() Paintable— Colored {
// this @ Paintable
// UNPACK this
// this unpacked & & target@Raw
tmp = target;
// this unpacked & & tmp @Raw
// PACK this to PaintableCallback
// this @ PaintableCallback & & tmp @ Raw
tmp.paint(this);
// this @ ColoredCallback & & tmp @ Colored
// UNPACK this
// this unpacked & & petalColor != null && tmp@ Colored
this.target=tmp
// target@ Colored
// PACK this to Colored

Listing 2. Translation of Delegation

The comments show the typestate of objects at each point
in the method. We can exchange knowledge that an object
is in a particular state (e.g. ‘this@Paintable’) for knowledge
of its fields by conceptually UNPACKing the object [1, 2].
Here UNPACKIing ‘this’ results in ‘this unpacked && tar-
get@Raw’, where target@Raw comes from the state invari-
ant of Paintable in Flower. PACK goes the other direction.

Note we use local variable #mp to store the delegation
target during the method call. We do this because we must
pass ‘this’ to the paint method of the delegatee, so ‘this’ must
be packed in a consistent state, and we cannot use the fields
of ‘this” while ‘this’ is packed. Note that we must pack ‘this’
into a new state, PaintableCallback, which is the same as
Paintable except that the state invariant has no knowledge of
the target field. We do this because, in our linear type system,
reading the target field destroys knowledge of its contents;
this is standard for typestate tracking systems, although there
are ways to relax it that we do not consider here [1, 2].
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state Initialized {
unit setColor() Initialized — Colored

}

state Raw {
unit initialize() Raw — Initialized
unit paint(PaintableCallback— ColoredCallback p) Raw — Colored

state Paintable {
unit paint() Paintable — Colored

state Colored {}

state PaintableCallback {
unit dye(Initialized— Colored t) PaintableCallback — ColoredCallback

}

state ColoredCallback {}

class Plant {
body;
color;

invariants:
Initialized: body != null;
Raw: body == null;
Colored: color != null;

unit initialize() Raw — Initialized {
body = new Plant();

}

unit paint(PaintableCallback— ColoredCallback p) Raw — Colored {
initialize();
p.dye(this);

unit setColor() Initialized — Colored {
color = RED;
}
}

class Flower {
target = new Plant;
petalColor;

delegate Paintable to target
mapping Paintable — > PaintableCallback, Colored —> ColoredCallback;

invariants:
Paintable: target instate Raw
PaintableCallback: true
ColoredCallback: petalColor != null
Colored: target instate Colored && petalColor != null

unit dye(Initialized— Colored t) PaintableCallback — ColoredCallback {
t.setColor(RED);
petalColor = YELLOW;
}
}

// Client code
f = new Flower;
f.paint();

Listing 3. Delegation Example



This example shows how our delegation system is able to
provide open recursion, just as inheritance does. The method
call p.dye() in class Plant (line 37) invokes method dye() in
class Flower (line 58). As shown in Listing 2, the original ob-
ject(’f”) is passed to the delegatee ("target”). Our approach
simplifies reasoning compared to a conventional delegation
semantics since we can treat the original receiver object as a
regular parameter to the delegatee’s method.

In the delegation example, f and farget are two indepen-
dent objects instead of two frames in inheritance mecha-
nism, which turns the problem of coordinating across su-
perclass and subclass into simply coordinating the state of
two objects—something both systems must be able to do any-
way. For the same reason, we don’t need the sliding window
mechanism either. In this regard, we argue delegation is ac-
tually simpler than inheritance in the setting of typestate rea-
soning. We recognize in this example the delegation code is
noticeably longer than that of inheritance—mainly because
of the additional states and accompanying state invariants.
Essentially, our delegation approach is more explicit about
the relationship between the delegator and delegatee, which
has advantages and disadvantages: On the positive side, the
objects are more loosely coupled, and the reasoning is sim-
pler and clearer, but on the negative side the specification is
longer.

3. Languages
3.1 Syntax

Both languages are inspired by Featherweight Java(FJ) [4].
The major difference with FJ are related to the addition of
states. Every object has a state as its type. We use an overbar
to abbreviate a sequence (e.g. MD = M Dy, ..., M D,,) and
write e to indicate an empty sequence. A program (PG) con-
sists of a list of classes and an expression. A class declaration
(CL) gives a state or a class a unique name. A state is defined
by a collection of methods that can be invoked at this state. A
method declaration (MD) specifies the states of the receiver
object, the return value and each parameter before and af-
ter method execution. Besides method and field definitions,
a class also includes a set of invariants that are predicates for
a state. For instance, in Listing 1, "Initialized: body != null”
is a predicate for state Initialized, which means an object is
in state Initialized if and only if field body is not null. For a
state name S, an object can be in packed state CQS or un-
packed state CQ{ f : S}. An object can only have downcalls
at a packed state and a field access can only be performed for
an object in an unpacked state. We will further explain the
subtyping relation between unpacked and packed states later.

Figure 1 shows the syntax of the delegation language
while Figure 2 highlights the syntactic differences in the
inheritance language. In the delegation language, the class
declaration may delegate all the methods in a state S to

PG = (CL,t)
CL ::= class C {f; M; invariant S = P;
delegate S to f mapping S — S }
| state S {MD }
M ::= MD {return t; }
MD =S m(S — S]z)[S — S]
P ::= f instate S
bu==zx|l
to=b|v|b.f|bm(b) | newC | (S)b|b.f=b; t

|letz =tint

Tu=~|CQS | Cca{f : S}
~ := 5 | none
vi=CO(f = v)

Pi=e |, b:7

C,D € CLASSNAMES S € STATENAMES
m € METHODNAMES v € VALUES
X, Y, z, this € IDENTIFIERNAMES
f € FIELDNAMES 1< INDIRECTREFERENCES

Figure 1. Syntax for Delegation Language

CL ::=class C' extends D {f; M; invariant S = P;}| ...
MD =S my ([S— S]x) [S— 5]
w = sliding | normal

P ::= f instate S, super instate S

Figure 2. Syntax for Inheritance Language

some field f. In the inheritance language, the keyword ex-
tends works similarly to Java. Predicates can also include
the state of super. More importantly, we distinguish between
normal and sliding methods. Sliding methods can access ob-
ject fields and must be overridden in subclasses. Normal
method cannot access fields.

3.2 Semantics

This section provides static typing rules of the two lan-
guages. We list the typing rules of the delegation language
in Figure 3, and present inheritance-specific rules in Fig-
ure 4 for comparison. Most of them are straightforward; we
explain the most interesting ones. The T-Read and T-Write
rules ensure read/write can only be conducted on objects that
are in an unpacked state (CQ{f : S}). The Sub-Pack and
Sub-unpack rules allow us to use subtyping to pack and un-
pack objects in the delegation system (in the inheritance sys-
tem, these rules are missing; the method rule does packing
and unpacking instead). T-Method rule requires the method




CT(C)=class C ... fi € fields(C)
T-New — — T-Read
F'FnewC:CQ{} 4T Lob:CQ{f:StEb.fi : S; 4AT,b: CQ{f : SP\{fi : Si}

fi € fields(C) T,b:CQ{f:S}U{fi: Sy}, b :nonett:S T’ )
p p - T-Write ——— T-Binding
Db:CQ{f:SHb : Sy Hbfi=b; t:5 4T Lb:rHb:74T

VI € dom(D).I' - ©(l) : Gamma(l) 4T (S = finstate S) € classC ' v;:S; 4T
T-Ref — T-Val
e r-FC(f=v):54T

I'Cov: 54T S <8 S, <:S
T-UnpackedVal R 1 2 2 3 )
THO(f=v): CQ{f:S}+T g < g Sub-Reflex S oG, SubTrans

S1={MD:.} S>={MD,} MD22MD1SbS ; S1 <: 8 Sub-Struct?
S5 < S, ub-Struct —C@S1 <: @S, ub-struct

f instate S C f instate S’ (S’ = f instate S) € class C
— ——— Sub-Struct3 — y Sub-Pack
ca{f: S} <:ca{f .5} ca{f:S}<:Ccas

F|_t1231_|rl
(S':finstateS)EclassC THb:S4T F',x:Sll—tQ:SQ—(F”

Sub-Unpack — =2 C T.Cas "
cas’ <:ca{J: 5} THS)b: 5 AT T Tileto—finte: S 1T\a L1

class C {f; M; invariant S = P; delegate S' to f ...}
MD¢eS A MD {returnt} ¢ M = MD¢c S

Sis OK in C I-State
P = ["instate y' FcyF
class C {f; M; invariant v = P; delegate Sto f ...}
T-Formula

PisOK in C

mdecl(m,v) =" m([yy = vl v =9 v<tym v <y
— ; T-Invoke
L,biry, 0 iy F bom(b) i~ 4T, by, Uiyl

Y

MisOKinC SisOKinC PisOKinC state S {MD}
delegate S to f mapping S’ — S” is OK in C  names(M) is disjoint from names(MD)

——— ——— T-Class
class C {f; M; invariant S = P; delegate S to f mapping S’ — S” } OK

this : CQS,, y: S, F¢:5 + this: CQS,, y: 5]
class C {f; M; invariant S = P; delegate Sto f ...} m¢& M

S" m([Sy — Si] y) [St = Si] {returnt;} OK inC

T-Method

VS; € S invariantc(S;) = invariantc(S}), f instate S}’
VMD € methods(S) 3S;,Sk € S pre(MD) = S; Apost(MD) = S ANIMD' € methods(Sy)
where MD = S, m([S® — S*]z)[S; — Sk] and MD' = S, m([S* — S|z, [S} — Si]y)[S] — Si]

— T-Delegation
delegate S to f mapping S — S’ OK in C

Figure 3. Static Semantics of Delegation Language




MisOKinC SisOKinC PisOKinC

C override method M in D

all sliding methods in D overridden

e ——— T-Class
class C extends D{f; M; invariant S = P;} OK
class C extends D{f; M; invariant S = P;} m c M
this: Sy, y: Sy H¢:5 - this: S;, y: .5
- y - T-Method-Normal
S Muorma([Sy — S} y) [St = Si] {returnt;} OK in C
class C extends D{f; M; invariant S = P;} m¢c M
S;,S; € S {finstate S;, super instate S;} C P; {f instate S, super instate S} C P
this : CQ{f : Sy}, super: Ss, y: S, Ft:5" - this: CQ{f:S}}, super: S, y: S
- T-Method-Sliding

S’ msliding([Sy — S{/] y) [SZ — S]] {return t;} OKinC

mdecl(m, D) =~ m(lvy = ] v)[ve —=w i) C extends D
= mdecl(m,C) =~ m(lvy = 7] v)ln —w v,

T-Override

C override method m in D

Figure 4. Static Semantics of Inheritance Language

body to match the declaration. We use indirect references to
match variables to values as in Garcia et al [3] and T-Ref
checks the types of indirect references are right.

Next, we examine the difference between two type sys-
tems. In Figure 3, the rules within the frame are those shared
by both delegation and inheritance, the rest are rules specific
to delegation. We have the T-Delegation rule to check if the
delegation target, f, is in compatible pre- and post-states.
We also have T-class rule to restrict the names of delegated
method to be disjoint from names of methods that are imple-
mented in this class.

Figure 4 lists rules that only are used by inheritance,
which are more complex than delegation. The major over-
head in the delegation type system is the sliding method
mechanism, requiring separate rules for sliding nand normal
methods. In addition, the inheritance system also needs to
specify the state of super in state invariants, as shown in the
rule T-Method-Sliding.

First, We need the T-Override rule to deal with method
overriding. Second, the inheritance language distinguishes
between normal methods and sliding methods by T-Method-
Normal and T-Method-Sliding, which are the most compli-
cated part in this type system.

Conclusion. Overall, we argue the type system of the inher-
itance language is more complex than that of the delegation
language. This confirms our observations in Section 2. Our
delegation system also retains the traditional advantage that
the delegatee can be chosen at run time. However, the sim-
plicity of formal reasoning comes at the cost of greater ver-
bosity in the specification.
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